SlideShare a Scribd company logo
Time :3:00 Hours
2012;(II)
CHEMICALSCIENCES
TEST BOOKLET
lNSTRlJCTIONS
Sr.No.
SUBJECT CODE BOOia.IT COBi:
Mtixiiittim Marks;· 200
You have opted for English as medium of Question Paper. This Test Booklet contains
one hundred .and forty five (20 Part'A'+50 Part 'B' +75 Part 'C') Multiple Choice
Questions (MCQs). You are required to answer a maximum of 15, 35 .and 25 questions
from part 'A' 'B' and 'C' respectively. If moreihan required numbet of questions are
answered, only first 15, 35 and 25.questions iri Parts 'A' 'B' and ~c· respectively, will be
taken up for evaluation.
2. Answer sheet has been provided separately, Before yt~u start filling up your particulars.
please ensure that the booklet contairis requisite number of pages and thatthese are not
torn or mutilated. If it is so, you may request the lrivigilator to change the bookle.t.
Likewise, check the answer sheet also. Sheets for rough work have been appended to the
test.booklet.
-3.. --WLite·.}'OurRollNo., Name, Youraddress and Serial Nurt1ber of this TestBookletonthe
- Answer sheet in the space provided on the side 1 of Answer sheet. - Also ·put -your
- signatures inthe c&pace identified.
4.. ¥ou :must cda:r-ken the appropriate circles with .a pencil related to 'Jiqft'Number,
Sub:iect (lode, Booklet Code :and .Centre -Co~ nn the -OMR-answer ·sheet.lt :js:the
"5rilevesponsibility ofthe.candidate•to metieulouslyc:ifollow .the instmttAAns~given on
the Answer Sheet, failing which. the computer shall ·not be ab'le ~to·det!lfiher'the
·. ;· iiieehfi~~'liiDW> tiimat-e!Nwesnlt~nflloss-·!iiifat~ ·-<~r:·":· ··~w-~e~
+:~IJ!tf!·~'f~[t"'~_;,; :.~
ma:cl'l"~estion:.nd~art 'A' and 13' carries 2.maiks and Part 'C' -~~;srlbmca~ry 4marks
each,t:especrively. There will be negativemarking-@ 25% for each wrong answe!'.
6. -Below each question -in Part 'A', 'B' and 'C' four aiteftl.atives or responses are ·given.
Only one,ofthese alternatives is the "correct" option to the question. You.have to flnd,
for_ each question, the correct or the best answer.
7. Candidates found copying or resorting to ariv unfair means are liable to be disqualified
frointhis and future examinations.
8. Candidate should not Vrite anything anywhere except on answer sheet or sheets for
rough work.
.
After the test is over, vou MUST .hand over the Test Booklet and answer sheet (OMR) to
the invigilator. -
Use ofcalculator is not pem1itted.
Rolll/o ....................... .
~an1c ...........................
S/75 POK/12-1AE,.--1A
1have verified all the infonnation fill~d
in by th:: ~·andidate.
Sig:nature of the InYigilator
www.examrace.com
:H
ifi1liq; 5922
. Will : 3:00 Fit
2012 (II)
'!W/491 ffl$191
ITR ra Tf'di!i : 200 atcf;
1. ~~<iff~ J"IT t 1 "$W rRmr ~~~"fit~ (20 qpr 'A'~+ 50
qpr 'B' + 75 qpr 'C' ~) ~ f<TcPc;q rwr (MCQ)~ TTV 8 1 ~ qpr 'A' ~ #
~ 1s Jtt? qpr 'B' ~ 35 m fi21T qpr ·c ~ # 2s m ctt "i:ffffV # 8 1 ~
f.%Tf{ffl- # arffTt5 m <6 "i:ffffV ~ TTV ~ ~ ~ qpr 'A' # 15. qpr 'B' # 35 ff2lT
qpr 'C' # 25'3fff# rlt iftq rlt ~ I
2. "i:ffffV ~ 3fCi1lT w- ~ 7fllT ~ 1 3fTFfT m rpiR 3/k R- w rt711 ~ w- we? w lilfq
~ fct> ~ ~ ~ fJ! 3/k mft 8 fi21T q;iff # Cfit-f/ft rrdf 8 I ~ ~ ~ at 3fTTT
$~uflco}C'< # j{tffc1iT ~ CfiT f.!MR ~ wq;ff , I $WI" ~ # "i:ffffV ~ flit ;ft iftq
"& I "$W ~ ~ Vfli CfiT1f lPR <6 ftorv ~ rrnT ffi>rr.r , I
3. "i:ffffV ~ ctt rpif 1 ~ ~ TTV ~ w J7rRT m rr1iR. "fTT1. 3fTFfT rrrrr fi21T "$W rr&rr
~ iliT ifi1fflff ~ I 31Tf1C6 iRi'fTifR" ;ft ~ 8 I
4. aTrrT apr-fl- aU.~~ "6ffR jlfflifiT it W"R OfiR Ifill • jlfflifiT m aik cfirr: m #
~ ~ ¢ <iff arcmT "ifiWfT iiR' t I l/8 'fili llf51 ~ tth ta/u}t:/tJ t fct> CIW
"i:ffffV ~ it ~ TTV frrtWf w Ft ~ w'llTcR ilR. "fflr ;r m w ;p:;!{p
fimuif i6T wlft cr(Jqt # ~ Of# ~ fl1fl1t rutw# :sifm: Jllrlifff ~ ~ ~
5.
6.
7.
8.
9.
10.
"i:ffffV j{tffc1iT tth dl'tilliftcl J/t mfil<;t; ,. Wi1iCit I I
qpr 'A' fi21T qpr'B' ~ fTfl1q; rwr <6 2 :Jiq;. qpr'C' *fTfl1q; rwr 4 :Jiq; iliT·~ 1 fTfl1q;
1TCffl "i:ffffV iliT ~ 0/lffl<P ~ 25 % rlt C:V # fct>liT lifTq7fT I
fTfl1q; rwr <6 ;ffit ~ f<TcPc;q ~ TTV I 1 ~ # c6;rc;r ~ f<TcPc;q dt "mfr ~
7fiifmJr zrc;r" ~ I ~ fTfl1q; fiR CfiT wdt ~ ~ oc;r ~ t I
~ <tmt sv w 3ffl?m ('f(Jqff C5T frtH1r <tmt gy rrrv lifT"it ~ d/'RlTfirl# C5T ur 3fiv
JRl 'I1T<ft rrfmraff <6 @Tv ~ OfflllT iff WPrfT t I
~ <Iff "i:ffffV liT ?Tii TFff <6 ~ q;iff 3fiv ~ ;ft rrdf ~ ~ I
rr&rr W1Tr(f o}" lifT't w ffl rr&rr ~ 3/k "i:ffffV ~ flit $'ffluflco}c'( flit J1cml ?tfrr
~I
ct3&~C'}c '? CfiT iWl1Pr lPR rlt ~ rnff t I
fitfflt fiR ~ ffflTTifr <6 ~ ~ Ji?)vft ~ rwc>r 6)w I
·~·-······················
5175 POK/12-1C H-1A
(
www.examrace.com
m
h
e
k
c
amu
G
R
m
h
e
k
c
IVe
amu
G
R)
R
..,
-'
1.6 X J0-19 j
1.67 x 1o-27
kg
6.67 X I o-Il Nm2kg-2
8.854 x J0- 12
Fm-1
USEFUL FUNDAMENTAL
CONSTANTS
Mass of electron
Planck's constant
Charge of electron
Boltzmann constant
Velocity ofLight
1.6 X lQ-19 j
1.67 X J0-27
kg
Rydberg constant
Avogadro number
8.854 x J0-12 Fm-1
Molar Gas constants
9. I I X I0 31
Kg
6.63 X Io·-'4
J sec
1.6 X J0-19 c
I.38 > J0-2' J/K
3.0 x JOKrn!Sec
1.097 x 107
m-1
6.023" I023
moie-1
8.314JK-1
mole-'
9. I I X JQ-31 Kg
6.63 " JO--'" J sec
1.6 X ]Q-19 c
1.38 X J0-23
J/K
1.097x IO"'m·'
6.023 x I023
mole 1
8.314JK 'molt:·
www.examrace.com
Element
Actinium
Aluminium
Americium
Antimony
Argon
Arsenic
Astatine
Barium
Berkelium
Beryllium
Bismuth
Boron
Bromine
Cadmium
Calcium
Californium
Carbon
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Curium
Dysprosium
Einsteinium
Erbium
Europium
Fermium
Fluorine
Francium
Gadolinium
Gallium
Germanium
Gold
Hafnium
Helium
Holmium
Hydrogen
Indium
Iodine
Iridium
Iron
Krypton
Lanthanum
Lawrencium
Lead
Lithium
Lutetium
Magnesium
Manganese
Mendelevi urn
4
LIST OF THE ATOMIC WEIGHTS OF THE ELEMENTS
Symbol Atomic
Number
Ac 89
AI 13
Am 95
Sb 51
Ar 18
As 33
At 85
Ba 56
Bk 97
Be 4
Bi 83
8 5
Br 35
Cd 48
Ca 20
Cf 98
c 6
Ce 58
Cs 55
Cl 17
Cr 24
Co 27
Cu 29
Cm 96
Dy 66
Es 99
Er 68
Eu 63
Fm 100
F 9
Fr 87
Gd 64
Ga 31
Ge 32
Au 79
Hf 72
He 2
Ho 67
H
In 49
I 53
lr 77
Fe 26
Kr 36
La 57
Lr 103
Pb 82
Li 3
Lu 71
Mg 12
Mn 25
Md 101
Atomic
Weight
(227)
26.98
(243)
121.75
39.948
74.92
(210)
137.34
(249)
9.012
208.98
10.81
79.909
112.40
40.08
(251)
12.011
140.12
132.91
35.453
52.00
58.93
63.54
(247)
162.50
(254)
167.26
151.96
(253)
19.00
(223)
157.25
69.72
72.59
196.97
178.49
4.003
164.93
1.0080
114.82
126.90
192.2
55.85
83.80
138.91
(257)
207.19
6.939
174.97
24.312
54.94
(256)
Element
Mercury
Molybdenum
Neodymium
Neon
Neptunium
Nickel
Niobium
Nitrogen
Nobelium
Osmium
Oxygen
Palladium
Phosphorus
Platinum
Plutonium
Polonium
Potassium
Praseodymi urn
Promethium
Protactinium
Radium
Radon
Rhenium
Rhodium
Rubidium
Ruthenium
Samarium
Scandium
Selenium
Silicon
Silver
Sodium
Strontium
Sulfur
Tantalum
Technetium
Tellurium
Terbium
Thallium
Thorium
Thulium
Tin
Titanium
Tungsten
Uranium
Vanadium
Xenon
Ytterbium
Yttrium
Zinc
Zirconium
Symbol Atomic
Number
Hg 80
Mo 42
Nd 60
Ne 10
Np 93
Ni 28
Nb 41
N 7
No 102
Os 76
0 8
Pd 46
p 15
Pt 78
Pu 94
Po 84
K 19
Pr 59
Pm 61
Pa 91
Ra 88
Rn 86
Re 75
Rh 45
Rb 37
Ru 44
Sm 62
Sc 21
Se 34
Si. .14
Ag 47
Na 11
Sr 38
s 16
Ta 73
Tc 43
Te 52
Tb 65
Tl 81
Th 90
Tm 69
Sn 50
Ti 22
w 74
u 92
v 23
Xe 54
Yb 70
y 39
Zn 30
Zr 40
Atomic
Weight
200.59
95.94
144.24
20.183
(237)
58.71
92.91
14.007
(253)
190.2
15.9994
106.4
30.974
195.09
(242)
(210)
39.102
140.91
(147)
(231)
(226)
(222)
186.23
102.91
85.47
101.1
150.35
44.96
78.96
28.09
107.870
22.9ll98
87.62
32.064
180.95
(99)
127.60
158.92
204.37
232.04
168.93
118.69
47.90
183.85
238.03
50,94
131.30
173.04
88.91
65.37
91.22
"Based on mass of C12 at 12.000.... The ratio of these weights of those on !he order chemical scale (in which oxygen of
natural isotopic composition was assigned a mass of 16.0000...) is 1.000050. (Values in parentheses represent the most
stable known isotopes.)
www.examrace.com
5
( ~/PART A )
1. ~ ~ i; <Jt?r-?'ft ~ ~?
Which ofthe following numbers is the largest?
34 43 24 42 23 32
2 ,2 ,3 ,3 ,4 ,4 .
2. ffr'3l # FFr ABCDEFGH Cf5T R cirur a ci; ?rfiFf ~1 mrf A, C fr2lT F ci; frcffrur Cf5T ~ ~·
The cube ABCDEFGH in the figure has each edge equal to a. The area of the triangle
with vertices at A, C and F is
.J321. -a
4
3. ~ w«:: UGCCSIR rt 31fflT ci; fiR fcRm:IT ctft ~ CfllT t, arFcP U fr2lT I WfF!!-WfF!! -.:rtf JTT
'fiCPff?
What is the number of distinct arrangements ofthe letters ofthe word UGCCSIR so that
U and I cannot come together?
1. 2520 2. 720 3. 1520 4. 1800
4. .,.r FciJ ?7/rf ~ vfwaff Cf5T ~ 21 ~I ~ ~ rf; CfTif ci; 1ffEZT Cf5T ~ ?fJfcr 'ffrf CfllT
#?
Suppose the sum ofthe seven positive numbers is 21. What is the minium possible value
ofthe average ofthe sqaures ofthese numbers?
1. 63 2. 21 3. 9 4. 7
5. .,.r FcP I Let
1
13
+i
3
+3
13
+··· +100
13
A=--------
i3 +413 +613 +···+10013
C=--------
100 50
frri:rr i; ?t CfllT WEft ~?
Which ofthe following is true?
1. B<C<A 2. A<B<C 3. B<A<C 4. C <A <B
www.examrace.com
6
60 XY C'7c1 if ~ 5 ~ qfJ f5rRlr ¢ [Eli ?fiTr (j}{ R JMlr ~ if t;I Cff X --3TeT q;'r Ff!1T t; rr.w
y--JTer if 6 ~ ~ RTcfiT [Eli ~ t;I ~ R cf; ~ -g :
A circle of radius 5 units in the XY plane has its centre in the first quadrant, touches the
x-axis and has a chord oflength 6 units on the y-axis. The coordinates of its centre are
1. (4,6) 2. (3,5) 3. (5,4) 4. (4,5)
7. 6 7ft (77i; ffT? if R cffrur 1 1ft. crrc;rr [Eli i/gB.fiH(/) ~ JriJ5R ~ lifmT t; frli R cffrur ¢ ffrr: [Eli lfr
HC (j}{ ~ frlizrr li1TfiT t;I ffT? W ~ <rR C/i7CT lifmT "t, FuRrc!ft ~ t; :
9.
A wire of length 6m is used to make a tetrahedron of each edge 1m, using only one
strand of wire for each edge. The minimum number of times the wire has to be cut is
1. 2 2. 3 3. 4. 0
If the sum of the next two terms ofthe series below is x, what is the value of log2x ?
2, -4, 8, -16, 32, -64, 128,.. 00 0 • • • 0
1. 128 2. 10 3. 256 4. 8
JlEf--mif <ffrur 30° rr.w lffrnt 10 #1ft. ¢ [Eli Wrg Tff3f (j}{ [Eli TRrHT r;;crrFf t:1 'CfT3! ¢ ~ mrr Tf7lT
[Eli TTBr ~ W Ff!1T t;I ~ ctfl f5rU'lfT ir.-.fr # t
A conical vessel with semi-vertical angle 30z and height 10.5 em has a thin lid. A sphere
kept inside it touches the lid. The radius ofthe sphere in em is
1. 3.5 2. 5 3. 6.5 4. 7
www.examrace.com
7
10. 3lW, arrffiR aey ~ cftrr f'it-51 fr f&rrr# 1[Cii tfEr "t_ <[!RT ~ aey rfRRr rm:J7Tl7P ~I 3PW
~ rrtft ~I J1CMR ~ ~ ~I ~ NfffT CZJfr!rr zm ~I ~ ctfr ~ fi rif.=fi c#t
~ CfiT ~r4Jfrtrf!4 17l'aT ~I fit f.F:r it# <flJT rrdT ~?
Amar, Akbar and Anthony are three friends, one of whom is a doctor, another is an
engineer and the third is a professor. Amar is not an engineer. Akbar is the shortest.
The tallest person is a doctor. The engineer's height is the geometric mean of the
heights ofthe other two. Then which ofthe following is true?
1. Amar is a doctor and he is the tallest
2. Akbar is a professor and he is the tallest
3. Anthony is an engineer and he is shortest
4. Anthony is a doctor and he is the tallest
11. 31W 100 ~ 100 fiRe it 100 Ttl ~ t fit 7 fi/fffi7ii Cfi'r 7 ¢ Cfi'r ~ ir fclmrrr
rf7Tll Wr!?
If 100 cats catch 100 mice in 100 minutes, then how long will it take for 7 cats to catch
7 mice?
1. 100I 7 fiRe /minutes
3. 49/100 frAc /minutes
12. f.F:r #r?r ~ f.R?rrur Cfi'mT ~.?
What does this digram demonstrate?
::/
n·(n+1)
1. 1+2+3+···+n=-.:....._----"-
2
•••
I
I I
I I
2 2 1 2 n ·(n + 1) ·(2n + 1)
2. 1 +2 +3- +···+ n = _.:.....___:_----'-------"--
6
3. 1+3+···+(2n+ = -1) = n
2
2 2 ( )2 2·n(n+1)(2n+l)4. 2 +4 +···+ 2n =_ ____,__ _:__:__---".._
3
2. 100 fiRe /minutes
4. 7 frAc /minutes
~r- r-~
•••
www.examrace.com
8
13. 1fJ""if fct r:;q; m if N 3TWT -&r <ff +1h:ff ~I 1fJ""if Fcli N r:;q; wr ~ #"I ~ ;:mrr r:;q; "llW it r:;q;
tt -,:f'rurr ~ fr. r:;q; wm- 77'rvif ctT ~ JrTTff m rr<ff fcMr;t 1f'ruit rfft 3TflTcliT ~ 6'fw?
Suppose there are socks ofN different colors in a box. If you take out one sock at a
time, what is the maximum number of socks that you have to take out before a
matching pair is found? Assume that N is an even number.
l.N 2. N+ I 3. N-1 4. N/2
14. 4 ~ cff ~ fM{ FRft it Fit q frrrrc qft p r:;q; ¢ cff ~ ifr!T?
At what time after 4 0' clock, the hour and the minute hands will lie opposite to each
other?
1. 4-50'-31" 2. 4-52'-51" 3. 4-53'-23" 4. 4- 54'- 33"
15. f.17:rr "Cf"iPT if QtR-w x-3lef rfft trr¢ wrr #"?
16.
17.
Which of the following curves just touches the x axis?
I. y = x2
-x+l
3. y = x2
-1 Ox+ 25
2. y = x2
- 2x + 2
4. y = x2
- 7x +12
A B
~ AB, CD <ff ~ t ff27T AO, 20D <ff WTFr #", fit fi!rqftur OAB "EffT ~ ffrcllrur OCD
cff ~ ~ fcMr;t T'fT ~ "fr?
If AB is paralled to CD and A0=20D, then the area of triangle OAB is bigger than the
area oftriangle OCD by a factor of
1. 2 2. 3 3. 4 4. 8
R &li'lJT cl> r:;q; 3lEfrm ~ cl> r:;q; cfrr w r:;q; ~ ~ U'f7ft;:r W filoTl!r TJ<TT #"I ~ <ff
tmiR w ~ r:;q; 'Efft7 ~ <ff rirrff ctT CfirafJ7J FErri rfft 4~ rrrm t 1 ~ ctt FErri t :
A semi-circular arch ofradius R has a vertical pole put on the ground together with one
of its legs. An ant on the top of the arch finds the angular height of the tip of the pole
to be 45°. The height of the pole is
I . .fiR 2. J3R 3. J4R 4. JSR
www.examrace.com
9
18. 1fR ~ 811 VCl' ~ 7Jk? ?1 N ~ uTe- 7Jk? "fATir t I uTe- 7J'ic;ff cm ~ ~ ~ ~ 7Jk?
ct ~ ~~ cmX TfT ~ JfOiX~
Suppose we make N identical smaller spheres from a big sphere. The total surface area
ofthe smaller spheres is X times the total surface area ofthe big sphere, where X is
Lffi 2.
19. ~ 24] 30] 33] 39] 5 I] ................ ctT 3f77cifT ?kslrr CflTT ~?
What is the next number in the sequence 24, 30, 33, 39, 51,------?
I. 57 2. 69 3. 54 4. 8I
20. VCl' ~ it 'E/7?" mro WrfT lifTffT t frJRit ?1 ~ ctW cfr wrRW t_ ~ rtit( ffFr WJTift t I ~
'E/7?" WrrJit qfr ~ ~Jil W ~ szl m-rif WrfT vrrrft t I ~ JTifiT? Jl7Tff ¢T 777ft <r<ft Wrr3#
qfr #&rT ~
Four lines are drawn on a plane with no two parallel and no three concurrent. Lines are
drawn joining the points of intersection of the previous four lines. The number of new
lines obtained this way is
1. 3 2. 5 3. 12 4. 2
( W1T !PART B )
I. 9/2 acy (+) 2. 7/2 acy (+) 3. 9/2 acy (-) 4. 7/2 acy (-)
21. For an odd nucleon in 'g' nuclear orbital and parallel to 1, spin and parity are:
I. 9/2and(+) 2. 7/2 and(+) 3. 9/2 and(-) 4. 7/2 and(-)
I. PbCh 2. PbS04 3. Pb(Et)4
22. For the deposition ofPb by electroplating, the best suited compound among the following is
1. PbCh 2. PbS04 3. Pb(Et)4
www.examrace.com
(A) WPm ctt i.!¢qfOfrJJ
(B) ~w~
1. A, B rmr D 2. B, C rmr D
10
3. A, C rmr D 4. A, B rmr C
23. Appropriate reasons for the deviation form the Beer's law among the following are
(A) Monochromaticity oflight
(B) Association of analyte
(C) Very high concentration of analyte
(D) Dissociation ofanalyte
1. A, B andD 2. B, C andD 3. A, C and D 4. A,B andC
1. La(OH)J 2. Nd(OH)J 3. Sm(OH)J 4. Lu(OH)J
24. Which one of the following shows the highest solubility in hot concentrated aqueous NaOH?
1. La(OH)3 2. Nd(OH)3 3. Sm(OH)3 4. Lu(OH)3
1. rft;r 2. ~ 3. 7[CIJ 4. ~
25. In the vibrational spectrum of C02 , the number offundamental vibrational modes common in both
infrared and Raman are
1. three 2. two 3. one 4. zero
26. [Co(Hz0)6f+ ct ~ ~ "&r C'f2TT [CoC4] z- rt m ;:ftc? -&r rt CfJRUT ~
1. r:rgc? # MLCT ~ rmr <pR # d-d "fiw1rur
2. cfrrif # LMCT WJpqu[
3. cfrrif # d-d ~
4. r:rgc? # d-d ~ C'f2TT <pR # MLCT ~
26. The light pink color of [Co(H~0)6]2
+ and the deep blue color of (CoC14]
2
- are due to
1. MLCT transition in the first and d-d transition in the second
2. LMCT transitions in both
3. d-d transitions in both
4. d-d transition in the first and MLCT transition in the second
1. 2 q 8 2. 2 q 6 3. 1 q 8 4. 1 q 6
www.examrace.com
11
27. In [Mo2(S2) 6]
2
- cluster the number ofbridging S/- and coordination number ofMo respectively, are
1. 2 and 8 2. 2 and 6
28. HD w 1
H NMR ~ cmf<PrT:
1. T[Cff ~ "<ii'f!
3. cfurm 3lJWrf 1:2: 1 "CfTN T[Cff fir<ff citI
28. 1
H NMR spectrum ofHD would show
1. a singlet
3. a triplet with intensity ratio 1:2:1
1. 2 2. 3
3. 1 and 8 4. 1 and 6
2. T[Cff fGcp citI
4. cfurm JTTllrf 1:1:1 "CfTN T[Cff fir<ff WI
2. a doublet
4. a triplet with intensity ratio 1:1:1
3. 4 4. 5
29. The number ofpossible isomers of [Ru(PPh3h(acach] (acac = acetylacetonate) is:
1. 2 2. 3 3. 4 4. 5
1. 10 2. 6 3. 8 4. 4
30. The total number of Cu- 0 bonds present in the crystalline copper(II) acetate monohydrate is
1. 10 2. 6 3. 8 4. 4
1. Li, Cl 2. K,F 3. Na, Cl 4. Li,F
31. The electronegativity difference is the highest for the pair
1. Li, Cl 2. K,F
1. co/-, so3 ff2lT Xe03
3. col-, Xe03 'ff.?H N03-
3. Na, Cl 4. Li, F
2. S03, Xe03 ff2lT N03-
4. col-, so3 ff2lT No3-
32. Which ones among CO/-, S03, Xe03 and N03- have planar structure?
1. C03
2
-, S03 and Xe03
3. CO/-,Xe03 andN03-
1. 115
- CpzFe 2. 11
5
- CpzCoCI
2. S03, Xe03 and N03-
4. CO/-, S03and N03-
www.examrace.com
12
33. The substitution ofTJ5
- Cp group with nitric oxide is the easiest for
1. Cr, Re+ 2. Mo, V 3. V, Re+ 4. Cr, V
34. The molecule
obeys 18 e rule. The two 'M' satisfying the condition are
1. Cr, Re+ 2. Mo, V 3. V. Re+ 4. Cr, V
1. Fe, Mo, Cu, Zn 2. Fe, Cu, Co, Ru 3. Cu, Mn, Zn, Ag 4. Fe, Ru, Zn, Mg
35. The correct set of the biologically essential elements is,
1. Fe, Mo, Cu, Zn 2. Fe, Cu, Co, Ru 3. Cu, Mn, Zn, Ag 4. Fe, Ru, Zn, Mg
36. [Cu(ethylenediamine)z]2
+ ~ rt J75fl ~ EPR ~ 'fr ~ 'iJfT;f CJ'TCft NrrJif ctt ~
t : [Cu q;r ~ tw.=r(I) 3/2 "f'f.m N q;r 1 ]
1. 12 2. 15 3. 20 4. 36
36. The number oflines exhibited by a high resolution EPR spectrum of the species,
[Cu(ethylenediamine)2]
2
+is [Nuclear spin (I) ofCu = 3/2 and that ofN = 1]
1. 12 2. 15 3. 20
H H H
Ph~NJ=t:-:=xs.0 N ·,,
0 : '
)-OH
0
4. 36
uir ?ftm (II), rrm (II) llT rrm (II) '# 3WPCF1 gg •tng)lJirt, ~ llT TfErcti W1fTTjJif q;r ~Jif ctt
'fiVti ~ CR '?1CffffT frI qf.'tfftffi4H W ~ fr :
www.examrace.com
1.
3.
37. Degradation ofpenicillin G
13
2.
4.
H H H
Ph-"frNJ=t::-:=xs
0 N ·.
0 : ,,,
)'-OH
0
gives penicillamine that can utilize nitrogen, oxygen or sulfur atoms as donors to bind with lead(II),
mercury(II) or copper(II). The structure ofpenicillamine is
1. 2.
3. 4.
2. C&
38. The molecule that has an s6symmetry element is
2. c~
j--OH
0
3. PHs
3. PH5
39. The electric dipole allowed transition in a d2
atomic system is
40. lif6f W 671:$1ilrt ~ciT y-3llff ir ~ W tiWjfr ef::J # ~ ifTfiT t; m 31TET 3lCRWT ls Cf}!9Cl) cj;-
WT2! ~ fi'rJJTUT qw;'r Cf7C'fT cpetcff t"
1. 2s 3. 2p 4. 2pz
www.examrace.com
14
40. When a hydrogen atom is placed in an electric field along they-axis, the orbital that mixes most
with the ground state 1s orbital is
1. 2s 2. 2p, 3. 2p,
41 liB q} Bit L1Hvap ~ 41 fcP. U[f1 rrffr -.f/c;r ~ (Vap qJctfiC/>'<01) !1[Efi 4/~j'"fOsc;f}2! zyr W qJafiCI>'<UJ ~
rrffr 1'f'rc;r, C'flTJPT ~
1. 410 J K 1
mor1
3. 41 J K 1
mor1
2. 110 J K-1
mor1
4. 11 J K-1
mor1
41 For water, L1Hvap :::< 41 kJ mor1
• The molar entropy of vaporization at 1 atm pressure is
approximately
1. 410 J K 1
mor1
3. 41 J K 1
mor1
2. ~~/
2. 110 J K-1
mor1
4. 11 JK1
mor1
3. ~~/ 4. ~~/
42. IfA and Bare non-commuting hermitian operators, all eigenvalues of the operator given by the
commutator [A, B] are
1. complex 2. real 3. imaginary 4. zero
1. 2i 2. 2 in 3. 2 i nx
43 The value ofthe commutator [x ,p/] is given by
1. 2i 2. 2 in 3. 2 i nx
1. <xy> = <yx> 4. <xy> = <x> <y>
44. The correlation coefficient between two arbitrary variables x andy is zero, if
1. <xy> = <yx> 3. </> = <y>2 4. <xy> = <x> <y>
1. erg- 200 K rt ~ q/f 60 J l1iNfT 3irt#rr (/ifflT ~I
2. erg- 200 K rt ~ q/f 50 J l1iNfT 3irt#rr (/ifflT ~I
3. erg- 250 K rt ~ q/f 60 J l1iNfT 3irt#rr (/ifflT ~I
4. erg- 250 K rt ~ q/f 50 J l1iNfT 3irt#rr (/ifflT ~I
www.examrace.com
15
45. A Carnot engine takes up 90 J of heat from the source kept at 300 K. The correct statement among
the following is
1. it transfers 60 J ofheat to the sink at 200 K
2. it transfers 50 J ofheat to the sink at 200 K
3. it transfers 60 J ofheat to the sink at 250 K
4. it transfers 50 J ofheat to the sink at 250 K
46. E1 i721TE2 1£iff ctft cit~ lilT t~l~li!'1'1 £icrr <!iT gfic<MUJ <l'RCft t ?fi ~ miter~ n1/n2 =
(3/2) exp [-(E1-E2)/ksT]-& Wrr lifTffT ~I miter 3fWfCrf!g2/g1 ~
1. 2 2. 2/3 3. 3/2 4. 3
46. The relative population in two states with energies E1 and E2 satisfying Boltzman distribution is
given by n1/n2 = (3/2) exp [-(E1-E2)/k8T]. The relative degeneracy g2/g1 is
1. 2 2. 2/3 3. 3/2 4. 3
47. ~Fc>r~
1. Pt1 ( s)jzn(s)jZn2
• ( aq)I!Cu2
- ( aq)l Cu(s)j Pt11 (s) 2. Pt1 (s)jZn(s)jZn2
' (aq)I!Ag• (aq)jAg(s)!Pt11 (s)
3. Pt1 ( s)IFe(s)!Fe2
• ( aq)!Jcu2
- ( aq)jcu(s)1Pt11 ( s) 4. Pt, (s)IH2 (g)jH2S04 ( aq)!Jcu2
• ( aq)j Cu(s)!Pt11 (s)
47. The Daniell cell is
1. Pt, (s)IZn (s)I Zn2
• ( aq)I!Cu2
T ( aq)lcu(s)I Pt11 ( s) 2. Pt, (s)JZn(s)j zn2+ (aq)IJAg•(aq)jAg(s)jPt11 ( s)
3. Pt, (s)IFe(s)1Fe2
• ( aq)IJCu2
+ ( aq)J Cu(s)I Pt11 ( s) 4. Pt1 (s)jH2 (g)jH2S04 (aq)Jjcu2
• (aq)jcu(s)jPt11 (s)
48. ~ lfCii r.rf!!1f CfiTf& '<lfl72lf¥n ~ qft 3/F:lfg ctft 4R<PC'4'1J ~ if C2JJ4qf'J<ijf! iT IJfT1); n'r lfflCffT
'fF{ irw
1. In 2 I k 2. In 41 k 3. 4/ k 4. 1 I 4k
48. If the concept ofhalf-life is generalized to quarter-life of a first order chemical reaction, it
will be equal to
1. In 21 k 2. In 4/ k
1. &eRR if q)CJI~14'1 ~
3. li/C7 if t5J/:$)CM/R¢ ~
3. 4/ k 4. 1/4k
2. UI"C? if ~ ~
4. ~if~~
49. Kohlrausch's law is applicable to a dilute solution of
1. potassium chloride in hexane
3. hydrochloric acid in water
2. acetic acid in water
4. benzoic acid in benzene
www.examrace.com
16
50. T[iff ff:J ~ rrrftc Fffc;r ctft ~ 3114l:.S7$:.S Fffc;r ct ~ 3l7imFzr # frrc;rrlrr UfTfiT t I Agl w T[iff
?ifc;r ~ t Fumctt wrrg ~ ~ Cf5Vfft t
2. No;
50. A dilute silver nitrate solution is added to a slight excess of sodium iodide solution. A sol of Agl is
formed whose surface adsorbs
2. NO;
51. 0 2 w 31W'rr:rur ~ T[iff qifFf WFR1 cmfrrr t li!'r 56875 em-
1
TN~(~ lfr IJIT{{t t1
~TN w T[iff 3TTET tMfr rwrPj(Og) fff!lT T[iff ~ tMfr T:f?17T7!J (Oe) # ~ lftrrr fr I Oe
cr Og ct "iitr! "iJiilf 3irff 15125 em- fr1 02 Cfft J1TET fMfr Cfft Fc#rrurrr "iJiilf (em-J ~ t :
56875
1.
15125
2.
15125
56875
3. 72000 4. 41750
51. The absorption spectrum of 0 2 shows a vibrational structure that becomes continuum at 56875
cm-1
• At the continuum, it dissociates into one ground state atom (Og) and one excited state atom
(Oe). The energy difference between Oe and Og is 15125 cm-1
• The dissociation energy (in em-1
) of
ground state of 0 2 is ·
56875 15125
1. 2. 3. 72000 4. 41750
15125 56875
52. T[iff Y1JElffU{ FFfm IJfTC>fCff -;; ~ ~ (11 0) "fff!JT (111) # f.Rifim FcPir ifR crrc? eft nc# q} "ifrq CfJT
ctfrurt
52. The angle between the two planes represented by the Miller indices (110) and (111) in a simple
cubic lattice is
53. f[fi-tifi~Rrq; ct ~ (x-JTet) ct mw 3fTUTfitq; ~ ct JffRUT (y-JTet) <PT trtfr f.1wrrur t.· [CMC = "iliiFri<P
f?r#c;r ~]
1.
y
l I
I
I
I
I
I I
-1CMC~
- X
2.
y
l I
I I
-,cMc 1-
-x
www.examrace.com
3.
y
l
I
I
I I
-ICMCI-
- X
4.
y
l
. 17
I
I I
_.. 1 cMC
1 ~
I I
I I
I
-x
53. The correct representation of the variation of molar conductivity (y-axis) with surfactant
concentration (x-axis) is [CMC =critical micelle concentration]
1.
y
l I
I I
-1cMCr+-
- X
3.
y
l
I
I I
-ICMCI-
- X
54. f.Fr 3Tfi1ffl>zTT if ~ 'iRWCi fr
Me
Ph~N2
0
Me 0
1. Ph~OMe
Me
3.
Ph):}=o
2.
4.
2.
4.
Ag20
MeOH
hv
y
l
y
l
Me 0
- x
I I
- 1cMc 1-
l I
I I
- x
Ph~OMe
Me
Ph~OMe
0
www.examrace.com
18
54. The major product formed in the following reaction is
Me
Ph~N20
Me 0
1· Ph~OMe
Me
3. Ph~o
MeOH
hv
lYle
4. Ph~OMe
0
55. ~ p-~lwf/4<!J)$CfJ 3{1'(1 ct pKa <i>T 117'14.46 "t, ff2lT ~ 3{1'(1 <i>T 4.19, rr'r ~ ~ <i>T
CJpara "t.·
1. 8.65 2. 4.32 3. 0.27 4. -0.27
55. Ifthe pK. value for p-methoxybenzoic acid is 4.46 and that ofbenzoic acid is 4.19, the crpara for
methoxy group is
1. 8.65 2. 4.32 3. 0.27 4. -0.27
cadinene
56. The biosynthetic precursor of cadinene is
cadinene
1. shikimic acid 2. mevalonic acid 3. arachidonic acid 4. prephenic acid
www.examrace.com
19
57. ~ A-C rtt ~ w mft W'r ~
0 0
~ a=? HO'AO
HO 0
0 0
A 8 c
1. A>B>C 2. B>C>A 3. C>A>B
57. The correct order of acidity ofthe compounds A-Cis
~~0 0
A 8 c
1. A>B>C 2. B>C>A 3. C>A>B
;Ph piperidine ~ ;Ph + CO
HN~ ..:._:___ + H2N~ 2
o---{_ COOEt COOEt
0 ,.,?
3. syn f.1rxm:Fr
58. The mechanism involved in the following conversion is
/Ph
HN
0~ COOEI
0
1. E2-elimination
piperidine : ; } /Ph...:......:....__ +H 2
N
COOEI
~
+ C0 2
2. E1-elimination 3. syn elimination
Meos-o-~N~2 - __)
(A) ~ipso~~
(B) ~ f4£]nHtl ~
1. ctcrc? A dl'-1TB 2. rtcrc? A dl'-1T C 3. rtcrc? C dl'-1T D
4. B>A>C
4. B>A>C
4. Elcb-~
4. E1cb-elimination
4. rtcrc? c
www.examrace.com
59.
20
The correct statement(s) A-D are given for the following reaction. The correct one(s) is (are)
,OF+ (o)
Me02S ,.::. ~
DMSO
(A) aromatic ipso substitution reaction
(B) aromatic electrophilic substitution
1. A and B only
hv
1. ;:frffw WPR"l ~
3.~~
2. A and C only
MeOS~N~2~ _/
(C) aromatic nucleophilic substitution
(D) aromatic free radical substitution
3. C and D only 4. Conly
2. ;:frffw WPR" II ~
4. ~-~~
60. The following photochemical transformation proceeds through
hv
1. Norrish type I reaction
3. Barton reaction
HN_rPh
_).__ ~0 +
S N
I
Ph
"l/6 RiilccJ$'5 fr
1. Phe-Ala-Gly
OH
Ph-b
N,
Ph
2. Phe-Gly-Ala
2. Norrish type II reaction
4. Paterno-Buchi reaction
3. Ala-Gly-Phe 4. Gly-Ala-Phe
61. A tripeptide gives the following products on Edman degradation.
HN_rPh
_).__ ~0 +
S N
I
Ph
The tripeptide is
1. Phe-Ala-Gly 2. Phe-Gly-Ala 3. Ala-Gly-Phe 4. Gly-Ala-Phe
www.examrace.com
21
62. 293 K w 3lFcrm FcPir 7J"it Vcti
1
H NMR ~if Vcti Cfi'frff.1q;- "l/)frrq;- (C3H7NO), #fl'f CfiT o7.8 (1
H, s), 2.8 (3 H, s) ney 2.6 (3 H, s) w cmffrr ~1 C$ "l/)frrq;- ~
62.
0
1. 3. Me,N)lMe
H
NH
4. )l
Me OMe
In the 1
H NMR spectrum recorded at 293 K, an organic compound (C3H7NO),
o7.8 (1 H, s), 2.8 (3 H, s) and 2.6 (3 H, s). The compound is
exhibited signals at
1.
0
3. Me, )l
N Me
H
NH
4. )l
Me OMe
63. p-rti$J;)lf>PIC'I ~ <t IR ~it, ~ ~ Fk "liN~ EJ1rrr ~
1. 1670 cm-1
2. 1700 em-1
3. 1730 cm-1
4. 1760 em-1
63. In the IR spectrum ofp-nitrophenyl acetate, the carbonyl absorption band appears at
I. 1670cm-1
2. 1700cm-1
3. 1730cm-1
4. 1760cm-1
1. lR, 4R 2. lR, 4S 3. IS, 4R
64. The absolute configuration at the two chiral centres of (-)-camphor is
1.:r11. lR, 4R
~
~'H
1.
~CHO
~/
H
3.
~CONMe2
~N/
H
2. lR, 4S 3. IS. 4R
OHCW
2. I ~
~ N
H
4. 1S,4S
4. lS, 4S
www.examrace.com
22
65. The major product formed in the following reaction is
coN
H
1.
~CHO
~/
H
3.
~CONMe2
~/
H
OHCW
2. I ~
_&. N
H
2. ~~ 4. 1[fli. ~
66. The first person to separate a racemic mixture into individual enantiomers is
1. J. H. van't Hoff 2. L. Pasteur
67. [18]-~ eli fdil f.1k:r qm;ff W frr-ErR' I
(A) <IE!~ ~I
3. H. E. Fischer
(B) 1
HNMR~it~>!T&r89.28w~~~l
(C) ~ ef?r if fP8.· ritcFf ~I
1. A, B, C 2. ~ A fff!JT B 3. Cficrc;r B fff!JT C
67. Consider the following statements for [18]-annulene.
(A) it is aromatic
(B) the inner protons resonate at 8 9.28 in its
1
H NMR spectrum
(C) there are six protons in the shielded zone.
The correct statements are
1. A, B, C 2. A and B only 3. Band Conly
A 8
H ,,,i(H
Me~Me
8~ -:.-8~
4. F. Wohler
4. ~A fff!JT C
4. A and C only
•,
www.examrace.com
23
1. HA, HB i!:TP!t74/J;/fil¢ ~ fr.!H Br1
, B1 !5741ri!JR4)dfil¢ ~1
2. HA, HB !5741=RIR4)c/fil¢ ~ fr.!H Br1
, B1 i!~t%4/J;Tfi/¢ ~1
3. HA, HB !514i=RIR4lc7fi/¢ ~ fr.!H Br1
, B~ &)'1)c/fi}¢ ff1
4. HA, HB i!~Pt74/j;/fil¢ ~ fr.!H Br1
, B1&l'1lc/fi'l¢ ~1
68. In the compound given below, the relation between HA, H8
; and between Br1
, Br2
is
1. HA, H8
are enantiotropic; and Br
1
, Br2
are diastereotopic
2. HA, H8
are diastereotopic; and Br1
, Br are enantiotropic
3. HA, H8
are diastereotopic; and Br
1
, Br
2
are homotopic
4. HA, H
8
are enantiotropic; and Br
1
, Br
2
are homotopic
Boc,N~OAc
H OTBDMS
1. HCl, EtOH, Ilfftcrrf
3. K2C03, MeOH
2. Bu.J*'
4. CF3COOH, EtOH, rt
69. The most appropriate reagent to effect the following chemoselective conversion is
Boc,N~OAc
H OTBDMS
Boc,N~OH
H OTBDMS
1. HCl, EtOH, reflux 2. Bu4NF
3. K2C03, MeOH 4. CF3COOH, EtOH, rt
1. ~-ifr;r ¢7 -mwrur
2. #'m'fN ¢7Ac20/f.'ri;fc;rAlCh Cfi ?1f.!! ~-JfiTflC Q#Jf2c>I~H
3. ~ Q(>qj)$J(>J ¢7 ~ 3P'('f it Jf'rrr?7 3/Jq#/q]'(U/
4. jf(>j' it~ fr.!H ~ 3P'('f qft ~-~ ~
70 Among the following, an example of a "Green Synthesis" is
1. synthesis ofmalachite green
2. Friedel-Craft's acylation of anisole with Ac20/anhydrous AlCh
3. Jones' oxidation ofbenzyl alcohol to benzoic acid
4. Diels-Alder reaction offuran and maleic acid in water.
www.examrace.com
24
( ~/PART C )
71. 139 amu ~ rt f!Cfi ~ '1,CfC'Il$5 CffT rrffre1r:r Jiliff 2.5 MeV fr1 ~ ?t ~ Jiliff keY
.;- fr:
1. 12.5 2. 15.0 3. 20.5 4. 25.0
71. The recoil energy of a Mossbauer nuclide of mass 139 amu is 2.5 Mev. The energy emitted by the
nucleus in keV is
1. 12.5 2. 15.0 3. 20.5 4. 25.0
72. 3TT'f ¥ jac-[Mo(C0)3(~3] crrc? ~ rt C-0 rrrM ~ rftir ~ 7JiJ ~:
~: PF3 (A); PCb (B); P(Cl)Ph2 (C); PMe3 (D)
v(CO), cm-1
: 2090 (i); 2040 (ii); 1977 (iii); 1945 (iv)
~ fff!!T WPf ~ (/}( ?1tr Trc7 fr :
1. (A- i) (B- ii) (C- iii) (D- iv)
2. (A- ii) (B- i) (C- iv) (D- iii)
3. (A- iv) (B- iii) (C- ii) (D- i)
4. (A- iii) (B- iv) (C- i) (D- ii)
72. Complexes of general formula,fac-[Mo(C0)3(phosphine)3] have the C-0 stretching bands as given
below.
Phosphines: PF3 (A); PCh (B); P(Cl)Ph2 (C); PMe3 (D)
v(CO), cm-1
: 2090 (i); 2040 (ii); 1977 (iii); 1945 (iv)
The correct combination ofthe phosphine and the streching frequency is,
1. (A -i) (B- ii) (C- iii) (D- iv)
2. (A- ii) (B-i) (C- iv) (D-iii)
3. (A- iv) (B- iii) (C- ii) (D-i)
4. (A- iii) (B- iv) (C-i) (D- ii)
73. X M W:rrr crrc? Pb2
+ rt 9.5ml FiJc;r rt ~ 1fTTFf w Id I ~A TffllT 7fllT1 1fTTFf rt T[Cf uw0.5
ml Pb2
+ FiJc;r, ~ W:ffr 0.04 M 2ft frrc;rror TTllT, fiT ld 1.25 ~A TffllT 7fllT1 ~ X fr:
1. 0.0035 2. 0.0400 3. 0.0067 4. 0.0080
73. On subjecting 9.5 ml solution ofPb2
+ ofX M to polorographic measurements, Ict was found to be 1 IJ.A.
When 0.5 ml of0.04 M Pb2
+ was added before the measurement, the Id was found to be 1.25 IJ.A. The
molarity X is
I. 0.0035 2. 0.0400 3. 0.0067 4. 0.0080
www.examrace.com
25
~I ~II
A CH3COOH, ~ if (i) WN 311=(Pf
B CH3COOH, H2S04 if (ii) ~ 311=(Pf
c HCl04, H2S04 if (iii) WN erRCii
D SbF5, HF if (iv) ~ erRCii
1. (A-i) (B-ii) (C-iii) (D-iv) 2. (A-ii) (B-i) (C-iii) (D-iv)
3. (A-iii) (B-iv) (C-ii) (D-i) 4. (A-iv) (B-ii) (C-iii) (D-i)
74. Match each item from the list I (compound in solvent) with that from the list II (its behaviour) and
select the correct combination using the codes given below
List I List II
A CH3COOH in pyridine (i) strong acid
B CH3COOH in H2S04 (ii) weak acid
c HC104 in H2S04 (iii) strong base
D SbF5 in HF (iv) weak base
1. (A-i) (B-ii) (C-iii) (D-iv) 2. (A-ii) (B-i) (C-iii) (D-iv)
3. (A-iii) (B-iv) (C-ii) (D-i) 4. (A-iv) (B-ii) (C-iii) (D-i)
2. ~-oitR
4. ~-oitR
75. Structure of a carborane with formula, C2B4H8 is formally derived from
1. Closo-borane 2. Nido-borane
3. Arachno-borane 4. Conjuncto-borane
16. ~ flTc;r it ~ 3T'N ~ 311=(Pf mar t 1 qv;g ~ 'C'110$Chlfl qft ~ it IRfClfT 3fl'ffi'fT
~ ~ fr Cfli'if<l>
1. ~ 'C'110$CI5lfl ~ H+ :JC1ff CfRfiT fr1
2. ~ 'C'170$CI5lC'1 ct "fi7'Z{ ztTfi'rcp ~it B(OH)4- ~mar fr1
3. ~ Jl1'{>f 8RT :fro ft ~ 1C'110$ChlC'1 8RT ec;JflirfiiljH mar fr I
4. r¥W fc/c;rrlrcp if ~ Jl1'{>f w ~ ~ mar t 1
76. Boric acid is a weak acid in aqueous solution. But its acidity increases significantly in the presence
of ethylene glycol, because
1. ethylene glycol releases additional I(
2. B(OH)4- is consumed in forming a compound with ethylene glycol
3. ethylene glycol neutralizes If released by boric acid
4. Boric acid dissociates better in the mixed-solvent
www.examrace.com
26
1. 2 2. 4 3. 6 4. 8
77. Coordination number of "C" in Be2C3 whose structure is correlated with that of CaFb is
1. 2 2. 4 3. 6
1s. m aruJ ct
~ fiTCT ct ~ ~ ct ~ .;; FrP-l} 777t m Cfi2Ff'i w fcrqR
A.
1
H NMR it 5.48 cr 3.18 ppm w r:[CfJ<fi ~I
B.
1
H NMR it 5.48 w <rgctJ 'ffZIT 3.18 ppm w r:[CfJ<fi t 1
C. IR ct CO~ -q;g 1950 cr 1860 cm-1
w 61
D. IR # f[CP tfT CO ~ Fi6 t 3/tv crt! 1900 cm-1
w t I
1. A cr C
78. For the molecule below,
2. B cr C 3. A cr D
~
IMo~
(HC)HN/ ~ CO
3 2 co
consider the following statements about its room temperature spectral data.
A.
1
H NMR has singlets at 5.48 and 3.18 ppm
B. 1
H NMR has multiplet at 5.48 and singlet at 3.18 ppm
C. IR has CO stretching bands at 1950 and 1860 cm-1
D. IR has only one CO stretching band at 1900 cm-
1
The correct pair of statements is,
1. A and C 2. B andC 3. AandD
4. 8
4. B cr D
4. B andD
www.examrace.com
27
79. 18e frrlJ1f CfiT ~ qmf [Co3(CH)(C0)9] ~ "# mg-mg awrEit Clfr rMT #gtiflfff wat021t Clfr
~ JIJ1'TW.; ~ :
1. 3 rr.wl CH 2. 0 rr.w3 C03. 3 rr.wl co 4. 6rr.w1CH
79. In the cluster [Co3(CH)(C0)9] obeying 18e rule, the number of metal-metal bonds and the bridging
ligands respectively, are
1. 3 and 1 CH 2. 0 and 3 CO 3. 3 and 1 CO 4. 6 and 1 CH
80. JTRFr Eu(ill), Gd(III), Sm(III) I[Ci Lu(III) w ~1 ~ 3lTfJ:'f ct Wi1rr rr.w qRq;ff;m "l1Pf
fctRf ~ ct ~ ~ ~?
1. Gd (III), Lu (III)
3. Sm (ill), Gd (III)
2. Eu(lli), Lu (III)
4. Sm (III), Eu (III)
80. Consider the ions Eu(III), Gd(III), Sm(III) and Lu(III). The observed and calculated magnetic
moment values are closest for the pair
1. Gd (III), Lu (III)
3. Sm (III), Gd (III)
81. ?tmr ~ >I7ClR ¢ ~ ~:
81. Silicates with continuous 3D frame work are
1. Neso-silicates
3. Phyl/o-silicates
82. Co304 Clfr ~ ~ ~ t-
1. (Co
2
lt(2Co~o04
3. (Co2
+Co3
+)t(Co3
+)o04
82. The correct spinel structure of Co304 is
1. (Co2
+)t(2Co3
) 0 0 4
3. (Co2
+Co3
+)1(Co3
}o04
1. fftrr c# fMT c:T rfrt I
3. 1[fff C1'<rr fMT 'fiR" Fire"I
2. Eu(III), Lu (III)
4. Sm (III), Eu (III)
2. Soro-silicates
4. Tecto-silicates
2. (Co3
+)t(Co2
+Co3
+)o04
4. (2Co3
+)t(Co
2
+)o04
2. (Co3
+)1(Co
2
~Co
3
+)o04
4. (2Co3
+)1(Co2
+)o04
2. c:T c# fMT fftrr rirtI
4. 'fiR" c# fMT 1[fff FitcJI
www.examrace.com
28
83. In the solid state, the CuCl/- ion has two types ofbonds. These are
1. three long and two short
3. one long and four short
2. two long and three short
4. four long and one short
84. EHg-~ # EHg cRr r!fiFTT-31"C'f 3fCfWq'f W rmcf ~ &ro fltif(4)Rlict>rt: ¥. S' ~I
mg-~ <t ~ ~ lfii # ~ ~~ CfiT "'HEfT 'fl7l8 fr:
1. Ala, Leu, His
3. Leu, Glu, Cys
2. Glu, His, Cys
4. Ala, His, Glu
84. In metalloenzymes, the metal centers are covalently linked through the side chains of the amino
acid residues. The correct set of amino acids which are involved in the primary coordination
spheres of metalloenzymes is
1. Ala, Leu, His
3. Leu, Glu, Cys
"ffl'J:r I
A. [(R)-BINAP]Ru2
+
B. [Rh(CO)zlzr
C. Pd(PPh3)4
D.
-{U-<
JTo_N/ ~CI
••...-('
(i)
(ii)
(iii)
(iv)
2. Glu, His, Cys
4. Ala, His, Glu
"ffl'Jrll
$J$)?)'fJJiffc;f}cp'(Of
Jm1ffi:rrr ti!Jj)ti) uFfJct>'<OJ
Jm1ffi:rrr tilij)t5)11Jrt ~
"ffCfi!{'IR
1. (A-ii)
3. (A-iii)
(B-i)
(B-i)
(C-iv) (D-iii)
(C-iv) (D-ii)
2. (A-i)
4. (A-iv)
(B-ii) (C-iii) (D-iv)
(B-iii) (C-ii) (D-i)
85. Consider the catalyst in column I and reaction in column II
Column I Column II
A [(R)-BINAP]Ru2
- (i) Hydrofonnylation
(ii) Asymmetric hydrogenation
(iii) Asymmetric hydrogen transfer
www.examrace.com
29
D. (iv) Heck coupling
The best match of a catalyst of Column I with the reaction under Column II is
1. (A-ii)
3. (A-iii)
(B-i)
(B-i)
(C-iv) (D-iii)
(C-iv) (D-ii)
2. (A-i)
4. (A-iv)
(B-ii) (C-iii) (D-iv)
(B-iii) (C-ii) (D-i)
86. 2.0 m rftm;r r/i "f/rc;r CfiT Cu r/i Bir, Pt-vrrcift-~ r/i ~ ?! ~ ~ Fc/Jlrr
77<lTI Pt-vrrcifT <i>T 'J7R' 14.5 m ?! 16.0 m WI> ~I rftm;r if Cu CfiT" ~ 'J7R' ~
1. 50 2. 55 3. 60 4. 75
86. A solution of2.0 g ofbrass was analysed for Cu electrogravimetrically using Pt-gauze as
electrode. The weight ofPt-gauze changed from 14.5 g to 16.0 g. The percentage weight ofCu
in brass is
1. 50 2. 55 3. 60 4. 75
87. NH3 rrey Cl +t"Hfrrt?.J)" <i>T ~ ~ f[Cfi ~ "f!imfi ~I ~ vet 0JWCt FfT/ft r/i -mft
'(171/q?.Jcfi ?[5I" t
1. cis-Pt(NH3)zCh rrey PtCl_l- 2. trans-Pt(NH3)zCh fMT PtC4
2
-
3. cis-Pt(NH3)2Ch rrey Pt(NH3)/+ 4. trans-Pt(NH3)zCh fMT Pt(NH3)/+-
87. The platinum complex ofNH3 and cr ligands is an anti-tumour agent. The correct isomeric
formula of the complex and its precursor are:
1. cis-Pt(NH3) 2Clz and PtC4z- 2. trans-Pt(NH3)zClz and PtcV-
3. cis-Pt(NH3)2Cb and Pt(NH3 )4
2
+ 4. trans-Pt(NH3 )zC1z and Pt(NH3) 4z+-
88. Fe(N03)3-9H20 r/i FJ'rc;r r/i i'77l!TNaCI, H3P04, KSCN rMT NaF r/i 13m'<lm'< <i'r<r ?! r:ftN. q-ufgpr,
Nm rrey fiR ?! crufffl FJ'rc;r Jf}J'l"W: ~ ~ #, >fTCff ffl fr:
1. [Fe(HzO)sCif+, [Fe(HzO)s(P04)], [Fe(HzO)s(SCN)]
2
+, [Fe(HzO)sF]
2
+
2. [Fe(H20)4Cl(OH)]I+, [Fe(Hz0)5(P04)], [Fe(H20)5(SCN)]
2
+, [Fe(HzO)sFf+
3. [Fe(HzO)sCif+, [Fe(Hz0)6]3
+, [Fe(HzO)s(SCN)f+, [Fe(HzO)sFf+
4. [Fe(H20)5Cl]2+, [Fe(H20)s(P04)], [Fe(H20)5(SCN)f+, [Fe(Hz0)4(SCN)F]I+
88. Successive addition ofNaCl, H3P04, KSCN and NaF to a solution ofFe(N03)J-9H20 gives yellow,
colorless, red and again colorless solutions due to the respective formation of:
1. [Fe(HzO)sClf+, [Fe(HzO)s(P04)], [Fe(HzO)s(SCN)fT, [Fe(H20),F]2
+
2. [Fe(Hz0)4Cl(OH)]
1
T, [Fe(HzO)s(P04)], [Fe(HzO)s(SCN)]
2
T, [Fe(HzO)sF]
2
+
www.examrace.com
30
3. [Fe(H20)sC1]2
+, [Fe(H20)6]
3
+, [Fe(H20)s(SCN)]2
+, [Fe(H20)sFf+
4. [Fe(H20)sC1]2
+, [Fe(H20)s(P04)], [Fe(H20)s(SCN)]2
+, [Fe(H20)4(SCN)F]1
+
1. [Rh(CO)zhf
3. [TJ5
-CpRh(CO)z]
2. [Ir(PPh3)2(CO)Cl]
4. [TJ5
-Cp2Ti(Me)Cl]
89. Which one of the following will NOT undergo oxidative addition by methyl iodide?
1. [Rh(CO)zl2r
3. [TJ5
-CpRh(CO)z]
2. [Ir(PPh3) 2(CO)Cl]
4. [TJ5
-Cp2Ti(Me)Cl]
90. [Rh(PPh3)3(CO)(H)] <fiT~ eft em- Nlll7r CfR't crrcift i51$)$Jl(]Jfif<flctJ'<OJ ~ #, 3T!EtcP PPh3
ctl/Tlr#
1. ~ eft Tfffr ~I
3. 3lfi1ffl><lT eft Tfffr ~ n,
90. In hydrofomylation reaction using [Rh(PPb3)J(CO)(H)] as the catalyst, addition of excess PPh3
would
I. increase the rate of reaction
3. not influence the rate ofreaction
1. 3 2. 6
2. decrease the rate ofreaction
4. stop the reaction
3. 18 4. 90
91. Find out the number oflines in the
31
P NMR signal for
1. 3 2. 6 3. 18 4. 90
www.examrace.com
31
92. (i) [Cu(OHz)6]2
+; (ii) [Mn(OHz)6f+; (iii) [Fe(0Hz)6f+; (iv) [Ni(OH2)6]
2
+,
# ~ ef:3ff # ~ OHz <PT
18
0Hz Gm ~ qfr 7fffr ffl JP11 # ~ t
1. (i) > (ii) > (iii)> (iv)
3. (ii) > (iii)> (iv) > (i)
2. (i) > (iv) > (iii)> (ii)
4. (iii) > (i) > (iv) > (ii)
92. The rate of exchange of OH2 present in the coordination sphere by 18
0H2 of, (i) [Cu(OH2) 6]
2
+; (ii)
[Mn(OH2) 6]
2
+; (iii) [Fe(OH2) 6]
2
+; (iv) [Ni(OH2 ) 6]
2
+, follows· an order
1. (i) > (ii) >(iii)> (iv)
3. (ii) >(iii) > (iv) > (i)
2. (i) > (iv) >(iii)> (ii)
4. (iii) > (i) > (iv) > (ii)
93. mg-~ rF 3lJ7RUT W 31ltTTf?rr f.F:rr CF>2Fit W fZrcrR I
A. ~it liR'ff 0 2 rtfr 'f1f}(;l:r CRflT 't F.irmt q~/Cffli$'5 ~ fFffft 'tI
B. ~ # iJRff H20 cit mfi;lr CfR'ffT ~ ffWf Vifi Vffif rrfWJ Mi)iiliffll$'5 ~ CfRTfl7 ~I
c. aiffiffl&wr 'k C77N 01 rtfr 'f1f}(;l:r CRflT t F.irmt <iR't ~ # ~ <PT 3WiEl c;:cm t 1
D. liR'ff 31TlFf ~ qfr 'ff?'fJ CfiTl7 CRflT 't ff2H ~ ~ w 3TfW17UT CRflT 't1
2. B ff2H C 3. C ff2H D 4. A ff2H D
93. Based on the behaviour of the metalloenzymes, consider the following statements.
A. In the enzymes, the zinc activates 0 2 to form peroxide species.
B. In the enzymes, the zinc activates H20 and provides a zinc bound hydroxide.
C. In the oxidases, the iron activates 0 2 to break the bonding between the two oxygens.
D. Zinc ion acts as a nucleophile and attacks at the peptide carbonyl.
The set of correct statements is,
1. A andB 2. B andC 3. C and D 4. AandD
94. Fe2
+-r:fffr!f#rr 1cw'1ufl4 ~ r:rfTcrl.;.:r cmf.t it fitr:m;r sT& 't 'ff2lT CO vet 0 2 rt trrr rt 3ifR <PT rrrrr
<rift Pf7TT wmfI ff2TTfii tfl'1h1)fil"1 ~ ci'Fif C/j..cJq41fll' # p!f7 'tI f.F:rr ~ it :
A. Fe2
+-rnfi(f{Fr Jl-31JCNI)'51$'1~ 'lf'i17ff 't 'ff2lT tf111h1)1il"1 rt fcirm # ~ 3fCR'tEr ~ 't I
B. Fe2
+-rnfitffFr qfr ¥RJ # tfll1h1)fil"1 # Fe-CO 3WiEl w Cf§ff (j}lf 'tI
C. wrfili Fe-CO ~ 't, Fe-Oz ~ 't ff2H tfll1h1)filrt Gm T:f8'ElPIT JI7ff7 'tI
D. C/j..cJ4qJrt)' rtfr ~ m if tfi'1h1)fil"1 rF 'i'I'R' ~ ~ r:[CPcf) ~ 't
2. A ff2H C 3. C ff2H D 4. B ff2H D
94. F.e2
+-porphyrins fail to exhibit reversible oxygen transport and cannot differentiate CO from 0 2.
However, the hemoglobin is free from both these pit falls. Among the following,
A. Fe2
+-porphyrins undergo 11-oxodimer formation and the same is prevented in case of the
hemoglobin.
B. Fe-CO bond strength is much low in case of hemoglobin when compared to the Fe2
+-
porphyrins.
www.examrace.com
32
C. While Fe-CO is linear, Fe-02 is bent and is recognized by hemoglobin.
D. The interlinked four monomeric units in the hemoglobin are responsible to overcome the
pitfalls.
The correct set of statements is,
1. A and B 2. A and C 3. CandD 4. B andD
95. ~ A ff2lT B, w frrc:rf?ur t JP1m:
Cl
I(A) SnC12 + Co2(C0)8 ----;~ (OC)4Co-r-Co(C0)4
Cl
Me
I(B) Me2SnC12 + 2NaRe(C0)5 ----;~(OC)sRe-Sn-Re(C0)5 + 2NaC1
IMe
2. Fctf.'/7:rl!, f.rimrr
95. Reactions A and B are, termed as respectively
Cl
I
(A) SnCI2 + ColCO)g -----;~ (OC)4Co-Sn-Co(C0)4
ICl
Me
I(B) Me2SnCI2 + 2NaRe(CO)s ----;~(OC)sRe-Sn-Re(C0)5 + 2NaCI
IMe
1. Insertion, Metathesis 2. Metathesis, Insertion
3. Oxidative addition, Metathesis 4. Oxidative addition, Insertion
96. % ETTg rr>T ffhtcc;fi¢'<Uf ~ 500 pm rff ~ ~ ~ fcc ~ # fflr fr I ~ filrn;c;r rr>T
FF7ffl 1.33 rrr. rrfftlcc t fir mg C!ft ~ ?#{& ~ frrcpc t:
1. 23 2. 24 3. 25 4. 26
96. A metal crystallizes in fcc structure with a unit cell side of 500 pm. Ifthe density of the crystal is
1.33 glee, the molar mass of the metal is close to
1. 23 2. 24 3. 25 4. 26
(
www.examrace.com
33
97. i't?tro fiedff # f# JT1!J arfTrfiiRlr A + BC ~ AB + C qff ~ IFiiff Eo ~1 ~ ~ ~
3TJllfFf /.} # CJ514fAH qff vmft rrT 31TWT qff vmft ~ fi?> ~ ~
1. 314R4frfrt vt1TI 2. A eli F!c1 # ~I
3. A eli F!c1 # FlbfiI 4. A eli F!c1 # c;)&Jwtl'"l ~I
97. The activation energy for the bimolecular reaction A+ BC --7 AB +Cis E0 in the gas phase. If the
reaction is carried out in a confined volume of A.3
, the activation energy is expected to
1. remain unchanged
3. decrease with decreasing'),
2. increase with decreasing A.
4. oscillate with decreasing A.
98. VCfi <JS-~ W1fT1J # ~ ~ Cfier<ff (/1, /z) ff2!T ffr:r;:r (sJ, s2) <!>Tvfm ~ ct ~ C(f}1
Clieftlr Cfffofro "fiiFr (L) ff2!T trw (S) ~ ~ # ~ qqfci:r ~ ~ :
1. Jin?-~~
3.~~
2. fV:rr-:r-Cfiefl 31"'47"4fih41
4. "ifTF!J ~ m
98. In a many-electron atom, the total orbital angular momentum (L) and spin (S) are good quantum
numbers instead ofthe individual electron orbital(/~, /2) and spin (s" s2) angular momenta in the
presence of
I. inter-electron repulsion
3. hyperfine coupling
1. 0.94 2. 0.76
2. spin-orbit interaction
4. external magnetic field
3. 0.52 4. 0.45
99. The packing fraction ofa simple cubic lattice is close to
1. 0.94 2. 0.76 3. 0.52 4. 0.45
C2v E2 c2 Oi· 0"~,
AI 1 I 1 1 z
A2 1 1 -I -1 Rz
BI 1 -1 1 -1 x,Ry
B2 1 -1 -I I y,Rx
1. 12 2. 20 3. 24 4. 33
www.examrace.com
34
100. The number ofiR active vibrational modes of pyridine is
C2v Ez Cz av a~
AI 1 1 1 1 z
Az 1 1 -1 -1 Rz
B1 1 -1 1 -1 x,Ry
Bz 1 -1 -1 1 y,Rx
1. 12 2. 20 3. 24 4. 33
101. Ti ctT ~ ~ # I[ClJ CfiT J?HctJ;TPICIJ fcR:rm fr [Ar]4i 3aJ 4p1
1~ fcR:rm ct ~ ~ CfiC?
m cs) crwrr ~ ctr #?§liT fcMr;ft t?
1. 9 2. 15 3. 27 4. 60
101. One ofthe excited states ofTi has the electronic configuration [Ar]4i 3d1
4p1
• The number of
microstates with zero total spin (S) for this configuration is
1. 9 2. 15 3. 27 4. 60
102. W "i/C; rrT5f # m zrrc;ft ~A2 ~ 2A ct ffrit fcJ<:irwr-"lfF5!T rrey ?fTRl ~ Kp CfiT WiET W
3/W rrrrr w ~ -wn lilTfiT t :
1. a=[KP!(KP+4p)]
3. a=[(KP+4p)!KPJ
2. a=[KP!(KP+4p)r
2
4. a=[(KP+4p)!KPr
2
102. For the reaction A2 .= 2A in a closed container, the relation between the degree of dissociation (a)
and the equilibrium constant Kp at a fixed temperature is given by
1. a=[KP!(KP+4p)]
3. a=[(KP+4p)!KPJ
2. a=[KP!(KP+4p)r
2
4. a=[(KP+4p)!Kpr
2
103 Fcl>#t #I" itfr ctT 4C'IIlNrtl. "fi76f cr fl4i;s4m 7JUfiCffZ (= p VIRJ) it frri:;=r WiET ffffll¥.1 fr [V3lJUTfc!q]
31T4WT t]
[
p z 1 ]
f=p.exp f ; dp .
~ i'Rft ct fWt rrrrr T cr 1'fUl11 oo fl7f), w fi41CIJ?01 ~ t FcP
1. f < p , if T -+ 0
3. f> p, if T-+ 0
2. f < p , if T -+ <X>
4. f = p , if T-+ 0
www.examrace.com
35
103 The fugacity of a gas depends on pressure and the compressibility factor
Z (= p VIRJ) through the relation [V is the molar volume]
[
p z 1 ]
f=p.exp f ; dp .
For most gases at temperature T and up to moderate pressure, this equation shows that
1. f<p,ifT..-+0
3. f> p , if T ---+ 0
2. f < p , if T ---+ oo
4. f =p , if T---+ 0
104. l[lfi Cfffiffctcp i'ffi w ~ fJlFf (8UI8V)rfl"tfi:s4m :JurtcF> Z = p VIRT w ~ WPR fi!rJk fr [V
3lfUTfclcp 31TlffFf t ]
1. (8UI8V)r = RT (8Z/8V)r 2. (oUI8V)r = RTI(V Z)
3. (8UI8V)r = (RYIV) (8Z/81)v 4. (8UI8V)r = ( V!Rf-) (8Z/81)v
104. The internal pressure (oU!oV)T of a real gas is related to the compressibility factor Z = p VIRT by
[V is the molar volume]
1. (8U/8V)T = RT (8ZiaV)T
3. (BUIBV)T = (RTFV)(BZIBJ)v
lf/0 = exp [-Ax2
] ?t eft VfTffT frI
fir A rti'r ~ WPR k w ~ iBT 'E/Tftll
1. A oc k-112
3. A oc k112
2. (BU/8V)T = RTf( V Z)
4. (BUIBV)T = ( VfRY) (BZIBJ)v
2. A oc k
4. A oc k113
105. Suppose, the ground stationary state of a harmonic oscillator with force constant k is given by
Then, A should depend on k as
1. A ex: k -liz
3. A ex: k112
2. A ex: k
4. A ex: k113
106. f.1i::;r ~ CfiT f.rqfur c:7 CfRfffc/cp ~ ¢1 cr ¢2 c5 #lifT[ ?t fri>lfT IJfTffT fr: A= ¢I + ¢2, B = ¢I + i¢2,
C= ¢I- i¢2, D = i(¢1 + ¢2) 1 fir mft ~ sPrr
1. A rrey B l[lfi gr ~ CfiT ~ <iR"ff ~1
2. A rrey C l[lfi gr ~ CfiT ~ <iR"ff ~I
3. A rrey D l[lfi gr ~ CfiT ~ <iR"ff ~1
4. B rrey D [CI) lfr ~ CfiT ~ C'f>Vff ~ 1
www.examrace.com
36
106. Combining two real wave functions (J1 and (Jz., the following functions are constructed: A = f/h + f/Jz.,
B = ¢1 + if/Jz., C = ¢1- if/Jz., D = i(¢1+ f/Jz.). The correct statement will then be
1. A and B represent the same state
2. A and C represent the same state
3. A andD represent the same state
4. B and D represent the same state
107. fiRCc;r A (111) rmr (200) C'IC'if ir fcrcrrf.=r <imfT t qy;g (11 0) "ff"a" ir rrt7, lif"i1fit fiRCc;r B (110) rrey
(200) C'IC'if if fcrcrrf.=r CffW t W1J (111 ) "ff"a" if rrtffI I3W'rrifr if lP7 ~ f.1ri:ptf TR ~ WCPff g
1. A CffT lifTNCP fcc t ~B CffT lifTNCP bee t 1
2. A CffT lifTNCP bee t ~B CffT lifTNCP fcc t 1
3. A rmr B c:f;# ¢ lifTNCP fcc g1
4. A rrey B c:f;# ¢ lifTNCP bee g1
107. Crystal A diffracts from (111) and (200) planes but not from (110) plane, while the crystal B
diffracts from (11 0) and (200) planes but not from the (111) plane. From the above, we may
conclude that
1. A has fcc lattice while B has bee lattice
2. A has bee lattice while B has fcc lattice
3. A and B both have fcc lattice
4. A and B both have bee lattice
108. Mo Clft "fff/6 w NH3 CffT JlTlFI"Crf ~ ~riiC'I&<.$ ~ ¢ ~ 67rrr t I "lTff ~ ~ 00
TR frlR!r '1J"llTI NH3 CffT rrT?fr+rcp c:Tif 10-2
c'k cyI NH3 CffT c:Tif 1o fi1rrc'f # FJGCI'i"?" 10-4 c'k N '1J"llTI
NH3 ¢ ~ CffT 7lffr-~ t :
1. 9.9x 10-4 c'kmfrr-:rc
3. 9.9 x 10-3
m m frr-:rc
2. 0.46o6 m frr-:rc
4. 0.693 Jlfrr fi1;:rc
108. The decomposition of NH3 on Mo surface follows Langmuir-Hinshelwood mechanism. The
decomposition was carried out at low pressures. The initial pressure of NH3 was 1o·2
torr. The
pressure of NH3 was reduced to 104
torr in 10 minutes. The rate constant of decomposition of
NH3 is
1. 9.9 x 104
torr min-1
3. 9.9 X 10-3
torr min-I
J11lj3if qfJ ~
10
50
40
JTTUTfcrcFJ 'JfR
1000
2000
4000
~ <PT ~ :prtcTi (P.D.l.) t:
85000
1.
27
85
2.
81
2. 0.4606 min-1
4. 0.693 min-1
850
3.
729
729
4.
850
www.examrace.com
109. A polymer sample has the following composition.
Number ofmolecules Molecular weight
10 1000
50 2000
40 4000
The polydispersity index (P.D.I.) ofthe polymer is
85000
1.
27
110. fctFJrr- '(J'HJ4Pi<P ~
2.
85
81
2Fe3
+ + Sn2
+ :!::::::; 2Fe2
+ + Sn4
+
Qf{ ?1Jl=ll ~ ~ :
37
850
3.
729
729
4.
850
[E0
(Fe3
+/Fe2
+) = 0. 75 V,E0
(Sn4
+/Sn2
+) =0.15V, (2.303RT I F)= 0.06V]
110. The equilibrium constant for.an electrochemical reaction
2Fe3
+ + Sn2
+ :!::::::; 2Fe2
+ + Sn4
+
is [E0
(Fe3
+/Fe2
+) = 0.75V,E0
(Sn4
+ /Sn2
+) =0.15V, (2.303RT I F)= 0.06V]
111. VCP vfiqJfi'Jq<P qfft;ff.ft ~- ~-fclww;:r "?f ~ lfirft ~I VCP fih4J!tf!C'Irt: ~ ~ if
~ FcNrwr "?1 ~ if m CfTC'IT ~ dN = A.gN dt # ~ if7rtT ~~ fctRtT ~ t w
ufiqJfiJ4<P ~ ctfT 31TWc!T t [No= N(t = 0)]
2. N0 exp[-A.gt]
4. N0 ( A/)
2
111. A bacterial colony grows most commonly by cell division. The change in the population due to cell
division in an actively growing colony is dN = A.gN dt. The population of bacterial colony at
timet is [No= N(t = 0)]
2. N0 exp[ -A.g t]
4. N0 ( A./)
2
112. NOCI rt IJiNfT 3TflFlCOf 2NOCI(g) ~2NO(g) + Cl2
(g) rt ~ rrrrm ~A= 1013
M-1
s-1
,
Ea = 105 kJ mor1
ff2!TRT= 2.5 kJ mor1
~ ~ ctfT ~ ( kJ mor
1
~ "if7ft
1. 110 2. 105 3. 102.5 4. 100
www.examrace.com
38
112. The Arrhenius parameters for the thermal decomposition ofNOCI, 2NOCI(g) -+2NO(g)
+ Cl2
(g), areA= 1013
M-t s-t, Ea = 105 kJ mort and RT= 2.5 kJ mort. The enthalpy (inkJ
mort) ofthe activated complex will be
I. 110 2. 105
1. I (2J +1) e-flhc81(1+1)
1=0,1.2,....
2. I (2J +1) e-flhc81(1+1)
1=1,3,5,....
3. I (2J + 1)e·flhcBJ(J+I)
1=0,2,4,....
3. 102.5
4. _!_ [ I (2J + 1) e·flhcB1(J+t) + 3 I (2J +1) e-flhcB1(1+1)]
4 1=0,2,4,.... 1=1,3,5,..
113. The rotational partition function ofH2 is
1. _I (2J + 1) e-flhcB1(1+1l
1=0,1,2,....
2. I (2J +1)e-flhcB1(1+t)
1=1,3,5,....
3. I (2J+1)e·flhcB1(1+t)
1=0,2,4,....
4. _!_ [ I (2J +1) e-flhcB1(1+1) + 3 I (21 +1) e-flhcB1(1+t)]
4 1=0,2,4,.... 1=1.3.5,...
1. 1/Kr 2. e.xp[ -Kr]
3. exp[- Kr]lr 4. Kr
114. The potential in Debye-Huckel theory is proportional to
1. 1/Kr 2. exp[ -Kr]
3. e.xp[- Kr]lr 4. Kr
4. 100
115. ~ ~ ~ Cffr ctfrrrr-3r<{ffn rrm 3/u'tiqJ~m ~ JPW:~ 300 crn-
1
rrm 0.0025 t 1 l3"tfCi>
~ 1f'RI rrm ~ ~(~ ¢ ~(crn-
1
~ JPW:· t
1. 300, 600
3. 301.5, 604.5
2. 298.5, 595.5
4. 290,580
www.examrace.com
39
115. The vibrational frequency and anharmonicity constant of an alkali halide are 300 cm-
1
and
0.0025, respectively. The positions (in cm-1
) ofits fundamental mode and first overtone
are respectively
1. 300,600
3. 301.5, 604.5
2. 298.5, 595.5
4. 290,580
116. l[fiJ tffi CffT ~ ~ Wl1ffTTft "# crfUfrr ~ r&mrPr 25°C w ~ ~ K = 0.9 kPa_, t 1 ?1rf8
ct ~ ~ 0.95 rn W, ~ (kPa 1).) t
1. 1/11.1 2. 21.1 3. 11.1 4. 42.2
116. The adsorption ofa gas is described by the Langmuir isotherm with the equilibrium
constant K = 0.9 kPa-
1
at 25°C. The pressure (in kPa) at which the fractional surface
coverage is 0.95, is
1. 1111.1 2. 21.1 3. 11.1 4. 42.2
ffJ#l:rc;r W/4/jfll'< fr:
1 1 1 3
1. T=-lior V=-n(J) 2. T=-n(J)· V=-n(J)
4 ' 4 8 ' 8
3. r = n(J):
1 3 1
v =--lim 4. T=-nm· V=-nm
2 8 ' 8
117. The energy ofa harmonic oscillator in its ground state is ]_ n(J) . According to the virial theorem,
2
the average kinetic (T) and potential (V) energies of the above are
1 1 1 3
1. T=-n(J)· V=-n(J) 2. T=-n(J)· V=-n(J)
4 ' 4 8 ' 8
1 3 1
3. T=nm: V=--lim 4. T=-nm· V=-n(J)
2 8 ' 8
1. 5 2. 10 3. 25 4. 50
118. The energy ofa hydrogen atom in a state is - hcRH (RH =Rydberg constant). The degeneracy of
25
the state will be
1. 5 2. 10 3. 25 4. 50
www.examrace.com
40
119. Viff ~eli~ f'f"&r rpc;r;:r <iJT "fcmw ~ rrctiT? fciRlr IJffflT ~ lf/1
=c1tp1 + C2qJ2 I~ eli
~ 3TCfllCf ff {1P1 IHI1P1)=0; {fP1 1Hirp2 )=2.0=(fP2 1Hirp1) rrf!lT (fP2 1Hirp2 )=3.0 I ~
fihi'<OJifl'l¢ Plwtijffl'< ~ f.7cF>rl1 qft 3TTET ~ qft IJiii'lf ~ ~ :
1. -1.0 2. -2.0 3. +4.0 4. +5.0
119. The trial wave function of a system is expanded as lf/1
=c1
rp1
+ c2
tp2
• The matrix elements of the
Hamiltonian are (1P1 1Hitp1)=0; (1P1 IHI~P2 )=2.0=(1P2 1Hitp1 ) and (1P2 IHI~P2 )=3.0. The
approximate ground-state energy of the system from the linear variational principle is
I. -1.0 2. -2.0 3. +4.0 4. +5.0
120. fii>WT gcfm 31Uj AB <PT ViP 3TfUif'flcp Cff/ffffi cAlf/A +c 8lf/8 eli M # "t, lil6i lf/A rrf!lT lf/8 lfJITW:
JI'HIIf/;;zf/Cijrt 4!lf/O/fijrp Cfi/ffffi ~ lifT A q B TR ctm- ~I ~ Cfi/ffffi <iJT ~ W1fTT!J B TR 90%
wflrct;m eli ?W!l rrr<lT IJffflT ~I lf/A q lf/B eli ~ qft ~ qft ~ ~ F CA q CB <iJT #Jfrczl "'<"f"ll8
~ ..
1. CA = 0.95, CB = 0.32
3. CA = -0.95, Cs = 0.32
2. cA = O.lO,cs = 0.90
4. CA = 0.32, CB = 0.95
120. One molecular orbital of a polar molecule AB has the form cAlf/A +cslf/8 , where lf/A and lf/8 are
normalized atomic orbitals centred on A and B, respectively. The electron in this orbital is found
on atom B with a probability of90%. Neglecting the overlap between lf/A and lf/8 , a possible set
of CA and CB is
1. CA = 0.95, CB = 0.32
3. CA = -0.95, CB = 0.32
2. cA = O.IO,cs = 0.90
4. cA = 0.32,cs = 0.95
121. 4-61$i{fwf) ~ 3P'C'f;! 3frFt Fcffitn "h fclgji'l1rf 13
C NMR ~ # 0 171, 162, 133, 122 rrf!lT
116 ppm TR "ficl'm rmfltI "ficlirtT <PT "ffifJ Pifi!&!Jq>'I'UJ ~ :
1. 6 171 (C-4), 162 (COOH), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6)
2. o171 (COOH), 162 (C-4), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5)
3. o171 (C-4), 162 (COOH), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5)
4. o171 (COOH), 162 (C-4), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6)
121. 4-Hydroxybenzoic acid exhibited signals at() 171, 162, 133, 122 and 116 ppm in its broadband
decoupled 13
C NMR spectrum. The correct assignment of the signals is
1. o171 (C-4), 162 (COOH), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6)
2. o171 (COOH), 162 (C-4), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5)
3. o171 (C-4), 162 (COOH), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5)
4. o171 (COOH), 162 (C-4), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6)
www.examrace.com
41
IR: 3400, 1680 em-1
;
1
H NMR: 8 7.8 (1 H, d, J =8Hz), 7.0 (1 H, d, J =8Hz), 6.5 (1 H, s), 5.8 (1 H, s, D20
~, 3.9 (3 H, s), 2.3 (3 H, s).
~ zttfTrcp fr
1.
HOQ--< HO~2.
OMe - OMe
Me Me
HO
Q-(. 4. H0~
0
- Me
OMe OMe
3.
122. An organic compound (C9H1o03) exhibited the following spectral data:
IR: 3400, 1680 em-';
1
H NMR: 8 7.8 (1 H, d, J =8Hz), 7.0 (1 H, d, J =8Hz), 6.5 (1 H, s), 5.8 (1 H, s, D20
exchangeable), 3.9 (3 H, s), 2.3 (3 H, s).
The compound is
1.
3.
HOh J?
~OMe
Me
HO
Q-(OMe
2. HO~O
~ 'oMe
Me
4. HO~O
~- 'Me
OMe
123. 90% ~: ~ 2 ~Rc>tu)iH)$¢ 3T1f7 ciB w[a]0 +135° frt f[EP lHT? cli W!r RT w f[EP F:R qfr
3lfi1fii>llT ct wwr[a]n +120° "if rrficrfrfrr SJ1T1 ffTrr F:R 'lfR ~ ~ 40% ffCij" <ff11 sfI ~ Vw
t; aT T[fli -Ei? ct 'lfR FlTc>t- qfr ~ ~ [fey 3 tR ~ INfCffT [a]n ~ "jff1ffl: m
1. 80%; [fey 60°
3. 80%; [fey 90°
2. 70%; [fey 40°
4. 70%; [fey 60°
123. The [a]0 of a 90% opticallly pure 2-arylpropanoic acid solution is+135°. On treatment with a base
at RT for one hour, [a.]0 changed to+120°. The optical purity is reduced to 40% after 3 hours. If so,
the optical purity ofthe solution after 1 hour, and its [a]0 after 3 hours, respectively, would be
1. 80%; and 60°
3. 80%; and 90°
2. 70%; and 40°
4. 70%; and 60°
www.examrace.com
42
p0
,)---==
Me' Ph
(JI<IiWf: ~
:p Ao~1.
Me/, ==--
R 2. Me/, ==---c
Phr H -c
Phr H
s
'":P '":P3. Ph ==-- 4.
/'-c R Ph ==--
Mer H
/'-c
Mer H
s
124. In the following pericyclic reaction, the structure of the allene formed and its configuration are
125.
p0
,,)---==
Me Ph
(optically pure)
1.
3.
AcO~~
Ph ==--
"'-c
Mer H
hv
-----X
R 2.
R 4.
y
AcO:p~
Me/ ==--
'-c
Phr H
O=(
H Ph
.
'-COOHH
s
s
www.examrace.com
43
1.
hv I DIS
2.
hv I CON
3.
D. I DIS
4.
D./CON
125. In the following sequence ofpericyclic reactions X and Y are
n Ph
~OOH
1.
2.
3.
4.
~H
hv
-----X
y
hv I DIS
hv/ CON
D. I DIS
D./CON
d=C
H Ph
.
/-COOH
H
www.examrace.com
44
1.
d 2.
~
3. Q}o 4. CXJ=o
126. The major product formed in the following reaction is
~H
1.
d 2.
~
3. Q}o 4. CXJ=o
1. 31Pitil74f!tfi&J 1'fUlClfff eli V'irr it VCP 1,3-~ ~ fr.!lT rr.rtlficp&JrJ I
2. 3TP!fii741W'!&J 1'fUlClfff eli V'irr it VCP cpJtffPt411 3/TlFf fr.!lT wfi•ficp&JrJ I
3. 31frlfii74J!Iti&J 1fCZTClrff eli V'irr # VCP 1,3-~ ~ fr.!lT Vw fctfPr ~I
4. 31Pifil74/W'i&J 1fCZTClrff eli V'irr # VCP CfiTtf-'51f:UTTlFf cp/ilfP/4'1 fr.!lT Vw cp'Jq j <tfcf"llm I
127. The following conversion involves
1. a 1,3-dipolar species as reactive intermediate, and a cycloaddition.
2. a carbenium ion as reactive intermediate, and a cycloaddition.
3. a 1,3-dipolar species as reactive intermediate, and an aza Wittig reaction.
4. a carbanion as reactive intermediate, and an aza Cope rearrangement.
www.examrace.com
45
utaN..-: Me
~CHO HO Me
[!__ __) + MeHN~
N
1. 1[?1> ~ 3/TlFf, [3,3]-ift•"fi~f~<P ~vet 1fTfrm ~I
2. 1[?1> <tf$f/IPI21"f 3/TlFf, [3,3]-fft•"fi~I~<P ~vet~ ~I
3. 1[?1> ~ 3TTlR, [1,3]-fft•"fi~f~<P ~vet '17f.m ~I
4. 1[?1> <tJJ?!iPiwl 3TTlR, [1,3]-lfton~i~<P ~vet~ JTfi'rfi!Rrr1
128. The following transformation involves
~CHO HO Me
[!__ __) + MeHN~
N
utaN..-: Me
I. an iminium ion, [3,3]-sigmatropic shift and Mannich reaction.
2. a nitrenium ion, [3,3]-sigmatropic shift and Michael reaction.
3. an iminium ion, [1,3]-sigmatropic shift and Mannich reaction.
4. a nitrenium ion, [1,3]-sigmatropic shift and Michael reaction.
129. ¢}RR+/¢ WN(A) ct 4-si$)$Jcffl'l ¢frrc;r 41$Wfci<P WN (C) it ufiqVIfrlrt WJimur ct rn it 'ffift W!Ff
t:
COOH
¢laj_COOH X
OH A
B
y
1. X ~ ~<tfcf"47fl ~ Y Oltwfl¢7'<¢ Fci<PJtilfRffl<'1<P'<UJ frI
2. X J1fR:r ~<tfcf0047'H ~ Y 3/twfi<Pl'<<P Fci<PJtil'fRHt<'1¢'<UJ frI
3. X Jlfh:r ~<tfifOOlllfl ~ Y AlifcifJ<P'<UJ frI
4. X C!&iJFf ~<tfif"47fl ~ Y P!uicifJ<P'<UJ t 1
129. With respect to the following biogenetic conversion ofchorismic acid (A) to 4-
hyd.roxyphenylpyruvic acid (C), the correct statement is
B
y
OH A
I. X is Claisen rearrangement; Y is oxidative decarboxylation.
2. X is Fries rearrangement; Y is oxidative decarboxylation.
3. X is Fries rearrangement; Y is dehydration.
4. X is Claisen rearrangement; Y is dehydration.
www.examrace.com
130. f¥;r q;'r ~ ctR :
I. 13-~
11. ~
111. 1ffr:tff;=r
iv. ~
1. i-c; ii-d; iii-b;
3. 1-c; ii-b; iii-d;
iv-a
1v-a
46
a. ~P<tJC"'J$5, ~ ~(>qj)f57C'1
b. ~P<tJC"'J$5, q_fT;ifc;r
c. ~ ~ ~(>qj)f5JC'1
d.~~~
2. i-b; ii-a; iii-c; iv-d
4. 1-a; ii-d; iii-b; IV-C
130. Match the following
i. !3-amyrin
ii. squalene
iii. morphine
iv. ephedrine
1. i-c; ii-d; iii-b; iv-a
3. 1-c; ii-b; iii-d; Iv-a
PhyCHO
Me
+ B
a. alkaloid; secondary alcohol
b. alkaloid, phenol
c. triterpene, secondary alcohol
d. acyclic triterpene, polyene
2. i-b; ii-a; iii-c; iv-d
4. i-a; ii-d; iii-b; iv-c
1.
Re-Si facial
2. Re-Re facial
3. Re-Si facial 4. Si-Si facial
131. In the following reaction, the structure of B, and the mode of addition are
PhyCHO
Me
+ 8
OH 0
Phyyy
www.examrace.com
47
1.
~ Re-Si facial
2.
~
Re-Re facial
3.
~ Re-Si facial 4.
~ Si-Si facial
132. frFr 3Tfoffii;zrr if A f11!lT B g :
0
~N_.-OMe
N iPrMgCI
I
[~ A
Me
B
0
A B
1. N N 0
[ }-MgCI
[0~0
0
2. CIMglN
~N~I ~
0
0
[:~
Me
3. I
'/(u:::r-<
4.~N~ ~N 0
0
0~
132. In the following reaction A and B are
0
~N_.-OMe
N iPrMgCI
I
[~ A
Me
B
0
www.examrace.com
A B
1. N N 0
[ rMgCI
[0~0
0
2. CIMglN
~N~I ~
0 0
[:~
Me
3. I
~/(IT)-<
~N~4.
~N 0
0
0~
i. a-ctflch;/~c tt ~ ~
ii. <JfMtrr tt ~14#1<fH
iii. 41$'<?fi'JCfl awr tt ~ ?18-~A
1. i-d; u-a; m-e;
3. i-b; u-a; iii-c;
48
a. tp t:~§)'h)Hc
b.NADH
c. ~ 474>:)q;'f~c
d. fiiR:s7Cffl(!41'1
2. i-a; ii-b; iii-d;
4. i-d; ii-b; iii-c;
133. Match the following biochemical transformations with the coenzymes involved
1. a-ketoglutarate to glutamic acid
n. uridine to thymidine
iii. pyruvic acid to acetyl coenzyme A
1. i-d; ii-a; iii-c;
3. i-b; ii-a; iii-c;
H+CH~H
H OH
H OH
CH20H
A B
a. tetrahydrofolate
b.NADH
c. thiamine pyrophosphate
d. pyridoxamine
2. i-a; ii-b; iii-d;
4. i-d; ii-b; iii-c;
www.examrace.com
49
CHO HO~
COOH
0 0 COOH
H+OH H*OH H+OH1.
H OH 2. 3. H OH 4. H OH
CH20H HO OH H OH
COOH
COOH
134. The structure ofthe major product B formed in the following reaction sequence is
CHO
H$0H Br2 H202
H OH A B
H OH
H20 Fe2(S04b
CH20H
CHO HOU COOH
0 0
H$0H COOH
H+OH H+OH1. H OH 2. 3. H OH 4. H OH
CH20H HO OH H OH
COOH
COOH
135. "l/8 ~ garr t fcn ~ ~ FZJP=r atrt'.l7rt'.ltffi47 ctfr Iiiff 0.9 kcallmol t I m ~ w ~G 1fPf
t
exMe
'Me
(e,e conformer)
1. 0.9 kcal/mol 2. 1.8 kcallmol 3. 2.7 kcallmol 4. 3.6 kcallmol
135. Given the energy ofeach gauche butane interaction is 0.9 kcal/mol, ~G value ofthe following
reaction is
('(Me
V·''Me
(e,e conformer)
1. 0.9 kcal/mol
cc·Me
2. 1.8 kcallmol 3. 2.7 kcal/mol
~_A_.,.. ~ _bcoOEt H2, 10% Pd/C
MeO~ 1- MeO~ MeOH
4. 3.6 kcal/mol
8
www.examrace.com
A
1. N2CHCOOEt, Cu(acac)z
2. N2CHCOOEt, Cu(acac)z
0
Me-s COOEt
3. NaH, Me-"+-..............
8(
0
Me-s COOEt
4. NaH, Me-"+-..............
8r"
50
8
~COOEt
MeO~
1

~ ~COOEtMeOC '
~COOEt
MeO~
1

- ~COOEtMeOJ;r ~
136. In the following reaction, the reagent A and the major product B are
~
~COOEtA ~ H2, 10% Pd/C
MeOHMeO
MeO
A 8
~COOEt
1. N2CHCOOEt, Cu(acac)z
MeO
2. N2CHC00Et, Cu(acac)z ~COOEtMeO
0
~COOEt
3. NaH, Me-s COOEt
Me-"+........_......
8r"
MeO
0
M II
4. NaH, e-s COOEt ~COOEtMe-"+........_......
8( MeO
1. LiAIH4, Et20, -20°C
2. Ac20, py
8
www.examrace.com
51
Me
Mep1. Q-Me 2.
Me
M•o Me
3. 4. Q-Me
Me-''
137. The major product formed in the following reaction sequence is
1. UAIH4, Et20, -20°C
2. Ac20, py
Me
Mep1. Q-Me 2.
Me
M·o Me
3. 4. Q-Me
Me-''
138. ~NaOH c#r ~it 12.0 m: NJc)<tJ<t)<t c#r76.2 m: ~ rt mzr 3Tfr!fjpw "#75% ~
it fCfi om -qzy.4 A ctT >rrfiff gil ~ "# ~ A c#r ~ "1fT?fT vet i:R1CffT ~ "t
1. 80 g, CI4 2. 40 g, CI4 3. 60 g, CHh 4. 30 g, CHI3
138. 12.0 g ofacetophenone on reaction with 76.2 g ofiodine in the presence ofaq. NaOH gave solid A
in 75% yield. Approximate amount ofA obtained in the reaction and its structure are
1. 80 g, C4 2. 40 g, C:4 3. 60 g, CHI3 4. 30 g, CHI3
139. f¥rr 3lfiifiiR:rr fcJfi/ W ~I
wA,B ere~-~
www.examrace.com
52
1. 3/JwfJijj}'((jj llPr, ~ a:rrrrrTWi PNJijji(UJ
2. &TwfJ¢N¢ llPr, ¢ii"IT4cU~'1, P-~ ~
3. ¢/i"/ftJcU~rr, ~ a:rrrrrTWJ Pfi!I¢'?DJ
4. mg-~~~mg~
139. Consider the following reaction mechanism.
The steps A, B and C, respectively, are
1. oxidative addition; transmetallation; reductive elimination.
2. oxidative addition; carbopalladation; P-hydride elimination.
3. carbopalladation; transmetallation; reductive elimination.
4. metal halogen exchange; transmetallation; metal extrusion.
-Q-oH
1. -QoH
COOH
2. -QoH
OH
3. Hooc--Q-oH 4. HOO';,Cro
140. The major product formed in the following reaction sequence is
-o-OH
1. CHCI3, NaOH
1. -Q-oH
COOH
2. -Q-oH
OH
3. Hooc--Q-oH 4. HOO';,O=o
www.examrace.com
53
141. frFr ~ JF]Jff11 it IJfCFf !J?91 ~ B t
o=o1. 's-o 1 Ph
d "=!
Ph D A 8
2.H30+ Pd(OAch
PPh3, Et3N
D
Ph~
Ph
1. 2. Ph~DD Ph
D
D D
3.
Ph~Ph 4. Ph~D
D
Ph
141. The major product B formed in the following reaction sequence is
Ph - D _______.....
1.
3.
D
Ph~
D Ph
D
Ph~Ph
D
2.
4.
1 Ph
"=./
A----_.
Pd(OAch
PPh3, Et3N
8
Ph
Ph~D
D
D
Ph~D
Ph
2. MeMgCI, Et20
8
3. H30+
www.examrace.com
54
0
1. 2.
QOMeMe
0
4.
cj(Me
3.
142. The major product B formed in the following reaction sequence is
0
~0
1.
3.
0
&Me
0
a:
_NNHPh
NNHPh
H
H OH
H OH
CH20H
A
1. CH 2N2, Et20
B2. MeMgCI, Et20
3. H30+
0
2.
QOMeMe
4.
0
(("Me
1
2. ~fff!!T~
4. l)C"Jcrc)lif fff!!T ~
www.examrace.com
143. The osazone A could be obtained from
__NNHPh
NNHPh
HO H
H OH
H OH
CH20H
A
1. glucose and mannose.
3. gulose and fructose.
MN
1. Li, liq. NH 3,
1
BuOH
2.H30
3. KOH, MeOH
1.~0H 2.
3. Me~
55
2. mannose and galactose.
4. galactose and fructose
144. The major product formed in the following reaction is
MN
1. Li, liq. NH 3,
1
BuOH
2.H30+
3. KOH, MeOH
2.
3. Me~
www.examrace.com
56
f)._-oMe
N
~COOEt-----------'----~----~v 1. nBuli, HN-siMe3
2.H30+
3. Hz, Raney Ni
~Hz NH2
1.
UCOOEI
2.
6··''COOEI
~H2 NH2
3.
0
...,COOEI
4.
(jCOOEI
145. In the following enantioselective reaction, the major product formed is
~OMe
N
~COOEt __________'----~----~v 1. nBuli, HN-siMe3
2.H30+
3. H2, Raney Ni
~H2 NH2
1.
UCOOEI
2.
6··'.C00Et
~H2 NH2
3.
0
....C00Et
4.
&COOEt
www.examrace.com
II
--------------------------------------------------------·------II
I
CHEMICAL
SCIENCES
Roll Number BookletCode
.......: c••••••:
,______,
G) G) 00 00
® ® ®® ®®
® ® ®® ®®
~ ~ ~~ ~~ •® ® ®®®®
® ® ®®®® ®
0 0 0000
®® ®®®® ©
®® ®®®®
®® ®®®®
•4·'9'·1
~-113T I
ANSWER SHEET
Medium SubjectCode Centre Code
D UUJ'
mG) G)
® ®
®
® ® ®
~ ~G)
® ®
G) ® ®
@ 0 0
® ® ®
® ®
® ® ®
ANSWER COLUMNS
"ll".ifi. ~/ANSWER "li".Sfi. ~/ANSWER "ll".ifi. ~/ANSWER
O.No. G) ® ® 0 O.No.
CD ® ® 0 O.No.
CD ® ®
1
• 0 0 0 37
• 0 0 0 73 0 0
•2 0
• 0 0 38 0 0 0 ~ 74 0 0 ~
3 0 0 0
• 39 0 0
• 0 75 0
• 0
4 0 0
• 0 40 0 0
• 0 76 0
• 0
5 0 0
• 0 41 0
• 0 0 77 0 0 0
6 0 0 0
• 42 0 0
• 0 78
• 0 0
7 0 0
• 0
8 0 0 0
•9
• 0 0 0
10
• 0 0 0
11 0
• 0 0
12
• 0 0 0
13 0
• 0 0
14 0 0 0
•15 0 0
• 0
79 0 0
80
• 0 0
81 0 0 0
82
• 0 0
83
• 0 0
84 0
• 0
85
• 0 0
86 0 0 0
43 0 0 0
•44 0 0 0
•45
• 0 0 0
46 0
• 0 0
47
• 0 0 0
48 0
• 0 0
49 0 0
• 0
50
• 0 0 0
16 0 0
• 0
51 0 0 0
• 87
• 0 0
17 0 0
• 0
52 0
• 0 0 88 OJ 0 0
18 0 0
• 0
53 0
• 0 0 89 0 0 0
19
• 0 0 0
20
• 0 0 0
90 0
• 0
91 0 0 0
92
• 0 0
54 0 0 0 0
55 0 0 0
•56 0
• 0 0.
21
• 0 0 0
22 0 0 0
•23 0
• 0 0
24 0 0 0
•25 0 0 0
•26 0 0
• 0
27
• 0 0 0
28 0 0 0
•29 0
• 0 0
93 0
• 0
94 0
• 0
95
• 0 0
96 0 0
•97 0 0
98
• 0 0
99 0 0
•100 0 0
•101 0
• 0
102 0
• 0
57 0 0
• 0
58. 0 0 0
•59 0
• 0 0
60 0
• 0 0
61
• 0 0 0
62
• 0 0 0
63 0 0 0
•64 0 0 0
•65
• 0 0 0
66 0
• 0 0
30
• 0 0 0 103 0 067 0 0 0
•31 0
• 0 0 68 0
• 0 0 104 0 0
•32 0 0 0
• 69 0 0
• 0 105 0 0
•33 0 0
• 0 70 0 0 0
• 106 0 0
•34
• 0 0 0
35
• 0 0 0
36 0 0 0
• ~ I
107
• 0 0
108 0 ~ 0
109 0 0
•
II
'tftO - 2c;
SIDE- 2
~cf>~tml
INSTRUCTION FOR INVIGILATOR
~~m~~m.r~.
~~m.~m.~m
cr ~ cfi ~ cfit urtq 'li ~~
Check Roll Number, Booklet Code,
Subject Code, Centre Code & Signature of
Candidate before signing.
~~I Slgnatureoflnvigilator
"ll".ili: ~/ANSWER
0 Q.No.
CD ® ® 0
0 110 0
• 0 0
0 111 0 0
• 0
0 112 0 0 0
•0 113 0 0 0
••0
114 0 0
• 0 C"Z
<Do
115 0
• 0 0 ~CD'
0
0
•
116 0
• 0 0 coJj
o..o
117
• 0 0 0 :r =
118 0 0
• 0
..... z:TC
0 119
• 0 0 0
<D3
0"0"
0 120 0 0 0
• O<D
X~.....,
0
0
•0
0
•0
•0
0
0
121 0
• 0 0 <Den
cnc
122 0 0 0 0 ~.2:
-·<D
123
• 0 0 0 ::Jo
co-
124"·
• 0 0 0 - -a:TO
125 0 0 Q 0 <DO..
"0([)
126 0 0
• 0 ll>$20
~(")
127
• 0 0 0 ~([)
• 0 0 0
::J::J128
<Q.~
129
• 0 0 0 Cfia
130 0 0 0 ::JO
Sl)o..
131 0 0 ~ 0 (/)([)
. . en
0 132 0 0 0 :T
0
0
• 0 0 0
c133 a:
0 134 0 0 0
0 135 0
• 0 0
0 136 0 0 0
0 137 0 0 0
0 138 0 0 0
•0 139
• 0 0 0
0 140 0
• 0 0
0 141 0 0 0
0 142
• 0 0 0
0 143
• 0 0 0
0 144 0
• 0 0
0 145
• 0 0 0
0
II
www.examrace.com

More Related Content

PPTX
Von richter rearrangement
PPTX
Asymmetric Synthesis
PPT
organomagnesium-compounds.ppt
PPTX
Heterocyclic compounds part _IV (Pyrrole)
PDF
10. Lead tetra acetate
PPTX
Racemisation and method of resolution
PPTX
Electrophilic Substitution Reaction
PPT
Photochemistry
Von richter rearrangement
Asymmetric Synthesis
organomagnesium-compounds.ppt
Heterocyclic compounds part _IV (Pyrrole)
10. Lead tetra acetate
Racemisation and method of resolution
Electrophilic Substitution Reaction
Photochemistry

What's hot (20)

PPTX
Katsuki Sharpless Asymmetric Epoxidation and its Synthetic Applications
PPTX
Suzuki reaction
PPTX
Symmetry and its shapes (I.R and raman activaty)
PPTX
Acid Base Hydrolysis in Octahedral Complexes
PPTX
Heterocyclic compounds - pyrrole - synthesis of pyrrole - characteristic rea...
PPT
22723_lec7.ppt
PPTX
SMILES REARRANGEMENT [REACTION AND MECHANISM]
PPTX
BAEYER-VILLIGER REARRANGEMENT.pptx
PPTX
PPTX
Nucleophilic Aromatic Substitution
PPTX
Alkaloids
PPTX
Carbenes .......
PPTX
Racemisation n resolution
PPTX
Heterocyclic compounds
PPTX
Pyridine: Synthesis, reactions and medicinal uses
PPTX
Rearrangement reactions
PPTX
Synthetic Reagents & Applications in Organic Chemistry
PDF
Aromatic electrophilic substitution
PPTX
Alpha axial haloketone rule and octant rule
PPT
Asymmetric synthesis
Katsuki Sharpless Asymmetric Epoxidation and its Synthetic Applications
Suzuki reaction
Symmetry and its shapes (I.R and raman activaty)
Acid Base Hydrolysis in Octahedral Complexes
Heterocyclic compounds - pyrrole - synthesis of pyrrole - characteristic rea...
22723_lec7.ppt
SMILES REARRANGEMENT [REACTION AND MECHANISM]
BAEYER-VILLIGER REARRANGEMENT.pptx
Nucleophilic Aromatic Substitution
Alkaloids
Carbenes .......
Racemisation n resolution
Heterocyclic compounds
Pyridine: Synthesis, reactions and medicinal uses
Rearrangement reactions
Synthetic Reagents & Applications in Organic Chemistry
Aromatic electrophilic substitution
Alpha axial haloketone rule and octant rule
Asymmetric synthesis
Ad

Similar to CSIR-UGC NET previous year questions (20)

PDF
Csir net 2012(ii) mathematical science with with answer key
PDF
Bitsat 2007 questions with answers
PDF
Class 10 Cbse Science Question Paper 2 2011
PDF
Mathematics x 2013
PDF
Entrance examination-2074
PDF
M.sc applied geology(integ) 2011 (1)
PDF
JS2015-521.pdf
PDF
DMRC JE Electronics paper-I (2016)
DOC
ATTOMIC TEST PAPER
PDF
IIT-JEE Mains 2016 Offline Previous Question Paper Set G
PDF
AP Mechanical Question paper with AnswerKey (1).pdf
DOC
Engro+test+year+2003
PDF
DMRC JE Electrical paper_I (2016)
PDF
NEST 2012 Question Paper
PDF
IIT-JEE Mains 2016 Offline Previous Question Paper Set F
DOCX
Diffcal qee reviewer
PDF
Fiitjee- Paper 1
PDF
SSC CGL 2015 PAPER
DOC
Engro test year 2003
Csir net 2012(ii) mathematical science with with answer key
Bitsat 2007 questions with answers
Class 10 Cbse Science Question Paper 2 2011
Mathematics x 2013
Entrance examination-2074
M.sc applied geology(integ) 2011 (1)
JS2015-521.pdf
DMRC JE Electronics paper-I (2016)
ATTOMIC TEST PAPER
IIT-JEE Mains 2016 Offline Previous Question Paper Set G
AP Mechanical Question paper with AnswerKey (1).pdf
Engro+test+year+2003
DMRC JE Electrical paper_I (2016)
NEST 2012 Question Paper
IIT-JEE Mains 2016 Offline Previous Question Paper Set F
Diffcal qee reviewer
Fiitjee- Paper 1
SSC CGL 2015 PAPER
Engro test year 2003
Ad

More from Raghab Gorain (6)

PPTX
Alternatives of chlorine, chlorine di-oxide(ClO2) for water treatment
PPTX
Power plant chemistry
PPTX
DM water production through Reverse Osmosis(RO)
PPTX
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...
PDF
Csir chemical-sciences-june-2013-answers
PDF
10 years gate solved papers CHEMISTRY(Upto 2014)
Alternatives of chlorine, chlorine di-oxide(ClO2) for water treatment
Power plant chemistry
DM water production through Reverse Osmosis(RO)
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...
Csir chemical-sciences-june-2013-answers
10 years gate solved papers CHEMISTRY(Upto 2014)

Recently uploaded (20)

PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Hazard Identification & Risk Assessment .pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
1_English_Language_Set_2.pdf probationary
PPTX
Cell Types and Its function , kingdom of life
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Complications of Minimal Access Surgery at WLH
Paper A Mock Exam 9_ Attempt review.pdf.
Hazard Identification & Risk Assessment .pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Computing-Curriculum for Schools in Ghana
Final Presentation General Medicine 03-08-2024.pptx
Unit 4 Skeletal System.ppt.pptxopresentatiom
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Final Presentation General Medicine 03-08-2024.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
1_English_Language_Set_2.pdf probationary
Cell Types and Its function , kingdom of life

CSIR-UGC NET previous year questions

  • 1. Time :3:00 Hours 2012;(II) CHEMICALSCIENCES TEST BOOKLET lNSTRlJCTIONS Sr.No. SUBJECT CODE BOOia.IT COBi: Mtixiiittim Marks;· 200 You have opted for English as medium of Question Paper. This Test Booklet contains one hundred .and forty five (20 Part'A'+50 Part 'B' +75 Part 'C') Multiple Choice Questions (MCQs). You are required to answer a maximum of 15, 35 .and 25 questions from part 'A' 'B' and 'C' respectively. If moreihan required numbet of questions are answered, only first 15, 35 and 25.questions iri Parts 'A' 'B' and ~c· respectively, will be taken up for evaluation. 2. Answer sheet has been provided separately, Before yt~u start filling up your particulars. please ensure that the booklet contairis requisite number of pages and thatthese are not torn or mutilated. If it is so, you may request the lrivigilator to change the bookle.t. Likewise, check the answer sheet also. Sheets for rough work have been appended to the test.booklet. -3.. --WLite·.}'OurRollNo., Name, Youraddress and Serial Nurt1ber of this TestBookletonthe - Answer sheet in the space provided on the side 1 of Answer sheet. - Also ·put -your - signatures inthe c&pace identified. 4.. ¥ou :must cda:r-ken the appropriate circles with .a pencil related to 'Jiqft'Number, Sub:iect (lode, Booklet Code :and .Centre -Co~ nn the -OMR-answer ·sheet.lt :js:the "5rilevesponsibility ofthe.candidate•to metieulouslyc:ifollow .the instmttAAns~given on the Answer Sheet, failing which. the computer shall ·not be ab'le ~to·det!lfiher'the ·. ;· iiieehfi~~'liiDW> tiimat-e!Nwesnlt~nflloss-·!iiifat~ ·-<~r:·":· ··~w-~e~ +:~IJ!tf!·~'f~[t"'~_;,; :.~ ma:cl'l"~estion:.nd~art 'A' and 13' carries 2.maiks and Part 'C' -~~;srlbmca~ry 4marks each,t:especrively. There will be negativemarking-@ 25% for each wrong answe!'. 6. -Below each question -in Part 'A', 'B' and 'C' four aiteftl.atives or responses are ·given. Only one,ofthese alternatives is the "correct" option to the question. You.have to flnd, for_ each question, the correct or the best answer. 7. Candidates found copying or resorting to ariv unfair means are liable to be disqualified frointhis and future examinations. 8. Candidate should not Vrite anything anywhere except on answer sheet or sheets for rough work. . After the test is over, vou MUST .hand over the Test Booklet and answer sheet (OMR) to the invigilator. - Use ofcalculator is not pem1itted. Rolll/o ....................... . ~an1c ........................... S/75 POK/12-1AE,.--1A 1have verified all the infonnation fill~d in by th:: ~·andidate. Sig:nature of the InYigilator www.examrace.com
  • 2. :H ifi1liq; 5922 . Will : 3:00 Fit 2012 (II) '!W/491 ffl$191 ITR ra Tf'di!i : 200 atcf; 1. ~~<iff~ J"IT t 1 "$W rRmr ~~~"fit~ (20 qpr 'A'~+ 50 qpr 'B' + 75 qpr 'C' ~) ~ f<TcPc;q rwr (MCQ)~ TTV 8 1 ~ qpr 'A' ~ # ~ 1s Jtt? qpr 'B' ~ 35 m fi21T qpr ·c ~ # 2s m ctt "i:ffffV # 8 1 ~ f.%Tf{ffl- # arffTt5 m <6 "i:ffffV ~ TTV ~ ~ ~ qpr 'A' # 15. qpr 'B' # 35 ff2lT qpr 'C' # 25'3fff# rlt iftq rlt ~ I 2. "i:ffffV ~ 3fCi1lT w- ~ 7fllT ~ 1 3fTFfT m rpiR 3/k R- w rt711 ~ w- we? w lilfq ~ fct> ~ ~ ~ fJ! 3/k mft 8 fi21T q;iff # Cfit-f/ft rrdf 8 I ~ ~ ~ at 3fTTT $~uflco}C'< # j{tffc1iT ~ CfiT f.!MR ~ wq;ff , I $WI" ~ # "i:ffffV ~ flit ;ft iftq "& I "$W ~ ~ Vfli CfiT1f lPR <6 ftorv ~ rrnT ffi>rr.r , I 3. "i:ffffV ~ ctt rpif 1 ~ ~ TTV ~ w J7rRT m rr1iR. "fTT1. 3fTFfT rrrrr fi21T "$W rr&rr ~ iliT ifi1fflff ~ I 31Tf1C6 iRi'fTifR" ;ft ~ 8 I 4. aTrrT apr-fl- aU.~~ "6ffR jlfflifiT it W"R OfiR Ifill • jlfflifiT m aik cfirr: m # ~ ~ ¢ <iff arcmT "ifiWfT iiR' t I l/8 'fili llf51 ~ tth ta/u}t:/tJ t fct> CIW "i:ffffV ~ it ~ TTV frrtWf w Ft ~ w'llTcR ilR. "fflr ;r m w ;p:;!{p fimuif i6T wlft cr(Jqt # ~ Of# ~ fl1fl1t rutw# :sifm: Jllrlifff ~ ~ ~ 5. 6. 7. 8. 9. 10. "i:ffffV j{tffc1iT tth dl'tilliftcl J/t mfil<;t; ,. Wi1iCit I I qpr 'A' fi21T qpr'B' ~ fTfl1q; rwr <6 2 :Jiq;. qpr'C' *fTfl1q; rwr 4 :Jiq; iliT·~ 1 fTfl1q; 1TCffl "i:ffffV iliT ~ 0/lffl<P ~ 25 % rlt C:V # fct>liT lifTq7fT I fTfl1q; rwr <6 ;ffit ~ f<TcPc;q ~ TTV I 1 ~ # c6;rc;r ~ f<TcPc;q dt "mfr ~ 7fiifmJr zrc;r" ~ I ~ fTfl1q; fiR CfiT wdt ~ ~ oc;r ~ t I ~ <tmt sv w 3ffl?m ('f(Jqff C5T frtH1r <tmt gy rrrv lifT"it ~ d/'RlTfirl# C5T ur 3fiv JRl 'I1T<ft rrfmraff <6 @Tv ~ OfflllT iff WPrfT t I ~ <Iff "i:ffffV liT ?Tii TFff <6 ~ q;iff 3fiv ~ ;ft rrdf ~ ~ I rr&rr W1Tr(f o}" lifT't w ffl rr&rr ~ 3/k "i:ffffV ~ flit $'ffluflco}c'( flit J1cml ?tfrr ~I ct3&~C'}c '? CfiT iWl1Pr lPR rlt ~ rnff t I fitfflt fiR ~ ffflTTifr <6 ~ ~ Ji?)vft ~ rwc>r 6)w I ·~·-······················ 5175 POK/12-1C H-1A ( www.examrace.com
  • 3. m h e k c amu G R m h e k c IVe amu G R) R .., -' 1.6 X J0-19 j 1.67 x 1o-27 kg 6.67 X I o-Il Nm2kg-2 8.854 x J0- 12 Fm-1 USEFUL FUNDAMENTAL CONSTANTS Mass of electron Planck's constant Charge of electron Boltzmann constant Velocity ofLight 1.6 X lQ-19 j 1.67 X J0-27 kg Rydberg constant Avogadro number 8.854 x J0-12 Fm-1 Molar Gas constants 9. I I X I0 31 Kg 6.63 X Io·-'4 J sec 1.6 X J0-19 c I.38 > J0-2' J/K 3.0 x JOKrn!Sec 1.097 x 107 m-1 6.023" I023 moie-1 8.314JK-1 mole-' 9. I I X JQ-31 Kg 6.63 " JO--'" J sec 1.6 X ]Q-19 c 1.38 X J0-23 J/K 1.097x IO"'m·' 6.023 x I023 mole 1 8.314JK 'molt:· www.examrace.com
  • 4. Element Actinium Aluminium Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Boron Bromine Cadmium Calcium Californium Carbon Cerium Cesium Chlorine Chromium Cobalt Copper Curium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold Hafnium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Mendelevi urn 4 LIST OF THE ATOMIC WEIGHTS OF THE ELEMENTS Symbol Atomic Number Ac 89 AI 13 Am 95 Sb 51 Ar 18 As 33 At 85 Ba 56 Bk 97 Be 4 Bi 83 8 5 Br 35 Cd 48 Ca 20 Cf 98 c 6 Ce 58 Cs 55 Cl 17 Cr 24 Co 27 Cu 29 Cm 96 Dy 66 Es 99 Er 68 Eu 63 Fm 100 F 9 Fr 87 Gd 64 Ga 31 Ge 32 Au 79 Hf 72 He 2 Ho 67 H In 49 I 53 lr 77 Fe 26 Kr 36 La 57 Lr 103 Pb 82 Li 3 Lu 71 Mg 12 Mn 25 Md 101 Atomic Weight (227) 26.98 (243) 121.75 39.948 74.92 (210) 137.34 (249) 9.012 208.98 10.81 79.909 112.40 40.08 (251) 12.011 140.12 132.91 35.453 52.00 58.93 63.54 (247) 162.50 (254) 167.26 151.96 (253) 19.00 (223) 157.25 69.72 72.59 196.97 178.49 4.003 164.93 1.0080 114.82 126.90 192.2 55.85 83.80 138.91 (257) 207.19 6.939 174.97 24.312 54.94 (256) Element Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymi urn Promethium Protactinium Radium Radon Rhenium Rhodium Rubidium Ruthenium Samarium Scandium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium Symbol Atomic Number Hg 80 Mo 42 Nd 60 Ne 10 Np 93 Ni 28 Nb 41 N 7 No 102 Os 76 0 8 Pd 46 p 15 Pt 78 Pu 94 Po 84 K 19 Pr 59 Pm 61 Pa 91 Ra 88 Rn 86 Re 75 Rh 45 Rb 37 Ru 44 Sm 62 Sc 21 Se 34 Si. .14 Ag 47 Na 11 Sr 38 s 16 Ta 73 Tc 43 Te 52 Tb 65 Tl 81 Th 90 Tm 69 Sn 50 Ti 22 w 74 u 92 v 23 Xe 54 Yb 70 y 39 Zn 30 Zr 40 Atomic Weight 200.59 95.94 144.24 20.183 (237) 58.71 92.91 14.007 (253) 190.2 15.9994 106.4 30.974 195.09 (242) (210) 39.102 140.91 (147) (231) (226) (222) 186.23 102.91 85.47 101.1 150.35 44.96 78.96 28.09 107.870 22.9ll98 87.62 32.064 180.95 (99) 127.60 158.92 204.37 232.04 168.93 118.69 47.90 183.85 238.03 50,94 131.30 173.04 88.91 65.37 91.22 "Based on mass of C12 at 12.000.... The ratio of these weights of those on !he order chemical scale (in which oxygen of natural isotopic composition was assigned a mass of 16.0000...) is 1.000050. (Values in parentheses represent the most stable known isotopes.) www.examrace.com
  • 5. 5 ( ~/PART A ) 1. ~ ~ i; <Jt?r-?'ft ~ ~? Which ofthe following numbers is the largest? 34 43 24 42 23 32 2 ,2 ,3 ,3 ,4 ,4 . 2. ffr'3l # FFr ABCDEFGH Cf5T R cirur a ci; ?rfiFf ~1 mrf A, C fr2lT F ci; frcffrur Cf5T ~ ~· The cube ABCDEFGH in the figure has each edge equal to a. The area of the triangle with vertices at A, C and F is .J321. -a 4 3. ~ w«:: UGCCSIR rt 31fflT ci; fiR fcRm:IT ctft ~ CfllT t, arFcP U fr2lT I WfF!!-WfF!! -.:rtf JTT 'fiCPff? What is the number of distinct arrangements ofthe letters ofthe word UGCCSIR so that U and I cannot come together? 1. 2520 2. 720 3. 1520 4. 1800 4. .,.r FciJ ?7/rf ~ vfwaff Cf5T ~ 21 ~I ~ ~ rf; CfTif ci; 1ffEZT Cf5T ~ ?fJfcr 'ffrf CfllT #? Suppose the sum ofthe seven positive numbers is 21. What is the minium possible value ofthe average ofthe sqaures ofthese numbers? 1. 63 2. 21 3. 9 4. 7 5. .,.r FcP I Let 1 13 +i 3 +3 13 +··· +100 13 A=-------- i3 +413 +613 +···+10013 C=-------- 100 50 frri:rr i; ?t CfllT WEft ~? Which ofthe following is true? 1. B<C<A 2. A<B<C 3. B<A<C 4. C <A <B www.examrace.com
  • 6. 6 60 XY C'7c1 if ~ 5 ~ qfJ f5rRlr ¢ [Eli ?fiTr (j}{ R JMlr ~ if t;I Cff X --3TeT q;'r Ff!1T t; rr.w y--JTer if 6 ~ ~ RTcfiT [Eli ~ t;I ~ R cf; ~ -g : A circle of radius 5 units in the XY plane has its centre in the first quadrant, touches the x-axis and has a chord oflength 6 units on the y-axis. The coordinates of its centre are 1. (4,6) 2. (3,5) 3. (5,4) 4. (4,5) 7. 6 7ft (77i; ffT? if R cffrur 1 1ft. crrc;rr [Eli i/gB.fiH(/) ~ JriJ5R ~ lifmT t; frli R cffrur ¢ ffrr: [Eli lfr HC (j}{ ~ frlizrr li1TfiT t;I ffT? W ~ <rR C/i7CT lifmT "t, FuRrc!ft ~ t; : 9. A wire of length 6m is used to make a tetrahedron of each edge 1m, using only one strand of wire for each edge. The minimum number of times the wire has to be cut is 1. 2 2. 3 3. 4. 0 If the sum of the next two terms ofthe series below is x, what is the value of log2x ? 2, -4, 8, -16, 32, -64, 128,.. 00 0 • • • 0 1. 128 2. 10 3. 256 4. 8 JlEf--mif <ffrur 30° rr.w lffrnt 10 #1ft. ¢ [Eli Wrg Tff3f (j}{ [Eli TRrHT r;;crrFf t:1 'CfT3! ¢ ~ mrr Tf7lT [Eli TTBr ~ W Ff!1T t;I ~ ctfl f5rU'lfT ir.-.fr # t A conical vessel with semi-vertical angle 30z and height 10.5 em has a thin lid. A sphere kept inside it touches the lid. The radius ofthe sphere in em is 1. 3.5 2. 5 3. 6.5 4. 7 www.examrace.com
  • 7. 7 10. 3lW, arrffiR aey ~ cftrr f'it-51 fr f&rrr# 1[Cii tfEr "t_ <[!RT ~ aey rfRRr rm:J7Tl7P ~I 3PW ~ rrtft ~I J1CMR ~ ~ ~I ~ NfffT CZJfr!rr zm ~I ~ ctfr ~ fi rif.=fi c#t ~ CfiT ~r4Jfrtrf!4 17l'aT ~I fit f.F:r it# <flJT rrdT ~? Amar, Akbar and Anthony are three friends, one of whom is a doctor, another is an engineer and the third is a professor. Amar is not an engineer. Akbar is the shortest. The tallest person is a doctor. The engineer's height is the geometric mean of the heights ofthe other two. Then which ofthe following is true? 1. Amar is a doctor and he is the tallest 2. Akbar is a professor and he is the tallest 3. Anthony is an engineer and he is shortest 4. Anthony is a doctor and he is the tallest 11. 31W 100 ~ 100 fiRe it 100 Ttl ~ t fit 7 fi/fffi7ii Cfi'r 7 ¢ Cfi'r ~ ir fclmrrr rf7Tll Wr!? If 100 cats catch 100 mice in 100 minutes, then how long will it take for 7 cats to catch 7 mice? 1. 100I 7 fiRe /minutes 3. 49/100 frAc /minutes 12. f.F:r #r?r ~ f.R?rrur Cfi'mT ~.? What does this digram demonstrate? ::/ n·(n+1) 1. 1+2+3+···+n=-.:....._----"- 2 ••• I I I I I 2 2 1 2 n ·(n + 1) ·(2n + 1) 2. 1 +2 +3- +···+ n = _.:.....___:_----'-------"-- 6 3. 1+3+···+(2n+ = -1) = n 2 2 2 ( )2 2·n(n+1)(2n+l)4. 2 +4 +···+ 2n =_ ____,__ _:__:__---".._ 3 2. 100 fiRe /minutes 4. 7 frAc /minutes ~r- r-~ ••• www.examrace.com
  • 8. 8 13. 1fJ""if fct r:;q; m if N 3TWT -&r <ff +1h:ff ~I 1fJ""if Fcli N r:;q; wr ~ #"I ~ ;:mrr r:;q; "llW it r:;q; tt -,:f'rurr ~ fr. r:;q; wm- 77'rvif ctT ~ JrTTff m rr<ff fcMr;t 1f'ruit rfft 3TflTcliT ~ 6'fw? Suppose there are socks ofN different colors in a box. If you take out one sock at a time, what is the maximum number of socks that you have to take out before a matching pair is found? Assume that N is an even number. l.N 2. N+ I 3. N-1 4. N/2 14. 4 ~ cff ~ fM{ FRft it Fit q frrrrc qft p r:;q; ¢ cff ~ ifr!T? At what time after 4 0' clock, the hour and the minute hands will lie opposite to each other? 1. 4-50'-31" 2. 4-52'-51" 3. 4-53'-23" 4. 4- 54'- 33" 15. f.17:rr "Cf"iPT if QtR-w x-3lef rfft trr¢ wrr #"? 16. 17. Which of the following curves just touches the x axis? I. y = x2 -x+l 3. y = x2 -1 Ox+ 25 2. y = x2 - 2x + 2 4. y = x2 - 7x +12 A B ~ AB, CD <ff ~ t ff27T AO, 20D <ff WTFr #", fit fi!rqftur OAB "EffT ~ ffrcllrur OCD cff ~ ~ fcMr;t T'fT ~ "fr? If AB is paralled to CD and A0=20D, then the area of triangle OAB is bigger than the area oftriangle OCD by a factor of 1. 2 2. 3 3. 4 4. 8 R &li'lJT cl> r:;q; 3lEfrm ~ cl> r:;q; cfrr w r:;q; ~ ~ U'f7ft;:r W filoTl!r TJ<TT #"I ~ <ff tmiR w ~ r:;q; 'Efft7 ~ <ff rirrff ctT CfirafJ7J FErri rfft 4~ rrrm t 1 ~ ctt FErri t : A semi-circular arch ofradius R has a vertical pole put on the ground together with one of its legs. An ant on the top of the arch finds the angular height of the tip of the pole to be 45°. The height of the pole is I . .fiR 2. J3R 3. J4R 4. JSR www.examrace.com
  • 9. 9 18. 1fR ~ 811 VCl' ~ 7Jk? ?1 N ~ uTe- 7Jk? "fATir t I uTe- 7J'ic;ff cm ~ ~ ~ ~ 7Jk? ct ~ ~~ cmX TfT ~ JfOiX~ Suppose we make N identical smaller spheres from a big sphere. The total surface area ofthe smaller spheres is X times the total surface area ofthe big sphere, where X is Lffi 2. 19. ~ 24] 30] 33] 39] 5 I] ................ ctT 3f77cifT ?kslrr CflTT ~? What is the next number in the sequence 24, 30, 33, 39, 51,------? I. 57 2. 69 3. 54 4. 8I 20. VCl' ~ it 'E/7?" mro WrfT lifTffT t frJRit ?1 ~ ctW cfr wrRW t_ ~ rtit( ffFr WJTift t I ~ 'E/7?" WrrJit qfr ~ ~Jil W ~ szl m-rif WrfT vrrrft t I ~ JTifiT? Jl7Tff ¢T 777ft <r<ft Wrr3# qfr #&rT ~ Four lines are drawn on a plane with no two parallel and no three concurrent. Lines are drawn joining the points of intersection of the previous four lines. The number of new lines obtained this way is 1. 3 2. 5 3. 12 4. 2 ( W1T !PART B ) I. 9/2 acy (+) 2. 7/2 acy (+) 3. 9/2 acy (-) 4. 7/2 acy (-) 21. For an odd nucleon in 'g' nuclear orbital and parallel to 1, spin and parity are: I. 9/2and(+) 2. 7/2 and(+) 3. 9/2 and(-) 4. 7/2 and(-) I. PbCh 2. PbS04 3. Pb(Et)4 22. For the deposition ofPb by electroplating, the best suited compound among the following is 1. PbCh 2. PbS04 3. Pb(Et)4 www.examrace.com
  • 10. (A) WPm ctt i.!¢qfOfrJJ (B) ~w~ 1. A, B rmr D 2. B, C rmr D 10 3. A, C rmr D 4. A, B rmr C 23. Appropriate reasons for the deviation form the Beer's law among the following are (A) Monochromaticity oflight (B) Association of analyte (C) Very high concentration of analyte (D) Dissociation ofanalyte 1. A, B andD 2. B, C andD 3. A, C and D 4. A,B andC 1. La(OH)J 2. Nd(OH)J 3. Sm(OH)J 4. Lu(OH)J 24. Which one of the following shows the highest solubility in hot concentrated aqueous NaOH? 1. La(OH)3 2. Nd(OH)3 3. Sm(OH)3 4. Lu(OH)3 1. rft;r 2. ~ 3. 7[CIJ 4. ~ 25. In the vibrational spectrum of C02 , the number offundamental vibrational modes common in both infrared and Raman are 1. three 2. two 3. one 4. zero 26. [Co(Hz0)6f+ ct ~ ~ "&r C'f2TT [CoC4] z- rt m ;:ftc? -&r rt CfJRUT ~ 1. r:rgc? # MLCT ~ rmr <pR # d-d "fiw1rur 2. cfrrif # LMCT WJpqu[ 3. cfrrif # d-d ~ 4. r:rgc? # d-d ~ C'f2TT <pR # MLCT ~ 26. The light pink color of [Co(H~0)6]2 + and the deep blue color of (CoC14] 2 - are due to 1. MLCT transition in the first and d-d transition in the second 2. LMCT transitions in both 3. d-d transitions in both 4. d-d transition in the first and MLCT transition in the second 1. 2 q 8 2. 2 q 6 3. 1 q 8 4. 1 q 6 www.examrace.com
  • 11. 11 27. In [Mo2(S2) 6] 2 - cluster the number ofbridging S/- and coordination number ofMo respectively, are 1. 2 and 8 2. 2 and 6 28. HD w 1 H NMR ~ cmf<PrT: 1. T[Cff ~ "<ii'f! 3. cfurm 3lJWrf 1:2: 1 "CfTN T[Cff fir<ff citI 28. 1 H NMR spectrum ofHD would show 1. a singlet 3. a triplet with intensity ratio 1:2:1 1. 2 2. 3 3. 1 and 8 4. 1 and 6 2. T[Cff fGcp citI 4. cfurm JTTllrf 1:1:1 "CfTN T[Cff fir<ff WI 2. a doublet 4. a triplet with intensity ratio 1:1:1 3. 4 4. 5 29. The number ofpossible isomers of [Ru(PPh3h(acach] (acac = acetylacetonate) is: 1. 2 2. 3 3. 4 4. 5 1. 10 2. 6 3. 8 4. 4 30. The total number of Cu- 0 bonds present in the crystalline copper(II) acetate monohydrate is 1. 10 2. 6 3. 8 4. 4 1. Li, Cl 2. K,F 3. Na, Cl 4. Li,F 31. The electronegativity difference is the highest for the pair 1. Li, Cl 2. K,F 1. co/-, so3 ff2lT Xe03 3. col-, Xe03 'ff.?H N03- 3. Na, Cl 4. Li, F 2. S03, Xe03 ff2lT N03- 4. col-, so3 ff2lT No3- 32. Which ones among CO/-, S03, Xe03 and N03- have planar structure? 1. C03 2 -, S03 and Xe03 3. CO/-,Xe03 andN03- 1. 115 - CpzFe 2. 11 5 - CpzCoCI 2. S03, Xe03 and N03- 4. CO/-, S03and N03- www.examrace.com
  • 12. 12 33. The substitution ofTJ5 - Cp group with nitric oxide is the easiest for 1. Cr, Re+ 2. Mo, V 3. V, Re+ 4. Cr, V 34. The molecule obeys 18 e rule. The two 'M' satisfying the condition are 1. Cr, Re+ 2. Mo, V 3. V. Re+ 4. Cr, V 1. Fe, Mo, Cu, Zn 2. Fe, Cu, Co, Ru 3. Cu, Mn, Zn, Ag 4. Fe, Ru, Zn, Mg 35. The correct set of the biologically essential elements is, 1. Fe, Mo, Cu, Zn 2. Fe, Cu, Co, Ru 3. Cu, Mn, Zn, Ag 4. Fe, Ru, Zn, Mg 36. [Cu(ethylenediamine)z]2 + ~ rt J75fl ~ EPR ~ 'fr ~ 'iJfT;f CJ'TCft NrrJif ctt ~ t : [Cu q;r ~ tw.=r(I) 3/2 "f'f.m N q;r 1 ] 1. 12 2. 15 3. 20 4. 36 36. The number oflines exhibited by a high resolution EPR spectrum of the species, [Cu(ethylenediamine)2] 2 +is [Nuclear spin (I) ofCu = 3/2 and that ofN = 1] 1. 12 2. 15 3. 20 H H H Ph~NJ=t:-:=xs.0 N ·,, 0 : ' )-OH 0 4. 36 uir ?ftm (II), rrm (II) llT rrm (II) '# 3WPCF1 gg •tng)lJirt, ~ llT TfErcti W1fTTjJif q;r ~Jif ctt 'fiVti ~ CR '?1CffffT frI qf.'tfftffi4H W ~ fr : www.examrace.com
  • 13. 1. 3. 37. Degradation ofpenicillin G 13 2. 4. H H H Ph-"frNJ=t::-:=xs 0 N ·. 0 : ,,, )'-OH 0 gives penicillamine that can utilize nitrogen, oxygen or sulfur atoms as donors to bind with lead(II), mercury(II) or copper(II). The structure ofpenicillamine is 1. 2. 3. 4. 2. C& 38. The molecule that has an s6symmetry element is 2. c~ j--OH 0 3. PHs 3. PH5 39. The electric dipole allowed transition in a d2 atomic system is 40. lif6f W 671:$1ilrt ~ciT y-3llff ir ~ W tiWjfr ef::J # ~ ifTfiT t; m 31TET 3lCRWT ls Cf}!9Cl) cj;- WT2! ~ fi'rJJTUT qw;'r Cf7C'fT cpetcff t" 1. 2s 3. 2p 4. 2pz www.examrace.com
  • 14. 14 40. When a hydrogen atom is placed in an electric field along they-axis, the orbital that mixes most with the ground state 1s orbital is 1. 2s 2. 2p, 3. 2p, 41 liB q} Bit L1Hvap ~ 41 fcP. U[f1 rrffr -.f/c;r ~ (Vap qJctfiC/>'<01) !1[Efi 4/~j'"fOsc;f}2! zyr W qJafiCI>'<UJ ~ rrffr 1'f'rc;r, C'flTJPT ~ 1. 410 J K 1 mor1 3. 41 J K 1 mor1 2. 110 J K-1 mor1 4. 11 J K-1 mor1 41 For water, L1Hvap :::< 41 kJ mor1 • The molar entropy of vaporization at 1 atm pressure is approximately 1. 410 J K 1 mor1 3. 41 J K 1 mor1 2. ~~/ 2. 110 J K-1 mor1 4. 11 JK1 mor1 3. ~~/ 4. ~~/ 42. IfA and Bare non-commuting hermitian operators, all eigenvalues of the operator given by the commutator [A, B] are 1. complex 2. real 3. imaginary 4. zero 1. 2i 2. 2 in 3. 2 i nx 43 The value ofthe commutator [x ,p/] is given by 1. 2i 2. 2 in 3. 2 i nx 1. <xy> = <yx> 4. <xy> = <x> <y> 44. The correlation coefficient between two arbitrary variables x andy is zero, if 1. <xy> = <yx> 3. </> = <y>2 4. <xy> = <x> <y> 1. erg- 200 K rt ~ q/f 60 J l1iNfT 3irt#rr (/ifflT ~I 2. erg- 200 K rt ~ q/f 50 J l1iNfT 3irt#rr (/ifflT ~I 3. erg- 250 K rt ~ q/f 60 J l1iNfT 3irt#rr (/ifflT ~I 4. erg- 250 K rt ~ q/f 50 J l1iNfT 3irt#rr (/ifflT ~I www.examrace.com
  • 15. 15 45. A Carnot engine takes up 90 J of heat from the source kept at 300 K. The correct statement among the following is 1. it transfers 60 J ofheat to the sink at 200 K 2. it transfers 50 J ofheat to the sink at 200 K 3. it transfers 60 J ofheat to the sink at 250 K 4. it transfers 50 J ofheat to the sink at 250 K 46. E1 i721TE2 1£iff ctft cit~ lilT t~l~li!'1'1 £icrr <!iT gfic<MUJ <l'RCft t ?fi ~ miter~ n1/n2 = (3/2) exp [-(E1-E2)/ksT]-& Wrr lifTffT ~I miter 3fWfCrf!g2/g1 ~ 1. 2 2. 2/3 3. 3/2 4. 3 46. The relative population in two states with energies E1 and E2 satisfying Boltzman distribution is given by n1/n2 = (3/2) exp [-(E1-E2)/k8T]. The relative degeneracy g2/g1 is 1. 2 2. 2/3 3. 3/2 4. 3 47. ~Fc>r~ 1. Pt1 ( s)jzn(s)jZn2 • ( aq)I!Cu2 - ( aq)l Cu(s)j Pt11 (s) 2. Pt1 (s)jZn(s)jZn2 ' (aq)I!Ag• (aq)jAg(s)!Pt11 (s) 3. Pt1 ( s)IFe(s)!Fe2 • ( aq)!Jcu2 - ( aq)jcu(s)1Pt11 ( s) 4. Pt, (s)IH2 (g)jH2S04 ( aq)!Jcu2 • ( aq)j Cu(s)!Pt11 (s) 47. The Daniell cell is 1. Pt, (s)IZn (s)I Zn2 • ( aq)I!Cu2 T ( aq)lcu(s)I Pt11 ( s) 2. Pt, (s)JZn(s)j zn2+ (aq)IJAg•(aq)jAg(s)jPt11 ( s) 3. Pt, (s)IFe(s)1Fe2 • ( aq)IJCu2 + ( aq)J Cu(s)I Pt11 ( s) 4. Pt1 (s)jH2 (g)jH2S04 (aq)Jjcu2 • (aq)jcu(s)jPt11 (s) 48. ~ lfCii r.rf!!1f CfiTf& '<lfl72lf¥n ~ qft 3/F:lfg ctft 4R<PC'4'1J ~ if C2JJ4qf'J<ijf! iT IJfT1); n'r lfflCffT 'fF{ irw 1. In 2 I k 2. In 41 k 3. 4/ k 4. 1 I 4k 48. If the concept ofhalf-life is generalized to quarter-life of a first order chemical reaction, it will be equal to 1. In 21 k 2. In 4/ k 1. &eRR if q)CJI~14'1 ~ 3. li/C7 if t5J/:$)CM/R¢ ~ 3. 4/ k 4. 1/4k 2. UI"C? if ~ ~ 4. ~if~~ 49. Kohlrausch's law is applicable to a dilute solution of 1. potassium chloride in hexane 3. hydrochloric acid in water 2. acetic acid in water 4. benzoic acid in benzene www.examrace.com
  • 16. 16 50. T[iff ff:J ~ rrrftc Fffc;r ctft ~ 3114l:.S7$:.S Fffc;r ct ~ 3l7imFzr # frrc;rrlrr UfTfiT t I Agl w T[iff ?ifc;r ~ t Fumctt wrrg ~ ~ Cf5Vfft t 2. No; 50. A dilute silver nitrate solution is added to a slight excess of sodium iodide solution. A sol of Agl is formed whose surface adsorbs 2. NO; 51. 0 2 w 31W'rr:rur ~ T[iff qifFf WFR1 cmfrrr t li!'r 56875 em- 1 TN~(~ lfr IJIT{{t t1 ~TN w T[iff 3TTET tMfr rwrPj(Og) fff!lT T[iff ~ tMfr T:f?17T7!J (Oe) # ~ lftrrr fr I Oe cr Og ct "iitr! "iJiilf 3irff 15125 em- fr1 02 Cfft J1TET fMfr Cfft Fc#rrurrr "iJiilf (em-J ~ t : 56875 1. 15125 2. 15125 56875 3. 72000 4. 41750 51. The absorption spectrum of 0 2 shows a vibrational structure that becomes continuum at 56875 cm-1 • At the continuum, it dissociates into one ground state atom (Og) and one excited state atom (Oe). The energy difference between Oe and Og is 15125 cm-1 • The dissociation energy (in em-1 ) of ground state of 0 2 is · 56875 15125 1. 2. 3. 72000 4. 41750 15125 56875 52. T[iff Y1JElffU{ FFfm IJfTC>fCff -;; ~ ~ (11 0) "fff!JT (111) # f.Rifim FcPir ifR crrc? eft nc# q} "ifrq CfJT ctfrurt 52. The angle between the two planes represented by the Miller indices (110) and (111) in a simple cubic lattice is 53. f[fi-tifi~Rrq; ct ~ (x-JTet) ct mw 3fTUTfitq; ~ ct JffRUT (y-JTet) <PT trtfr f.1wrrur t.· [CMC = "iliiFri<P f?r#c;r ~] 1. y l I I I I I I I -1CMC~ - X 2. y l I I I -,cMc 1- -x www.examrace.com
  • 17. 3. y l I I I I -ICMCI- - X 4. y l . 17 I I I _.. 1 cMC 1 ~ I I I I I -x 53. The correct representation of the variation of molar conductivity (y-axis) with surfactant concentration (x-axis) is [CMC =critical micelle concentration] 1. y l I I I -1cMCr+- - X 3. y l I I I -ICMCI- - X 54. f.Fr 3Tfi1ffl>zTT if ~ 'iRWCi fr Me Ph~N2 0 Me 0 1. Ph~OMe Me 3. Ph):}=o 2. 4. 2. 4. Ag20 MeOH hv y l y l Me 0 - x I I - 1cMc 1- l I I I - x Ph~OMe Me Ph~OMe 0 www.examrace.com
  • 18. 18 54. The major product formed in the following reaction is Me Ph~N20 Me 0 1· Ph~OMe Me 3. Ph~o MeOH hv lYle 4. Ph~OMe 0 55. ~ p-~lwf/4<!J)$CfJ 3{1'(1 ct pKa <i>T 117'14.46 "t, ff2lT ~ 3{1'(1 <i>T 4.19, rr'r ~ ~ <i>T CJpara "t.· 1. 8.65 2. 4.32 3. 0.27 4. -0.27 55. Ifthe pK. value for p-methoxybenzoic acid is 4.46 and that ofbenzoic acid is 4.19, the crpara for methoxy group is 1. 8.65 2. 4.32 3. 0.27 4. -0.27 cadinene 56. The biosynthetic precursor of cadinene is cadinene 1. shikimic acid 2. mevalonic acid 3. arachidonic acid 4. prephenic acid www.examrace.com
  • 19. 19 57. ~ A-C rtt ~ w mft W'r ~ 0 0 ~ a=? HO'AO HO 0 0 0 A 8 c 1. A>B>C 2. B>C>A 3. C>A>B 57. The correct order of acidity ofthe compounds A-Cis ~~0 0 A 8 c 1. A>B>C 2. B>C>A 3. C>A>B ;Ph piperidine ~ ;Ph + CO HN~ ..:._:___ + H2N~ 2 o---{_ COOEt COOEt 0 ,.,? 3. syn f.1rxm:Fr 58. The mechanism involved in the following conversion is /Ph HN 0~ COOEI 0 1. E2-elimination piperidine : ; } /Ph...:......:....__ +H 2 N COOEI ~ + C0 2 2. E1-elimination 3. syn elimination Meos-o-~N~2 - __) (A) ~ipso~~ (B) ~ f4£]nHtl ~ 1. ctcrc? A dl'-1TB 2. rtcrc? A dl'-1T C 3. rtcrc? C dl'-1T D 4. B>A>C 4. B>A>C 4. Elcb-~ 4. E1cb-elimination 4. rtcrc? c www.examrace.com
  • 20. 59. 20 The correct statement(s) A-D are given for the following reaction. The correct one(s) is (are) ,OF+ (o) Me02S ,.::. ~ DMSO (A) aromatic ipso substitution reaction (B) aromatic electrophilic substitution 1. A and B only hv 1. ;:frffw WPR"l ~ 3.~~ 2. A and C only MeOS~N~2~ _/ (C) aromatic nucleophilic substitution (D) aromatic free radical substitution 3. C and D only 4. Conly 2. ;:frffw WPR" II ~ 4. ~-~~ 60. The following photochemical transformation proceeds through hv 1. Norrish type I reaction 3. Barton reaction HN_rPh _).__ ~0 + S N I Ph "l/6 RiilccJ$'5 fr 1. Phe-Ala-Gly OH Ph-b N, Ph 2. Phe-Gly-Ala 2. Norrish type II reaction 4. Paterno-Buchi reaction 3. Ala-Gly-Phe 4. Gly-Ala-Phe 61. A tripeptide gives the following products on Edman degradation. HN_rPh _).__ ~0 + S N I Ph The tripeptide is 1. Phe-Ala-Gly 2. Phe-Gly-Ala 3. Ala-Gly-Phe 4. Gly-Ala-Phe www.examrace.com
  • 21. 21 62. 293 K w 3lFcrm FcPir 7J"it Vcti 1 H NMR ~if Vcti Cfi'frff.1q;- "l/)frrq;- (C3H7NO), #fl'f CfiT o7.8 (1 H, s), 2.8 (3 H, s) ney 2.6 (3 H, s) w cmffrr ~1 C$ "l/)frrq;- ~ 62. 0 1. 3. Me,N)lMe H NH 4. )l Me OMe In the 1 H NMR spectrum recorded at 293 K, an organic compound (C3H7NO), o7.8 (1 H, s), 2.8 (3 H, s) and 2.6 (3 H, s). The compound is exhibited signals at 1. 0 3. Me, )l N Me H NH 4. )l Me OMe 63. p-rti$J;)lf>PIC'I ~ <t IR ~it, ~ ~ Fk "liN~ EJ1rrr ~ 1. 1670 cm-1 2. 1700 em-1 3. 1730 cm-1 4. 1760 em-1 63. In the IR spectrum ofp-nitrophenyl acetate, the carbonyl absorption band appears at I. 1670cm-1 2. 1700cm-1 3. 1730cm-1 4. 1760cm-1 1. lR, 4R 2. lR, 4S 3. IS, 4R 64. The absolute configuration at the two chiral centres of (-)-camphor is 1.:r11. lR, 4R ~ ~'H 1. ~CHO ~/ H 3. ~CONMe2 ~N/ H 2. lR, 4S 3. IS. 4R OHCW 2. I ~ ~ N H 4. 1S,4S 4. lS, 4S www.examrace.com
  • 22. 22 65. The major product formed in the following reaction is coN H 1. ~CHO ~/ H 3. ~CONMe2 ~/ H OHCW 2. I ~ _&. N H 2. ~~ 4. 1[fli. ~ 66. The first person to separate a racemic mixture into individual enantiomers is 1. J. H. van't Hoff 2. L. Pasteur 67. [18]-~ eli fdil f.1k:r qm;ff W frr-ErR' I (A) <IE!~ ~I 3. H. E. Fischer (B) 1 HNMR~it~>!T&r89.28w~~~l (C) ~ ef?r if fP8.· ritcFf ~I 1. A, B, C 2. ~ A fff!JT B 3. Cficrc;r B fff!JT C 67. Consider the following statements for [18]-annulene. (A) it is aromatic (B) the inner protons resonate at 8 9.28 in its 1 H NMR spectrum (C) there are six protons in the shielded zone. The correct statements are 1. A, B, C 2. A and B only 3. Band Conly A 8 H ,,,i(H Me~Me 8~ -:.-8~ 4. F. Wohler 4. ~A fff!JT C 4. A and C only •, www.examrace.com
  • 23. 23 1. HA, HB i!:TP!t74/J;/fil¢ ~ fr.!H Br1 , B1 !5741ri!JR4)dfil¢ ~1 2. HA, HB !5741=RIR4)c/fil¢ ~ fr.!H Br1 , B1 i!~t%4/J;Tfi/¢ ~1 3. HA, HB !514i=RIR4lc7fi/¢ ~ fr.!H Br1 , B~ &)'1)c/fi}¢ ff1 4. HA, HB i!~Pt74/j;/fil¢ ~ fr.!H Br1 , B1&l'1lc/fi'l¢ ~1 68. In the compound given below, the relation between HA, H8 ; and between Br1 , Br2 is 1. HA, H8 are enantiotropic; and Br 1 , Br2 are diastereotopic 2. HA, H8 are diastereotopic; and Br1 , Br are enantiotropic 3. HA, H8 are diastereotopic; and Br 1 , Br 2 are homotopic 4. HA, H 8 are enantiotropic; and Br 1 , Br 2 are homotopic Boc,N~OAc H OTBDMS 1. HCl, EtOH, Ilfftcrrf 3. K2C03, MeOH 2. Bu.J*' 4. CF3COOH, EtOH, rt 69. The most appropriate reagent to effect the following chemoselective conversion is Boc,N~OAc H OTBDMS Boc,N~OH H OTBDMS 1. HCl, EtOH, reflux 2. Bu4NF 3. K2C03, MeOH 4. CF3COOH, EtOH, rt 1. ~-ifr;r ¢7 -mwrur 2. #'m'fN ¢7Ac20/f.'ri;fc;rAlCh Cfi ?1f.!! ~-JfiTflC Q#Jf2c>I~H 3. ~ Q(>qj)$J(>J ¢7 ~ 3P'('f it Jf'rrr?7 3/Jq#/q]'(U/ 4. jf(>j' it~ fr.!H ~ 3P'('f qft ~-~ ~ 70 Among the following, an example of a "Green Synthesis" is 1. synthesis ofmalachite green 2. Friedel-Craft's acylation of anisole with Ac20/anhydrous AlCh 3. Jones' oxidation ofbenzyl alcohol to benzoic acid 4. Diels-Alder reaction offuran and maleic acid in water. www.examrace.com
  • 24. 24 ( ~/PART C ) 71. 139 amu ~ rt f!Cfi ~ '1,CfC'Il$5 CffT rrffre1r:r Jiliff 2.5 MeV fr1 ~ ?t ~ Jiliff keY .;- fr: 1. 12.5 2. 15.0 3. 20.5 4. 25.0 71. The recoil energy of a Mossbauer nuclide of mass 139 amu is 2.5 Mev. The energy emitted by the nucleus in keV is 1. 12.5 2. 15.0 3. 20.5 4. 25.0 72. 3TT'f ¥ jac-[Mo(C0)3(~3] crrc? ~ rt C-0 rrrM ~ rftir ~ 7JiJ ~: ~: PF3 (A); PCb (B); P(Cl)Ph2 (C); PMe3 (D) v(CO), cm-1 : 2090 (i); 2040 (ii); 1977 (iii); 1945 (iv) ~ fff!!T WPf ~ (/}( ?1tr Trc7 fr : 1. (A- i) (B- ii) (C- iii) (D- iv) 2. (A- ii) (B- i) (C- iv) (D- iii) 3. (A- iv) (B- iii) (C- ii) (D- i) 4. (A- iii) (B- iv) (C- i) (D- ii) 72. Complexes of general formula,fac-[Mo(C0)3(phosphine)3] have the C-0 stretching bands as given below. Phosphines: PF3 (A); PCh (B); P(Cl)Ph2 (C); PMe3 (D) v(CO), cm-1 : 2090 (i); 2040 (ii); 1977 (iii); 1945 (iv) The correct combination ofthe phosphine and the streching frequency is, 1. (A -i) (B- ii) (C- iii) (D- iv) 2. (A- ii) (B-i) (C- iv) (D-iii) 3. (A- iv) (B- iii) (C- ii) (D-i) 4. (A- iii) (B- iv) (C-i) (D- ii) 73. X M W:rrr crrc? Pb2 + rt 9.5ml FiJc;r rt ~ 1fTTFf w Id I ~A TffllT 7fllT1 1fTTFf rt T[Cf uw0.5 ml Pb2 + FiJc;r, ~ W:ffr 0.04 M 2ft frrc;rror TTllT, fiT ld 1.25 ~A TffllT 7fllT1 ~ X fr: 1. 0.0035 2. 0.0400 3. 0.0067 4. 0.0080 73. On subjecting 9.5 ml solution ofPb2 + ofX M to polorographic measurements, Ict was found to be 1 IJ.A. When 0.5 ml of0.04 M Pb2 + was added before the measurement, the Id was found to be 1.25 IJ.A. The molarity X is I. 0.0035 2. 0.0400 3. 0.0067 4. 0.0080 www.examrace.com
  • 25. 25 ~I ~II A CH3COOH, ~ if (i) WN 311=(Pf B CH3COOH, H2S04 if (ii) ~ 311=(Pf c HCl04, H2S04 if (iii) WN erRCii D SbF5, HF if (iv) ~ erRCii 1. (A-i) (B-ii) (C-iii) (D-iv) 2. (A-ii) (B-i) (C-iii) (D-iv) 3. (A-iii) (B-iv) (C-ii) (D-i) 4. (A-iv) (B-ii) (C-iii) (D-i) 74. Match each item from the list I (compound in solvent) with that from the list II (its behaviour) and select the correct combination using the codes given below List I List II A CH3COOH in pyridine (i) strong acid B CH3COOH in H2S04 (ii) weak acid c HC104 in H2S04 (iii) strong base D SbF5 in HF (iv) weak base 1. (A-i) (B-ii) (C-iii) (D-iv) 2. (A-ii) (B-i) (C-iii) (D-iv) 3. (A-iii) (B-iv) (C-ii) (D-i) 4. (A-iv) (B-ii) (C-iii) (D-i) 2. ~-oitR 4. ~-oitR 75. Structure of a carborane with formula, C2B4H8 is formally derived from 1. Closo-borane 2. Nido-borane 3. Arachno-borane 4. Conjuncto-borane 16. ~ flTc;r it ~ 3T'N ~ 311=(Pf mar t 1 qv;g ~ 'C'110$Chlfl qft ~ it IRfClfT 3fl'ffi'fT ~ ~ fr Cfli'if<l> 1. ~ 'C'110$CI5lfl ~ H+ :JC1ff CfRfiT fr1 2. ~ 'C'170$CI5lC'1 ct "fi7'Z{ ztTfi'rcp ~it B(OH)4- ~mar fr1 3. ~ Jl1'{>f 8RT :fro ft ~ 1C'110$ChlC'1 8RT ec;JflirfiiljH mar fr I 4. r¥W fc/c;rrlrcp if ~ Jl1'{>f w ~ ~ mar t 1 76. Boric acid is a weak acid in aqueous solution. But its acidity increases significantly in the presence of ethylene glycol, because 1. ethylene glycol releases additional I( 2. B(OH)4- is consumed in forming a compound with ethylene glycol 3. ethylene glycol neutralizes If released by boric acid 4. Boric acid dissociates better in the mixed-solvent www.examrace.com
  • 26. 26 1. 2 2. 4 3. 6 4. 8 77. Coordination number of "C" in Be2C3 whose structure is correlated with that of CaFb is 1. 2 2. 4 3. 6 1s. m aruJ ct ~ fiTCT ct ~ ~ ct ~ .;; FrP-l} 777t m Cfi2Ff'i w fcrqR A. 1 H NMR it 5.48 cr 3.18 ppm w r:[CfJ<fi ~I B. 1 H NMR it 5.48 w <rgctJ 'ffZIT 3.18 ppm w r:[CfJ<fi t 1 C. IR ct CO~ -q;g 1950 cr 1860 cm-1 w 61 D. IR # f[CP tfT CO ~ Fi6 t 3/tv crt! 1900 cm-1 w t I 1. A cr C 78. For the molecule below, 2. B cr C 3. A cr D ~ IMo~ (HC)HN/ ~ CO 3 2 co consider the following statements about its room temperature spectral data. A. 1 H NMR has singlets at 5.48 and 3.18 ppm B. 1 H NMR has multiplet at 5.48 and singlet at 3.18 ppm C. IR has CO stretching bands at 1950 and 1860 cm-1 D. IR has only one CO stretching band at 1900 cm- 1 The correct pair of statements is, 1. A and C 2. B andC 3. AandD 4. 8 4. B cr D 4. B andD www.examrace.com
  • 27. 27 79. 18e frrlJ1f CfiT ~ qmf [Co3(CH)(C0)9] ~ "# mg-mg awrEit Clfr rMT #gtiflfff wat021t Clfr ~ JIJ1'TW.; ~ : 1. 3 rr.wl CH 2. 0 rr.w3 C03. 3 rr.wl co 4. 6rr.w1CH 79. In the cluster [Co3(CH)(C0)9] obeying 18e rule, the number of metal-metal bonds and the bridging ligands respectively, are 1. 3 and 1 CH 2. 0 and 3 CO 3. 3 and 1 CO 4. 6 and 1 CH 80. JTRFr Eu(ill), Gd(III), Sm(III) I[Ci Lu(III) w ~1 ~ 3lTfJ:'f ct Wi1rr rr.w qRq;ff;m "l1Pf fctRf ~ ct ~ ~ ~? 1. Gd (III), Lu (III) 3. Sm (ill), Gd (III) 2. Eu(lli), Lu (III) 4. Sm (III), Eu (III) 80. Consider the ions Eu(III), Gd(III), Sm(III) and Lu(III). The observed and calculated magnetic moment values are closest for the pair 1. Gd (III), Lu (III) 3. Sm (III), Gd (III) 81. ?tmr ~ >I7ClR ¢ ~ ~: 81. Silicates with continuous 3D frame work are 1. Neso-silicates 3. Phyl/o-silicates 82. Co304 Clfr ~ ~ ~ t- 1. (Co 2 lt(2Co~o04 3. (Co2 +Co3 +)t(Co3 +)o04 82. The correct spinel structure of Co304 is 1. (Co2 +)t(2Co3 ) 0 0 4 3. (Co2 +Co3 +)1(Co3 }o04 1. fftrr c# fMT c:T rfrt I 3. 1[fff C1'<rr fMT 'fiR" Fire"I 2. Eu(III), Lu (III) 4. Sm (III), Eu (III) 2. Soro-silicates 4. Tecto-silicates 2. (Co3 +)t(Co2 +Co3 +)o04 4. (2Co3 +)t(Co 2 +)o04 2. (Co3 +)1(Co 2 ~Co 3 +)o04 4. (2Co3 +)1(Co2 +)o04 2. c:T c# fMT fftrr rirtI 4. 'fiR" c# fMT 1[fff FitcJI www.examrace.com
  • 28. 28 83. In the solid state, the CuCl/- ion has two types ofbonds. These are 1. three long and two short 3. one long and four short 2. two long and three short 4. four long and one short 84. EHg-~ # EHg cRr r!fiFTT-31"C'f 3fCfWq'f W rmcf ~ &ro fltif(4)Rlict>rt: ¥. S' ~I mg-~ <t ~ ~ lfii # ~ ~~ CfiT "'HEfT 'fl7l8 fr: 1. Ala, Leu, His 3. Leu, Glu, Cys 2. Glu, His, Cys 4. Ala, His, Glu 84. In metalloenzymes, the metal centers are covalently linked through the side chains of the amino acid residues. The correct set of amino acids which are involved in the primary coordination spheres of metalloenzymes is 1. Ala, Leu, His 3. Leu, Glu, Cys "ffl'J:r I A. [(R)-BINAP]Ru2 + B. [Rh(CO)zlzr C. Pd(PPh3)4 D. -{U-< JTo_N/ ~CI ••...-(' (i) (ii) (iii) (iv) 2. Glu, His, Cys 4. Ala, His, Glu "ffl'Jrll $J$)?)'fJJiffc;f}cp'(Of Jm1ffi:rrr ti!Jj)ti) uFfJct>'<OJ Jm1ffi:rrr tilij)t5)11Jrt ~ "ffCfi!{'IR 1. (A-ii) 3. (A-iii) (B-i) (B-i) (C-iv) (D-iii) (C-iv) (D-ii) 2. (A-i) 4. (A-iv) (B-ii) (C-iii) (D-iv) (B-iii) (C-ii) (D-i) 85. Consider the catalyst in column I and reaction in column II Column I Column II A [(R)-BINAP]Ru2 - (i) Hydrofonnylation (ii) Asymmetric hydrogenation (iii) Asymmetric hydrogen transfer www.examrace.com
  • 29. 29 D. (iv) Heck coupling The best match of a catalyst of Column I with the reaction under Column II is 1. (A-ii) 3. (A-iii) (B-i) (B-i) (C-iv) (D-iii) (C-iv) (D-ii) 2. (A-i) 4. (A-iv) (B-ii) (C-iii) (D-iv) (B-iii) (C-ii) (D-i) 86. 2.0 m rftm;r r/i "f/rc;r CfiT Cu r/i Bir, Pt-vrrcift-~ r/i ~ ?! ~ ~ Fc/Jlrr 77<lTI Pt-vrrcifT <i>T 'J7R' 14.5 m ?! 16.0 m WI> ~I rftm;r if Cu CfiT" ~ 'J7R' ~ 1. 50 2. 55 3. 60 4. 75 86. A solution of2.0 g ofbrass was analysed for Cu electrogravimetrically using Pt-gauze as electrode. The weight ofPt-gauze changed from 14.5 g to 16.0 g. The percentage weight ofCu in brass is 1. 50 2. 55 3. 60 4. 75 87. NH3 rrey Cl +t"Hfrrt?.J)" <i>T ~ ~ f[Cfi ~ "f!imfi ~I ~ vet 0JWCt FfT/ft r/i -mft '(171/q?.Jcfi ?[5I" t 1. cis-Pt(NH3)zCh rrey PtCl_l- 2. trans-Pt(NH3)zCh fMT PtC4 2 - 3. cis-Pt(NH3)2Ch rrey Pt(NH3)/+ 4. trans-Pt(NH3)zCh fMT Pt(NH3)/+- 87. The platinum complex ofNH3 and cr ligands is an anti-tumour agent. The correct isomeric formula of the complex and its precursor are: 1. cis-Pt(NH3) 2Clz and PtC4z- 2. trans-Pt(NH3)zClz and PtcV- 3. cis-Pt(NH3)2Cb and Pt(NH3 )4 2 + 4. trans-Pt(NH3 )zC1z and Pt(NH3) 4z+- 88. Fe(N03)3-9H20 r/i FJ'rc;r r/i i'77l!TNaCI, H3P04, KSCN rMT NaF r/i 13m'<lm'< <i'r<r ?! r:ftN. q-ufgpr, Nm rrey fiR ?! crufffl FJ'rc;r Jf}J'l"W: ~ ~ #, >fTCff ffl fr: 1. [Fe(HzO)sCif+, [Fe(HzO)s(P04)], [Fe(HzO)s(SCN)] 2 +, [Fe(HzO)sF] 2 + 2. [Fe(H20)4Cl(OH)]I+, [Fe(Hz0)5(P04)], [Fe(H20)5(SCN)] 2 +, [Fe(HzO)sFf+ 3. [Fe(HzO)sCif+, [Fe(Hz0)6]3 +, [Fe(HzO)s(SCN)f+, [Fe(HzO)sFf+ 4. [Fe(H20)5Cl]2+, [Fe(H20)s(P04)], [Fe(H20)5(SCN)f+, [Fe(Hz0)4(SCN)F]I+ 88. Successive addition ofNaCl, H3P04, KSCN and NaF to a solution ofFe(N03)J-9H20 gives yellow, colorless, red and again colorless solutions due to the respective formation of: 1. [Fe(HzO)sClf+, [Fe(HzO)s(P04)], [Fe(HzO)s(SCN)fT, [Fe(H20),F]2 + 2. [Fe(Hz0)4Cl(OH)] 1 T, [Fe(HzO)s(P04)], [Fe(HzO)s(SCN)] 2 T, [Fe(HzO)sF] 2 + www.examrace.com
  • 30. 30 3. [Fe(H20)sC1]2 +, [Fe(H20)6] 3 +, [Fe(H20)s(SCN)]2 +, [Fe(H20)sFf+ 4. [Fe(H20)sC1]2 +, [Fe(H20)s(P04)], [Fe(H20)s(SCN)]2 +, [Fe(H20)4(SCN)F]1 + 1. [Rh(CO)zhf 3. [TJ5 -CpRh(CO)z] 2. [Ir(PPh3)2(CO)Cl] 4. [TJ5 -Cp2Ti(Me)Cl] 89. Which one of the following will NOT undergo oxidative addition by methyl iodide? 1. [Rh(CO)zl2r 3. [TJ5 -CpRh(CO)z] 2. [Ir(PPh3) 2(CO)Cl] 4. [TJ5 -Cp2Ti(Me)Cl] 90. [Rh(PPh3)3(CO)(H)] <fiT~ eft em- Nlll7r CfR't crrcift i51$)$Jl(]Jfif<flctJ'<OJ ~ #, 3T!EtcP PPh3 ctl/Tlr# 1. ~ eft Tfffr ~I 3. 3lfi1ffl><lT eft Tfffr ~ n, 90. In hydrofomylation reaction using [Rh(PPb3)J(CO)(H)] as the catalyst, addition of excess PPh3 would I. increase the rate of reaction 3. not influence the rate ofreaction 1. 3 2. 6 2. decrease the rate ofreaction 4. stop the reaction 3. 18 4. 90 91. Find out the number oflines in the 31 P NMR signal for 1. 3 2. 6 3. 18 4. 90 www.examrace.com
  • 31. 31 92. (i) [Cu(OHz)6]2 +; (ii) [Mn(OHz)6f+; (iii) [Fe(0Hz)6f+; (iv) [Ni(OH2)6] 2 +, # ~ ef:3ff # ~ OHz <PT 18 0Hz Gm ~ qfr 7fffr ffl JP11 # ~ t 1. (i) > (ii) > (iii)> (iv) 3. (ii) > (iii)> (iv) > (i) 2. (i) > (iv) > (iii)> (ii) 4. (iii) > (i) > (iv) > (ii) 92. The rate of exchange of OH2 present in the coordination sphere by 18 0H2 of, (i) [Cu(OH2) 6] 2 +; (ii) [Mn(OH2) 6] 2 +; (iii) [Fe(OH2) 6] 2 +; (iv) [Ni(OH2 ) 6] 2 +, follows· an order 1. (i) > (ii) >(iii)> (iv) 3. (ii) >(iii) > (iv) > (i) 2. (i) > (iv) >(iii)> (ii) 4. (iii) > (i) > (iv) > (ii) 93. mg-~ rF 3lJ7RUT W 31ltTTf?rr f.F:rr CF>2Fit W fZrcrR I A. ~it liR'ff 0 2 rtfr 'f1f}(;l:r CRflT 't F.irmt q~/Cffli$'5 ~ fFffft 'tI B. ~ # iJRff H20 cit mfi;lr CfR'ffT ~ ffWf Vifi Vffif rrfWJ Mi)iiliffll$'5 ~ CfRTfl7 ~I c. aiffiffl&wr 'k C77N 01 rtfr 'f1f}(;l:r CRflT t F.irmt <iR't ~ # ~ <PT 3WiEl c;:cm t 1 D. liR'ff 31TlFf ~ qfr 'ff?'fJ CfiTl7 CRflT 't ff2H ~ ~ w 3TfW17UT CRflT 't1 2. B ff2H C 3. C ff2H D 4. A ff2H D 93. Based on the behaviour of the metalloenzymes, consider the following statements. A. In the enzymes, the zinc activates 0 2 to form peroxide species. B. In the enzymes, the zinc activates H20 and provides a zinc bound hydroxide. C. In the oxidases, the iron activates 0 2 to break the bonding between the two oxygens. D. Zinc ion acts as a nucleophile and attacks at the peptide carbonyl. The set of correct statements is, 1. A andB 2. B andC 3. C and D 4. AandD 94. Fe2 +-r:fffr!f#rr 1cw'1ufl4 ~ r:rfTcrl.;.:r cmf.t it fitr:m;r sT& 't 'ff2lT CO vet 0 2 rt trrr rt 3ifR <PT rrrrr <rift Pf7TT wmfI ff2TTfii tfl'1h1)fil"1 ~ ci'Fif C/j..cJq41fll' # p!f7 'tI f.F:rr ~ it : A. Fe2 +-rnfi(f{Fr Jl-31JCNI)'51$'1~ 'lf'i17ff 't 'ff2lT tf111h1)1il"1 rt fcirm # ~ 3fCR'tEr ~ 't I B. Fe2 +-rnfitffFr qfr ¥RJ # tfll1h1)fil"1 # Fe-CO 3WiEl w Cf§ff (j}lf 'tI C. wrfili Fe-CO ~ 't, Fe-Oz ~ 't ff2H tfll1h1)filrt Gm T:f8'ElPIT JI7ff7 'tI D. C/j..cJ4qJrt)' rtfr ~ m if tfi'1h1)fil"1 rF 'i'I'R' ~ ~ r:[CPcf) ~ 't 2. A ff2H C 3. C ff2H D 4. B ff2H D 94. F.e2 +-porphyrins fail to exhibit reversible oxygen transport and cannot differentiate CO from 0 2. However, the hemoglobin is free from both these pit falls. Among the following, A. Fe2 +-porphyrins undergo 11-oxodimer formation and the same is prevented in case of the hemoglobin. B. Fe-CO bond strength is much low in case of hemoglobin when compared to the Fe2 +- porphyrins. www.examrace.com
  • 32. 32 C. While Fe-CO is linear, Fe-02 is bent and is recognized by hemoglobin. D. The interlinked four monomeric units in the hemoglobin are responsible to overcome the pitfalls. The correct set of statements is, 1. A and B 2. A and C 3. CandD 4. B andD 95. ~ A ff2lT B, w frrc:rf?ur t JP1m: Cl I(A) SnC12 + Co2(C0)8 ----;~ (OC)4Co-r-Co(C0)4 Cl Me I(B) Me2SnC12 + 2NaRe(C0)5 ----;~(OC)sRe-Sn-Re(C0)5 + 2NaC1 IMe 2. Fctf.'/7:rl!, f.rimrr 95. Reactions A and B are, termed as respectively Cl I (A) SnCI2 + ColCO)g -----;~ (OC)4Co-Sn-Co(C0)4 ICl Me I(B) Me2SnCI2 + 2NaRe(CO)s ----;~(OC)sRe-Sn-Re(C0)5 + 2NaCI IMe 1. Insertion, Metathesis 2. Metathesis, Insertion 3. Oxidative addition, Metathesis 4. Oxidative addition, Insertion 96. % ETTg rr>T ffhtcc;fi¢'<Uf ~ 500 pm rff ~ ~ ~ fcc ~ # fflr fr I ~ filrn;c;r rr>T FF7ffl 1.33 rrr. rrfftlcc t fir mg C!ft ~ ?#{& ~ frrcpc t: 1. 23 2. 24 3. 25 4. 26 96. A metal crystallizes in fcc structure with a unit cell side of 500 pm. Ifthe density of the crystal is 1.33 glee, the molar mass of the metal is close to 1. 23 2. 24 3. 25 4. 26 ( www.examrace.com
  • 33. 33 97. i't?tro fiedff # f# JT1!J arfTrfiiRlr A + BC ~ AB + C qff ~ IFiiff Eo ~1 ~ ~ ~ 3TJllfFf /.} # CJ514fAH qff vmft rrT 31TWT qff vmft ~ fi?> ~ ~ 1. 314R4frfrt vt1TI 2. A eli F!c1 # ~I 3. A eli F!c1 # FlbfiI 4. A eli F!c1 # c;)&Jwtl'"l ~I 97. The activation energy for the bimolecular reaction A+ BC --7 AB +Cis E0 in the gas phase. If the reaction is carried out in a confined volume of A.3 , the activation energy is expected to 1. remain unchanged 3. decrease with decreasing'), 2. increase with decreasing A. 4. oscillate with decreasing A. 98. VCfi <JS-~ W1fT1J # ~ ~ Cfier<ff (/1, /z) ff2!T ffr:r;:r (sJ, s2) <!>Tvfm ~ ct ~ C(f}1 Clieftlr Cfffofro "fiiFr (L) ff2!T trw (S) ~ ~ # ~ qqfci:r ~ ~ : 1. Jin?-~~ 3.~~ 2. fV:rr-:r-Cfiefl 31"'47"4fih41 4. "ifTF!J ~ m 98. In a many-electron atom, the total orbital angular momentum (L) and spin (S) are good quantum numbers instead ofthe individual electron orbital(/~, /2) and spin (s" s2) angular momenta in the presence of I. inter-electron repulsion 3. hyperfine coupling 1. 0.94 2. 0.76 2. spin-orbit interaction 4. external magnetic field 3. 0.52 4. 0.45 99. The packing fraction ofa simple cubic lattice is close to 1. 0.94 2. 0.76 3. 0.52 4. 0.45 C2v E2 c2 Oi· 0"~, AI 1 I 1 1 z A2 1 1 -I -1 Rz BI 1 -1 1 -1 x,Ry B2 1 -1 -I I y,Rx 1. 12 2. 20 3. 24 4. 33 www.examrace.com
  • 34. 34 100. The number ofiR active vibrational modes of pyridine is C2v Ez Cz av a~ AI 1 1 1 1 z Az 1 1 -1 -1 Rz B1 1 -1 1 -1 x,Ry Bz 1 -1 -1 1 y,Rx 1. 12 2. 20 3. 24 4. 33 101. Ti ctT ~ ~ # I[ClJ CfiT J?HctJ;TPICIJ fcR:rm fr [Ar]4i 3aJ 4p1 1~ fcR:rm ct ~ ~ CfiC? m cs) crwrr ~ ctr #?§liT fcMr;ft t? 1. 9 2. 15 3. 27 4. 60 101. One ofthe excited states ofTi has the electronic configuration [Ar]4i 3d1 4p1 • The number of microstates with zero total spin (S) for this configuration is 1. 9 2. 15 3. 27 4. 60 102. W "i/C; rrT5f # m zrrc;ft ~A2 ~ 2A ct ffrit fcJ<:irwr-"lfF5!T rrey ?fTRl ~ Kp CfiT WiET W 3/W rrrrr w ~ -wn lilTfiT t : 1. a=[KP!(KP+4p)] 3. a=[(KP+4p)!KPJ 2. a=[KP!(KP+4p)r 2 4. a=[(KP+4p)!KPr 2 102. For the reaction A2 .= 2A in a closed container, the relation between the degree of dissociation (a) and the equilibrium constant Kp at a fixed temperature is given by 1. a=[KP!(KP+4p)] 3. a=[(KP+4p)!KPJ 2. a=[KP!(KP+4p)r 2 4. a=[(KP+4p)!Kpr 2 103 Fcl>#t #I" itfr ctT 4C'IIlNrtl. "fi76f cr fl4i;s4m 7JUfiCffZ (= p VIRJ) it frri:;=r WiET ffffll¥.1 fr [V3lJUTfc!q] 31T4WT t] [ p z 1 ] f=p.exp f ; dp . ~ i'Rft ct fWt rrrrr T cr 1'fUl11 oo fl7f), w fi41CIJ?01 ~ t FcP 1. f < p , if T -+ 0 3. f> p, if T-+ 0 2. f < p , if T -+ <X> 4. f = p , if T-+ 0 www.examrace.com
  • 35. 35 103 The fugacity of a gas depends on pressure and the compressibility factor Z (= p VIRJ) through the relation [V is the molar volume] [ p z 1 ] f=p.exp f ; dp . For most gases at temperature T and up to moderate pressure, this equation shows that 1. f<p,ifT..-+0 3. f> p , if T ---+ 0 2. f < p , if T ---+ oo 4. f =p , if T---+ 0 104. l[lfi Cfffiffctcp i'ffi w ~ fJlFf (8UI8V)rfl"tfi:s4m :JurtcF> Z = p VIRT w ~ WPR fi!rJk fr [V 3lfUTfclcp 31TlffFf t ] 1. (8UI8V)r = RT (8Z/8V)r 2. (oUI8V)r = RTI(V Z) 3. (8UI8V)r = (RYIV) (8Z/81)v 4. (8UI8V)r = ( V!Rf-) (8Z/81)v 104. The internal pressure (oU!oV)T of a real gas is related to the compressibility factor Z = p VIRT by [V is the molar volume] 1. (8U/8V)T = RT (8ZiaV)T 3. (BUIBV)T = (RTFV)(BZIBJ)v lf/0 = exp [-Ax2 ] ?t eft VfTffT frI fir A rti'r ~ WPR k w ~ iBT 'E/Tftll 1. A oc k-112 3. A oc k112 2. (BU/8V)T = RTf( V Z) 4. (BUIBV)T = ( VfRY) (BZIBJ)v 2. A oc k 4. A oc k113 105. Suppose, the ground stationary state of a harmonic oscillator with force constant k is given by Then, A should depend on k as 1. A ex: k -liz 3. A ex: k112 2. A ex: k 4. A ex: k113 106. f.1i::;r ~ CfiT f.rqfur c:7 CfRfffc/cp ~ ¢1 cr ¢2 c5 #lifT[ ?t fri>lfT IJfTffT fr: A= ¢I + ¢2, B = ¢I + i¢2, C= ¢I- i¢2, D = i(¢1 + ¢2) 1 fir mft ~ sPrr 1. A rrey B l[lfi gr ~ CfiT ~ <iR"ff ~1 2. A rrey C l[lfi gr ~ CfiT ~ <iR"ff ~I 3. A rrey D l[lfi gr ~ CfiT ~ <iR"ff ~1 4. B rrey D [CI) lfr ~ CfiT ~ C'f>Vff ~ 1 www.examrace.com
  • 36. 36 106. Combining two real wave functions (J1 and (Jz., the following functions are constructed: A = f/h + f/Jz., B = ¢1 + if/Jz., C = ¢1- if/Jz., D = i(¢1+ f/Jz.). The correct statement will then be 1. A and B represent the same state 2. A and C represent the same state 3. A andD represent the same state 4. B and D represent the same state 107. fiRCc;r A (111) rmr (200) C'IC'if ir fcrcrrf.=r <imfT t qy;g (11 0) "ff"a" ir rrt7, lif"i1fit fiRCc;r B (110) rrey (200) C'IC'if if fcrcrrf.=r CffW t W1J (111 ) "ff"a" if rrtffI I3W'rrifr if lP7 ~ f.1ri:ptf TR ~ WCPff g 1. A CffT lifTNCP fcc t ~B CffT lifTNCP bee t 1 2. A CffT lifTNCP bee t ~B CffT lifTNCP fcc t 1 3. A rmr B c:f;# ¢ lifTNCP fcc g1 4. A rrey B c:f;# ¢ lifTNCP bee g1 107. Crystal A diffracts from (111) and (200) planes but not from (110) plane, while the crystal B diffracts from (11 0) and (200) planes but not from the (111) plane. From the above, we may conclude that 1. A has fcc lattice while B has bee lattice 2. A has bee lattice while B has fcc lattice 3. A and B both have fcc lattice 4. A and B both have bee lattice 108. Mo Clft "fff/6 w NH3 CffT JlTlFI"Crf ~ ~riiC'I&<.$ ~ ¢ ~ 67rrr t I "lTff ~ ~ 00 TR frlR!r '1J"llTI NH3 CffT rrT?fr+rcp c:Tif 10-2 c'k cyI NH3 CffT c:Tif 1o fi1rrc'f # FJGCI'i"?" 10-4 c'k N '1J"llTI NH3 ¢ ~ CffT 7lffr-~ t : 1. 9.9x 10-4 c'kmfrr-:rc 3. 9.9 x 10-3 m m frr-:rc 2. 0.46o6 m frr-:rc 4. 0.693 Jlfrr fi1;:rc 108. The decomposition of NH3 on Mo surface follows Langmuir-Hinshelwood mechanism. The decomposition was carried out at low pressures. The initial pressure of NH3 was 1o·2 torr. The pressure of NH3 was reduced to 104 torr in 10 minutes. The rate constant of decomposition of NH3 is 1. 9.9 x 104 torr min-1 3. 9.9 X 10-3 torr min-I J11lj3if qfJ ~ 10 50 40 JTTUTfcrcFJ 'JfR 1000 2000 4000 ~ <PT ~ :prtcTi (P.D.l.) t: 85000 1. 27 85 2. 81 2. 0.4606 min-1 4. 0.693 min-1 850 3. 729 729 4. 850 www.examrace.com
  • 37. 109. A polymer sample has the following composition. Number ofmolecules Molecular weight 10 1000 50 2000 40 4000 The polydispersity index (P.D.I.) ofthe polymer is 85000 1. 27 110. fctFJrr- '(J'HJ4Pi<P ~ 2. 85 81 2Fe3 + + Sn2 + :!::::::; 2Fe2 + + Sn4 + Qf{ ?1Jl=ll ~ ~ : 37 850 3. 729 729 4. 850 [E0 (Fe3 +/Fe2 +) = 0. 75 V,E0 (Sn4 +/Sn2 +) =0.15V, (2.303RT I F)= 0.06V] 110. The equilibrium constant for.an electrochemical reaction 2Fe3 + + Sn2 + :!::::::; 2Fe2 + + Sn4 + is [E0 (Fe3 +/Fe2 +) = 0.75V,E0 (Sn4 + /Sn2 +) =0.15V, (2.303RT I F)= 0.06V] 111. VCP vfiqJfi'Jq<P qfft;ff.ft ~- ~-fclww;:r "?f ~ lfirft ~I VCP fih4J!tf!C'Irt: ~ ~ if ~ FcNrwr "?1 ~ if m CfTC'IT ~ dN = A.gN dt # ~ if7rtT ~~ fctRtT ~ t w ufiqJfiJ4<P ~ ctfT 31TWc!T t [No= N(t = 0)] 2. N0 exp[-A.gt] 4. N0 ( A/) 2 111. A bacterial colony grows most commonly by cell division. The change in the population due to cell division in an actively growing colony is dN = A.gN dt. The population of bacterial colony at timet is [No= N(t = 0)] 2. N0 exp[ -A.g t] 4. N0 ( A./) 2 112. NOCI rt IJiNfT 3TflFlCOf 2NOCI(g) ~2NO(g) + Cl2 (g) rt ~ rrrrm ~A= 1013 M-1 s-1 , Ea = 105 kJ mor1 ff2!TRT= 2.5 kJ mor1 ~ ~ ctfT ~ ( kJ mor 1 ~ "if7ft 1. 110 2. 105 3. 102.5 4. 100 www.examrace.com
  • 38. 38 112. The Arrhenius parameters for the thermal decomposition ofNOCI, 2NOCI(g) -+2NO(g) + Cl2 (g), areA= 1013 M-t s-t, Ea = 105 kJ mort and RT= 2.5 kJ mort. The enthalpy (inkJ mort) ofthe activated complex will be I. 110 2. 105 1. I (2J +1) e-flhc81(1+1) 1=0,1.2,.... 2. I (2J +1) e-flhc81(1+1) 1=1,3,5,.... 3. I (2J + 1)e·flhcBJ(J+I) 1=0,2,4,.... 3. 102.5 4. _!_ [ I (2J + 1) e·flhcB1(J+t) + 3 I (2J +1) e-flhcB1(1+1)] 4 1=0,2,4,.... 1=1,3,5,.. 113. The rotational partition function ofH2 is 1. _I (2J + 1) e-flhcB1(1+1l 1=0,1,2,.... 2. I (2J +1)e-flhcB1(1+t) 1=1,3,5,.... 3. I (2J+1)e·flhcB1(1+t) 1=0,2,4,.... 4. _!_ [ I (2J +1) e-flhcB1(1+1) + 3 I (21 +1) e-flhcB1(1+t)] 4 1=0,2,4,.... 1=1.3.5,... 1. 1/Kr 2. e.xp[ -Kr] 3. exp[- Kr]lr 4. Kr 114. The potential in Debye-Huckel theory is proportional to 1. 1/Kr 2. exp[ -Kr] 3. e.xp[- Kr]lr 4. Kr 4. 100 115. ~ ~ ~ Cffr ctfrrrr-3r<{ffn rrm 3/u'tiqJ~m ~ JPW:~ 300 crn- 1 rrm 0.0025 t 1 l3"tfCi> ~ 1f'RI rrm ~ ~(~ ¢ ~(crn- 1 ~ JPW:· t 1. 300, 600 3. 301.5, 604.5 2. 298.5, 595.5 4. 290,580 www.examrace.com
  • 39. 39 115. The vibrational frequency and anharmonicity constant of an alkali halide are 300 cm- 1 and 0.0025, respectively. The positions (in cm-1 ) ofits fundamental mode and first overtone are respectively 1. 300,600 3. 301.5, 604.5 2. 298.5, 595.5 4. 290,580 116. l[fiJ tffi CffT ~ ~ Wl1ffTTft "# crfUfrr ~ r&mrPr 25°C w ~ ~ K = 0.9 kPa_, t 1 ?1rf8 ct ~ ~ 0.95 rn W, ~ (kPa 1).) t 1. 1/11.1 2. 21.1 3. 11.1 4. 42.2 116. The adsorption ofa gas is described by the Langmuir isotherm with the equilibrium constant K = 0.9 kPa- 1 at 25°C. The pressure (in kPa) at which the fractional surface coverage is 0.95, is 1. 1111.1 2. 21.1 3. 11.1 4. 42.2 ffJ#l:rc;r W/4/jfll'< fr: 1 1 1 3 1. T=-lior V=-n(J) 2. T=-n(J)· V=-n(J) 4 ' 4 8 ' 8 3. r = n(J): 1 3 1 v =--lim 4. T=-nm· V=-nm 2 8 ' 8 117. The energy ofa harmonic oscillator in its ground state is ]_ n(J) . According to the virial theorem, 2 the average kinetic (T) and potential (V) energies of the above are 1 1 1 3 1. T=-n(J)· V=-n(J) 2. T=-n(J)· V=-n(J) 4 ' 4 8 ' 8 1 3 1 3. T=nm: V=--lim 4. T=-nm· V=-n(J) 2 8 ' 8 1. 5 2. 10 3. 25 4. 50 118. The energy ofa hydrogen atom in a state is - hcRH (RH =Rydberg constant). The degeneracy of 25 the state will be 1. 5 2. 10 3. 25 4. 50 www.examrace.com
  • 40. 40 119. Viff ~eli~ f'f"&r rpc;r;:r <iJT "fcmw ~ rrctiT? fciRlr IJffflT ~ lf/1 =c1tp1 + C2qJ2 I~ eli ~ 3TCfllCf ff {1P1 IHI1P1)=0; {fP1 1Hirp2 )=2.0=(fP2 1Hirp1) rrf!lT (fP2 1Hirp2 )=3.0 I ~ fihi'<OJifl'l¢ Plwtijffl'< ~ f.7cF>rl1 qft 3TTET ~ qft IJiii'lf ~ ~ : 1. -1.0 2. -2.0 3. +4.0 4. +5.0 119. The trial wave function of a system is expanded as lf/1 =c1 rp1 + c2 tp2 • The matrix elements of the Hamiltonian are (1P1 1Hitp1)=0; (1P1 IHI~P2 )=2.0=(1P2 1Hitp1 ) and (1P2 IHI~P2 )=3.0. The approximate ground-state energy of the system from the linear variational principle is I. -1.0 2. -2.0 3. +4.0 4. +5.0 120. fii>WT gcfm 31Uj AB <PT ViP 3TfUif'flcp Cff/ffffi cAlf/A +c 8lf/8 eli M # "t, lil6i lf/A rrf!lT lf/8 lfJITW: JI'HIIf/;;zf/Cijrt 4!lf/O/fijrp Cfi/ffffi ~ lifT A q B TR ctm- ~I ~ Cfi/ffffi <iJT ~ W1fTT!J B TR 90% wflrct;m eli ?W!l rrr<lT IJffflT ~I lf/A q lf/B eli ~ qft ~ qft ~ ~ F CA q CB <iJT #Jfrczl "'<"f"ll8 ~ .. 1. CA = 0.95, CB = 0.32 3. CA = -0.95, Cs = 0.32 2. cA = O.lO,cs = 0.90 4. CA = 0.32, CB = 0.95 120. One molecular orbital of a polar molecule AB has the form cAlf/A +cslf/8 , where lf/A and lf/8 are normalized atomic orbitals centred on A and B, respectively. The electron in this orbital is found on atom B with a probability of90%. Neglecting the overlap between lf/A and lf/8 , a possible set of CA and CB is 1. CA = 0.95, CB = 0.32 3. CA = -0.95, CB = 0.32 2. cA = O.IO,cs = 0.90 4. cA = 0.32,cs = 0.95 121. 4-61$i{fwf) ~ 3P'C'f;! 3frFt Fcffitn "h fclgji'l1rf 13 C NMR ~ # 0 171, 162, 133, 122 rrf!lT 116 ppm TR "ficl'm rmfltI "ficlirtT <PT "ffifJ Pifi!&!Jq>'I'UJ ~ : 1. 6 171 (C-4), 162 (COOH), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6) 2. o171 (COOH), 162 (C-4), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5) 3. o171 (C-4), 162 (COOH), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5) 4. o171 (COOH), 162 (C-4), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6) 121. 4-Hydroxybenzoic acid exhibited signals at() 171, 162, 133, 122 and 116 ppm in its broadband decoupled 13 C NMR spectrum. The correct assignment of the signals is 1. o171 (C-4), 162 (COOH), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6) 2. o171 (COOH), 162 (C-4), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5) 3. o171 (C-4), 162 (COOH), 133 (C-2 & 6), 122 (C-1) and 116 (C-3 & 5) 4. o171 (COOH), 162 (C-4), 133 (C-3 & 5), 122 (C-1) and 116 (C-2 & 6) www.examrace.com
  • 41. 41 IR: 3400, 1680 em-1 ; 1 H NMR: 8 7.8 (1 H, d, J =8Hz), 7.0 (1 H, d, J =8Hz), 6.5 (1 H, s), 5.8 (1 H, s, D20 ~, 3.9 (3 H, s), 2.3 (3 H, s). ~ zttfTrcp fr 1. HOQ--< HO~2. OMe - OMe Me Me HO Q-(. 4. H0~ 0 - Me OMe OMe 3. 122. An organic compound (C9H1o03) exhibited the following spectral data: IR: 3400, 1680 em-'; 1 H NMR: 8 7.8 (1 H, d, J =8Hz), 7.0 (1 H, d, J =8Hz), 6.5 (1 H, s), 5.8 (1 H, s, D20 exchangeable), 3.9 (3 H, s), 2.3 (3 H, s). The compound is 1. 3. HOh J? ~OMe Me HO Q-(OMe 2. HO~O ~ 'oMe Me 4. HO~O ~- 'Me OMe 123. 90% ~: ~ 2 ~Rc>tu)iH)$¢ 3T1f7 ciB w[a]0 +135° frt f[EP lHT? cli W!r RT w f[EP F:R qfr 3lfi1fii>llT ct wwr[a]n +120° "if rrficrfrfrr SJ1T1 ffTrr F:R 'lfR ~ ~ 40% ffCij" <ff11 sfI ~ Vw t; aT T[fli -Ei? ct 'lfR FlTc>t- qfr ~ ~ [fey 3 tR ~ INfCffT [a]n ~ "jff1ffl: m 1. 80%; [fey 60° 3. 80%; [fey 90° 2. 70%; [fey 40° 4. 70%; [fey 60° 123. The [a]0 of a 90% opticallly pure 2-arylpropanoic acid solution is+135°. On treatment with a base at RT for one hour, [a.]0 changed to+120°. The optical purity is reduced to 40% after 3 hours. If so, the optical purity ofthe solution after 1 hour, and its [a]0 after 3 hours, respectively, would be 1. 80%; and 60° 3. 80%; and 90° 2. 70%; and 40° 4. 70%; and 60° www.examrace.com
  • 42. 42 p0 ,)---== Me' Ph (JI<IiWf: ~ :p Ao~1. Me/, ==-- R 2. Me/, ==---c Phr H -c Phr H s '":P '":P3. Ph ==-- 4. /'-c R Ph ==-- Mer H /'-c Mer H s 124. In the following pericyclic reaction, the structure of the allene formed and its configuration are 125. p0 ,,)---== Me Ph (optically pure) 1. 3. AcO~~ Ph ==-- "'-c Mer H hv -----X R 2. R 4. y AcO:p~ Me/ ==-- '-c Phr H O=( H Ph . '-COOHH s s www.examrace.com
  • 43. 43 1. hv I DIS 2. hv I CON 3. D. I DIS 4. D./CON 125. In the following sequence ofpericyclic reactions X and Y are n Ph ~OOH 1. 2. 3. 4. ~H hv -----X y hv I DIS hv/ CON D. I DIS D./CON d=C H Ph . /-COOH H www.examrace.com
  • 44. 44 1. d 2. ~ 3. Q}o 4. CXJ=o 126. The major product formed in the following reaction is ~H 1. d 2. ~ 3. Q}o 4. CXJ=o 1. 31Pitil74f!tfi&J 1'fUlClfff eli V'irr it VCP 1,3-~ ~ fr.!lT rr.rtlficp&JrJ I 2. 3TP!fii741W'!&J 1'fUlClfff eli V'irr it VCP cpJtffPt411 3/TlFf fr.!lT wfi•ficp&JrJ I 3. 31frlfii74J!Iti&J 1fCZTClrff eli V'irr # VCP 1,3-~ ~ fr.!lT Vw fctfPr ~I 4. 31Pifil74/W'i&J 1fCZTClrff eli V'irr # VCP CfiTtf-'51f:UTTlFf cp/ilfP/4'1 fr.!lT Vw cp'Jq j <tfcf"llm I 127. The following conversion involves 1. a 1,3-dipolar species as reactive intermediate, and a cycloaddition. 2. a carbenium ion as reactive intermediate, and a cycloaddition. 3. a 1,3-dipolar species as reactive intermediate, and an aza Wittig reaction. 4. a carbanion as reactive intermediate, and an aza Cope rearrangement. www.examrace.com
  • 45. 45 utaN..-: Me ~CHO HO Me [!__ __) + MeHN~ N 1. 1[?1> ~ 3/TlFf, [3,3]-ift•"fi~f~<P ~vet 1fTfrm ~I 2. 1[?1> <tf$f/IPI21"f 3/TlFf, [3,3]-fft•"fi~I~<P ~vet~ ~I 3. 1[?1> ~ 3TTlR, [1,3]-fft•"fi~f~<P ~vet '17f.m ~I 4. 1[?1> <tJJ?!iPiwl 3TTlR, [1,3]-lfton~i~<P ~vet~ JTfi'rfi!Rrr1 128. The following transformation involves ~CHO HO Me [!__ __) + MeHN~ N utaN..-: Me I. an iminium ion, [3,3]-sigmatropic shift and Mannich reaction. 2. a nitrenium ion, [3,3]-sigmatropic shift and Michael reaction. 3. an iminium ion, [1,3]-sigmatropic shift and Mannich reaction. 4. a nitrenium ion, [1,3]-sigmatropic shift and Michael reaction. 129. ¢}RR+/¢ WN(A) ct 4-si$)$Jcffl'l ¢frrc;r 41$Wfci<P WN (C) it ufiqVIfrlrt WJimur ct rn it 'ffift W!Ff t: COOH ¢laj_COOH X OH A B y 1. X ~ ~<tfcf"47fl ~ Y Oltwfl¢7'<¢ Fci<PJtilfRffl<'1<P'<UJ frI 2. X J1fR:r ~<tfcf0047'H ~ Y 3/twfi<Pl'<<P Fci<PJtil'fRHt<'1¢'<UJ frI 3. X Jlfh:r ~<tfifOOlllfl ~ Y AlifcifJ<P'<UJ frI 4. X C!&iJFf ~<tfif"47fl ~ Y P!uicifJ<P'<UJ t 1 129. With respect to the following biogenetic conversion ofchorismic acid (A) to 4- hyd.roxyphenylpyruvic acid (C), the correct statement is B y OH A I. X is Claisen rearrangement; Y is oxidative decarboxylation. 2. X is Fries rearrangement; Y is oxidative decarboxylation. 3. X is Fries rearrangement; Y is dehydration. 4. X is Claisen rearrangement; Y is dehydration. www.examrace.com
  • 46. 130. f¥;r q;'r ~ ctR : I. 13-~ 11. ~ 111. 1ffr:tff;=r iv. ~ 1. i-c; ii-d; iii-b; 3. 1-c; ii-b; iii-d; iv-a 1v-a 46 a. ~P<tJC"'J$5, ~ ~(>qj)f57C'1 b. ~P<tJC"'J$5, q_fT;ifc;r c. ~ ~ ~(>qj)f5JC'1 d.~~~ 2. i-b; ii-a; iii-c; iv-d 4. 1-a; ii-d; iii-b; IV-C 130. Match the following i. !3-amyrin ii. squalene iii. morphine iv. ephedrine 1. i-c; ii-d; iii-b; iv-a 3. 1-c; ii-b; iii-d; Iv-a PhyCHO Me + B a. alkaloid; secondary alcohol b. alkaloid, phenol c. triterpene, secondary alcohol d. acyclic triterpene, polyene 2. i-b; ii-a; iii-c; iv-d 4. i-a; ii-d; iii-b; iv-c 1. Re-Si facial 2. Re-Re facial 3. Re-Si facial 4. Si-Si facial 131. In the following reaction, the structure of B, and the mode of addition are PhyCHO Me + 8 OH 0 Phyyy www.examrace.com
  • 47. 47 1. ~ Re-Si facial 2. ~ Re-Re facial 3. ~ Re-Si facial 4. ~ Si-Si facial 132. frFr 3Tfoffii;zrr if A f11!lT B g : 0 ~N_.-OMe N iPrMgCI I [~ A Me B 0 A B 1. N N 0 [ }-MgCI [0~0 0 2. CIMglN ~N~I ~ 0 0 [:~ Me 3. I '/(u:::r-< 4.~N~ ~N 0 0 0~ 132. In the following reaction A and B are 0 ~N_.-OMe N iPrMgCI I [~ A Me B 0 www.examrace.com
  • 48. A B 1. N N 0 [ rMgCI [0~0 0 2. CIMglN ~N~I ~ 0 0 [:~ Me 3. I ~/(IT)-< ~N~4. ~N 0 0 0~ i. a-ctflch;/~c tt ~ ~ ii. <JfMtrr tt ~14#1<fH iii. 41$'<?fi'JCfl awr tt ~ ?18-~A 1. i-d; u-a; m-e; 3. i-b; u-a; iii-c; 48 a. tp t:~§)'h)Hc b.NADH c. ~ 474>:)q;'f~c d. fiiR:s7Cffl(!41'1 2. i-a; ii-b; iii-d; 4. i-d; ii-b; iii-c; 133. Match the following biochemical transformations with the coenzymes involved 1. a-ketoglutarate to glutamic acid n. uridine to thymidine iii. pyruvic acid to acetyl coenzyme A 1. i-d; ii-a; iii-c; 3. i-b; ii-a; iii-c; H+CH~H H OH H OH CH20H A B a. tetrahydrofolate b.NADH c. thiamine pyrophosphate d. pyridoxamine 2. i-a; ii-b; iii-d; 4. i-d; ii-b; iii-c; www.examrace.com
  • 49. 49 CHO HO~ COOH 0 0 COOH H+OH H*OH H+OH1. H OH 2. 3. H OH 4. H OH CH20H HO OH H OH COOH COOH 134. The structure ofthe major product B formed in the following reaction sequence is CHO H$0H Br2 H202 H OH A B H OH H20 Fe2(S04b CH20H CHO HOU COOH 0 0 H$0H COOH H+OH H+OH1. H OH 2. 3. H OH 4. H OH CH20H HO OH H OH COOH COOH 135. "l/8 ~ garr t fcn ~ ~ FZJP=r atrt'.l7rt'.ltffi47 ctfr Iiiff 0.9 kcallmol t I m ~ w ~G 1fPf t exMe 'Me (e,e conformer) 1. 0.9 kcal/mol 2. 1.8 kcallmol 3. 2.7 kcallmol 4. 3.6 kcallmol 135. Given the energy ofeach gauche butane interaction is 0.9 kcal/mol, ~G value ofthe following reaction is ('(Me V·''Me (e,e conformer) 1. 0.9 kcal/mol cc·Me 2. 1.8 kcallmol 3. 2.7 kcal/mol ~_A_.,.. ~ _bcoOEt H2, 10% Pd/C MeO~ 1- MeO~ MeOH 4. 3.6 kcal/mol 8 www.examrace.com
  • 50. A 1. N2CHCOOEt, Cu(acac)z 2. N2CHCOOEt, Cu(acac)z 0 Me-s COOEt 3. NaH, Me-"+-.............. 8( 0 Me-s COOEt 4. NaH, Me-"+-.............. 8r" 50 8 ~COOEt MeO~ 1 ~ ~COOEtMeOC ' ~COOEt MeO~ 1 - ~COOEtMeOJ;r ~ 136. In the following reaction, the reagent A and the major product B are ~ ~COOEtA ~ H2, 10% Pd/C MeOHMeO MeO A 8 ~COOEt 1. N2CHCOOEt, Cu(acac)z MeO 2. N2CHC00Et, Cu(acac)z ~COOEtMeO 0 ~COOEt 3. NaH, Me-s COOEt Me-"+........_...... 8r" MeO 0 M II 4. NaH, e-s COOEt ~COOEtMe-"+........_...... 8( MeO 1. LiAIH4, Et20, -20°C 2. Ac20, py 8 www.examrace.com
  • 51. 51 Me Mep1. Q-Me 2. Me M•o Me 3. 4. Q-Me Me-'' 137. The major product formed in the following reaction sequence is 1. UAIH4, Et20, -20°C 2. Ac20, py Me Mep1. Q-Me 2. Me M·o Me 3. 4. Q-Me Me-'' 138. ~NaOH c#r ~it 12.0 m: NJc)<tJ<t)<t c#r76.2 m: ~ rt mzr 3Tfr!fjpw "#75% ~ it fCfi om -qzy.4 A ctT >rrfiff gil ~ "# ~ A c#r ~ "1fT?fT vet i:R1CffT ~ "t 1. 80 g, CI4 2. 40 g, CI4 3. 60 g, CHh 4. 30 g, CHI3 138. 12.0 g ofacetophenone on reaction with 76.2 g ofiodine in the presence ofaq. NaOH gave solid A in 75% yield. Approximate amount ofA obtained in the reaction and its structure are 1. 80 g, C4 2. 40 g, C:4 3. 60 g, CHI3 4. 30 g, CHI3 139. f¥rr 3lfiifiiR:rr fcJfi/ W ~I wA,B ere~-~ www.examrace.com
  • 52. 52 1. 3/JwfJijj}'((jj llPr, ~ a:rrrrrTWi PNJijji(UJ 2. &TwfJ¢N¢ llPr, ¢ii"IT4cU~'1, P-~ ~ 3. ¢/i"/ftJcU~rr, ~ a:rrrrrTWJ Pfi!I¢'?DJ 4. mg-~~~mg~ 139. Consider the following reaction mechanism. The steps A, B and C, respectively, are 1. oxidative addition; transmetallation; reductive elimination. 2. oxidative addition; carbopalladation; P-hydride elimination. 3. carbopalladation; transmetallation; reductive elimination. 4. metal halogen exchange; transmetallation; metal extrusion. -Q-oH 1. -QoH COOH 2. -QoH OH 3. Hooc--Q-oH 4. HOO';,Cro 140. The major product formed in the following reaction sequence is -o-OH 1. CHCI3, NaOH 1. -Q-oH COOH 2. -Q-oH OH 3. Hooc--Q-oH 4. HOO';,O=o www.examrace.com
  • 53. 53 141. frFr ~ JF]Jff11 it IJfCFf !J?91 ~ B t o=o1. 's-o 1 Ph d "=! Ph D A 8 2.H30+ Pd(OAch PPh3, Et3N D Ph~ Ph 1. 2. Ph~DD Ph D D D 3. Ph~Ph 4. Ph~D D Ph 141. The major product B formed in the following reaction sequence is Ph - D _______..... 1. 3. D Ph~ D Ph D Ph~Ph D 2. 4. 1 Ph "=./ A----_. Pd(OAch PPh3, Et3N 8 Ph Ph~D D D Ph~D Ph 2. MeMgCI, Et20 8 3. H30+ www.examrace.com
  • 54. 54 0 1. 2. QOMeMe 0 4. cj(Me 3. 142. The major product B formed in the following reaction sequence is 0 ~0 1. 3. 0 &Me 0 a: _NNHPh NNHPh H H OH H OH CH20H A 1. CH 2N2, Et20 B2. MeMgCI, Et20 3. H30+ 0 2. QOMeMe 4. 0 (("Me 1 2. ~fff!!T~ 4. l)C"Jcrc)lif fff!!T ~ www.examrace.com
  • 55. 143. The osazone A could be obtained from __NNHPh NNHPh HO H H OH H OH CH20H A 1. glucose and mannose. 3. gulose and fructose. MN 1. Li, liq. NH 3, 1 BuOH 2.H30 3. KOH, MeOH 1.~0H 2. 3. Me~ 55 2. mannose and galactose. 4. galactose and fructose 144. The major product formed in the following reaction is MN 1. Li, liq. NH 3, 1 BuOH 2.H30+ 3. KOH, MeOH 2. 3. Me~ www.examrace.com
  • 56. 56 f)._-oMe N ~COOEt-----------'----~----~v 1. nBuli, HN-siMe3 2.H30+ 3. Hz, Raney Ni ~Hz NH2 1. UCOOEI 2. 6··''COOEI ~H2 NH2 3. 0 ...,COOEI 4. (jCOOEI 145. In the following enantioselective reaction, the major product formed is ~OMe N ~COOEt __________'----~----~v 1. nBuli, HN-siMe3 2.H30+ 3. H2, Raney Ni ~H2 NH2 1. UCOOEI 2. 6··'.C00Et ~H2 NH2 3. 0 ....C00Et 4. &COOEt www.examrace.com
  • 57. II --------------------------------------------------------·------II I CHEMICAL SCIENCES Roll Number BookletCode .......: c••••••: ,______, G) G) 00 00 ® ® ®® ®® ® ® ®® ®® ~ ~ ~~ ~~ •® ® ®®®® ® ® ®®®® ® 0 0 0000 ®® ®®®® © ®® ®®®® ®® ®®®® •4·'9'·1 ~-113T I ANSWER SHEET Medium SubjectCode Centre Code D UUJ' mG) G) ® ® ® ® ® ® ~ ~G) ® ® G) ® ® @ 0 0 ® ® ® ® ® ® ® ® ANSWER COLUMNS "ll".ifi. ~/ANSWER "li".Sfi. ~/ANSWER "ll".ifi. ~/ANSWER O.No. G) ® ® 0 O.No. CD ® ® 0 O.No. CD ® ® 1 • 0 0 0 37 • 0 0 0 73 0 0 •2 0 • 0 0 38 0 0 0 ~ 74 0 0 ~ 3 0 0 0 • 39 0 0 • 0 75 0 • 0 4 0 0 • 0 40 0 0 • 0 76 0 • 0 5 0 0 • 0 41 0 • 0 0 77 0 0 0 6 0 0 0 • 42 0 0 • 0 78 • 0 0 7 0 0 • 0 8 0 0 0 •9 • 0 0 0 10 • 0 0 0 11 0 • 0 0 12 • 0 0 0 13 0 • 0 0 14 0 0 0 •15 0 0 • 0 79 0 0 80 • 0 0 81 0 0 0 82 • 0 0 83 • 0 0 84 0 • 0 85 • 0 0 86 0 0 0 43 0 0 0 •44 0 0 0 •45 • 0 0 0 46 0 • 0 0 47 • 0 0 0 48 0 • 0 0 49 0 0 • 0 50 • 0 0 0 16 0 0 • 0 51 0 0 0 • 87 • 0 0 17 0 0 • 0 52 0 • 0 0 88 OJ 0 0 18 0 0 • 0 53 0 • 0 0 89 0 0 0 19 • 0 0 0 20 • 0 0 0 90 0 • 0 91 0 0 0 92 • 0 0 54 0 0 0 0 55 0 0 0 •56 0 • 0 0. 21 • 0 0 0 22 0 0 0 •23 0 • 0 0 24 0 0 0 •25 0 0 0 •26 0 0 • 0 27 • 0 0 0 28 0 0 0 •29 0 • 0 0 93 0 • 0 94 0 • 0 95 • 0 0 96 0 0 •97 0 0 98 • 0 0 99 0 0 •100 0 0 •101 0 • 0 102 0 • 0 57 0 0 • 0 58. 0 0 0 •59 0 • 0 0 60 0 • 0 0 61 • 0 0 0 62 • 0 0 0 63 0 0 0 •64 0 0 0 •65 • 0 0 0 66 0 • 0 0 30 • 0 0 0 103 0 067 0 0 0 •31 0 • 0 0 68 0 • 0 0 104 0 0 •32 0 0 0 • 69 0 0 • 0 105 0 0 •33 0 0 • 0 70 0 0 0 • 106 0 0 •34 • 0 0 0 35 • 0 0 0 36 0 0 0 • ~ I 107 • 0 0 108 0 ~ 0 109 0 0 • II 'tftO - 2c; SIDE- 2 ~cf>~tml INSTRUCTION FOR INVIGILATOR ~~m~~m.r~. ~~m.~m.~m cr ~ cfi ~ cfit urtq 'li ~~ Check Roll Number, Booklet Code, Subject Code, Centre Code & Signature of Candidate before signing. ~~I Slgnatureoflnvigilator "ll".ili: ~/ANSWER 0 Q.No. CD ® ® 0 0 110 0 • 0 0 0 111 0 0 • 0 0 112 0 0 0 •0 113 0 0 0 ••0 114 0 0 • 0 C"Z <Do 115 0 • 0 0 ~CD' 0 0 • 116 0 • 0 0 coJj o..o 117 • 0 0 0 :r = 118 0 0 • 0 ..... z:TC 0 119 • 0 0 0 <D3 0"0" 0 120 0 0 0 • O<D X~....., 0 0 •0 0 •0 •0 0 0 121 0 • 0 0 <Den cnc 122 0 0 0 0 ~.2: -·<D 123 • 0 0 0 ::Jo co- 124"· • 0 0 0 - -a:TO 125 0 0 Q 0 <DO.. "0([) 126 0 0 • 0 ll>$20 ~(") 127 • 0 0 0 ~([) • 0 0 0 ::J::J128 <Q.~ 129 • 0 0 0 Cfia 130 0 0 0 ::JO Sl)o.. 131 0 0 ~ 0 (/)([) . . en 0 132 0 0 0 :T 0 0 • 0 0 0 c133 a: 0 134 0 0 0 0 135 0 • 0 0 0 136 0 0 0 0 137 0 0 0 0 138 0 0 0 •0 139 • 0 0 0 0 140 0 • 0 0 0 141 0 0 0 0 142 • 0 0 0 0 143 • 0 0 0 0 144 0 • 0 0 0 145 • 0 0 0 0 II www.examrace.com