Data preprocessing involves transforming raw data into an understandable and consistent format. It includes data cleaning, integration, transformation, and reduction. Data cleaning aims to fill missing values, smooth noise, and resolve inconsistencies. Data integration combines data from multiple sources. Data transformation handles tasks like normalization and aggregation to prepare the data for mining. Data reduction techniques obtain a reduced representation of data that maintains analytical results but reduces volume, such as through aggregation, dimensionality reduction, discretization, and sampling.