SlideShare a Scribd company logo
BÂLE BERNE BRUGG DUSSELDORF FRANCFORT S.M. FRIBOURG E.BR. GENÈVE
HAMBOURG COPENHAGUE LAUSANNE MUNICH STUTTGART VIENNE ZURICH
Agile Business Intelligence @ Evam
Plan
• Introduction ( F. Kang à Birang)
• Pre-project (F. Kang à Birang & J-M. Delacrétaz)
• Agile project management (A. Martino)
• Agile architecture (E. Fidel)
• Data quality (A. Martino)
• EVAM Feedback (B. Albietz)
Introduction
Fabienne Kang à Birang – Business Analyst / Product owner
Introduction
• EVAM Presentation
• Project Sponsor
• Director
• Indicators
• 2013 – Existing B.I.
Pre-Project Phase
Fabienne Kang à Birang – Business Analyst / Product owner
Jean-Marc Delacrétaz – Developer
Pre-Project Phase
• Target
• Operational reporting
• Problems encountered @ EVAM
• Data interpretation
• Business rules errors
• Prerequisites
• Dictionary
• Population hierarchized
Preexisting B.I.
• 2013
• P.O.C. to introduce B.I. «philosophy»
• Chosen Tools
• ETL : Talend
• Reporting : Tibco JasperReport
• Weaknesses
• Lack of expertise & methodology
• Bad performances
Decision in August 2014
• Start from scratch
• With Trivadis Lausanne as a partner
• Tools
• Performances
• Architecture with « Best practices »
Agile Project
Management
Adriano Martino – Senior B.I. Consultant
Agility
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
Organisation
• Evam• Evam
• Trivadis
• Evam• Trivadis
Scrum Master
Product
Owner
CustomerDeveloppers
Agile Objectives
• Deliver working software frequently
• Adapt to change
Scrum components overview
Sprint
Planning
Sprint
Backlog
Product
Backlog
Daily
Stand up
Sprint
2 to 4
weeks
Sprint
Review
Retrospective
Normal Process for a B.I. need
Business
Analysis
Design of the
model
Implementation
Unit Testing
Volume
testing
User
Acceptance
Testing
New
Need
Rework
Rework Rework
Rework
Deployment
to Validation
Deployment Production
Normal Process for a B.I. need
Agile Objectives
• Adapt to change
• Deliver working software frequently
• At regular intervals, the team reflects on how
to become more effective
Cadence
SCRUM
EVENT
DRIVEN
Sprint1 Sprint2 Sprint3 …
RetrospectiveReviewReleasePlanning1 2
1
3 4
2 3 4 1 2 3 4 1 2 3 4
1 2 2 2 2 213 42
Agile Objectives
• Adapt to change
• Deliver working software frequently
• At regular intervals, the team reflects on how
to become more effective
• Work close to business
Collaborative Workshops
Business
Need
analysis
Technical
analysis
Live dev
Prototyping
Live
testing
Agile B.I. Architecture
• Evolutive
• Easy change management
• Parallelisable development
• Business oriented
• Integration
• Possibility to automate generation
We choose Data Vault
Modelling
Agile
Architecture
Eddie Fidel – Senior B.I. Consultant
STAGING
DYNAMIC ETL
Enterprise
Data
Warehouse
With data vault
Modeling
Agile Bi Architecture
SOURCES
Virtualized
Data Marts
STAGING
DYNAMIC ETL
Enterprise
Data
Warehouse
With data vault
Modeling
Data Warehouse Layer
SOURCES
Virtualized
Data Marts
DYNAMIC ETL
What is Data Vault ?
• Data Modelling Method for Data Warehouses in Agile Environments
• Developed by Dan Linsted
• Suitable for
• DWH Core Layer
• Optimized for
• Agility / Integration /
Historization
Data Vault composition
• Decomposition of Source Data
• Split Data into Separate Parts
Hubs Business Entity
Links Relations
Satellites Contexts
Business Oriented
Data Vault composition
• Elements : Hub – Link – Sat
Customer
Sat
Sat
Sat
Customer Product
Sat
Sat
Sat
Product
Hub = List of Unique Business Keys
Link = List of Relationships, Associations
Satellites = Descriptive Data
Order
Sat
Sat
Sat
Order
Link
Avantages and challenges
• Standard ETL Rules to Load Data Vault
• Easy Extensibility of Data Vault Model
• Integration of Multiple Source Systems
• Traceability and Complete History
• High Number of Tables in Data Vault
What does the Data Vault generator do ?
• Tables
• Indexes
• Surrogate keys
• Foreign keys
• Partitions
• Loading process
• SCD1 / SCD2
• Loading audits
• Handling Errors
Generator value
29
Business spec
Technical spec
Development
Test
Deployment
Qualityassurance
Documentation
Simplify
Generator
Documentation
QS
Total Savings
 Fast and short implementation cycles
 Broad flexibility of change
 Auto-generated quality assured components
 Huge time and cost savings
On-going and recurrent with each
step of modification or enlargement!!!
STAGING
DYNAMIC ETL
Enterprise
Data
Warehouse
With data vault
Modeling
Dynamic ETL
SOURCES
Virtualized
Data Marts
Dynamic ETL for DWH
• Parallel Loading
• HUB
• LINK et SAT
• Dynamic call to loading procedures
• No deployment of ETL needed
STAGING
DYNAMIC ETL
Enterprise
Data
Warehouse
With data vault
Modeling
Dynamic ETL
SOURCES
Virtualized
Data Marts
DYNAMIC ETL
Data Mart
• Business Need Oriented
• Virtualized DM (materialized view)
• Can be regenerated from scratch
• Find value at a point in time
• Good perfomance
• Automatically regenerated (no deployment)
Data Quality
Adriano Martino – B.I. Consultant
Quality report
• Automated
• Daily execution
• Simple development
• Possible to send mail based on result
• Direction support to involve Business
EVAM Feedback
Bruno Albietz – I.T. Manager
Keys Learnings
• Show business value as early as possible and keep the ball rolling
• Project: December 2014 – June 2016
• Phased implementation: 1st output in June 2015, then regular outputs
on a monthly basis
• Be prepared to spend most of your time on data quality
• The lifeblood of B.I. projects
Keys Learnings
• Prepare knowledge transfer to your staff during the project
• Modelling, ETL, Reporting
• Good project management practice, from business requirements to
report development
• Increase user buy-in with Scrum
• Key users and management involved from day 1
Keys Learnings
• Learn to say “ No ”
• B.I. quality versus business process quality
• B.I. is also here to show process deficiencies, do not try to solve all
business issues within the B.I. project
Q & A

More Related Content

PPTX
Introduction To Data Vault - DAMA Oregon 2012
PDF
Data Vault Introduction
PPTX
IRM UK - 2009: DV Modeling And Methodology
PDF
Agile BI via Data Vault and Modelstorming
PPTX
Data vault what's Next: Part 2
PDF
Why Data Vault?
PPTX
Agile Data Mining with Data Vault 2.0 (english)
PPTX
Data Vault and DW2.0
Introduction To Data Vault - DAMA Oregon 2012
Data Vault Introduction
IRM UK - 2009: DV Modeling And Methodology
Agile BI via Data Vault and Modelstorming
Data vault what's Next: Part 2
Why Data Vault?
Agile Data Mining with Data Vault 2.0 (english)
Data Vault and DW2.0

What's hot (20)

PDF
Guru4Pro Data Vault Best Practices
 
DOCX
Data Vault: Data Warehouse Design Goes Agile
PPTX
Data vault: What's Next
PDF
Shorter time to insight more adaptable less costly bi with end to end modelst...
PPTX
Operational Data Vault
PDF
Data Warehouse Agility Array Conference2011
PPTX
Agile Data Warehouse Modeling: Introduction to Data Vault Data Modeling
PPTX
Data Vault Overview
PPTX
Agile data warehouse
PPTX
Agile Data Engineering - Intro to Data Vault Modeling (2016)
PPTX
Agile Methods and Data Warehousing (2016 update)
PDF
Introduction to Data Vault Modeling
PDF
Lean Data Warehouse via Data Vault
PDF
(OTW13) Agile Data Warehousing: Introduction to Data Vault Modeling
PPTX
Conceptional Data Vault
PDF
Data Warehouse Tutorial For Beginners | Data Warehouse Concepts | Data Wareho...
PDF
Hadoop World 2011: I Want to Be BIG - Lessons Learned at Scale - David "Sunny...
PDF
Are You Killing the Benefits of Your Data Lake?
PPTX
Visual Data Vault
PDF
Data Warehousing 2016
Guru4Pro Data Vault Best Practices
 
Data Vault: Data Warehouse Design Goes Agile
Data vault: What's Next
Shorter time to insight more adaptable less costly bi with end to end modelst...
Operational Data Vault
Data Warehouse Agility Array Conference2011
Agile Data Warehouse Modeling: Introduction to Data Vault Data Modeling
Data Vault Overview
Agile data warehouse
Agile Data Engineering - Intro to Data Vault Modeling (2016)
Agile Methods and Data Warehousing (2016 update)
Introduction to Data Vault Modeling
Lean Data Warehouse via Data Vault
(OTW13) Agile Data Warehousing: Introduction to Data Vault Modeling
Conceptional Data Vault
Data Warehouse Tutorial For Beginners | Data Warehouse Concepts | Data Wareho...
Hadoop World 2011: I Want to Be BIG - Lessons Learned at Scale - David "Sunny...
Are You Killing the Benefits of Your Data Lake?
Visual Data Vault
Data Warehousing 2016
Ad

Similar to Data vault modeling et retour d'expérience (20)

PDF
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
PPTX
Agile Data Warehousing
PPT
Agile Data Architecture
DOCX
Agile Business Intelligence - course notes
ODP
Agile BI/DW - Aalborg 2009
PPTX
Agile Data Warehousing
PDF
Agile BI success factors
PPTX
AE - Architects for Business & ICT
PDF
Bringing Agility and Flexibility to Data Design and Integration
PPTX
Business Intelligence Module 3
DOC
Dan Salameh resume V1.1b16
PDF
Agile methods and dw mha
PPTX
ANIn Chennai April 2024 |Agile Engineering: Modernizing Legacy Systems by Ana...
PPTX
Why ask why? Try agile BI!
PPTX
Data Virtualization – Gateway to a Digital Business - Barry Devlin
PDF
Using open source BI. Practical experience 2012 - En
PPTX
Agile Methods and Data Warehousing
PDF
Business Intelligence Presentation (1/2)
PPTX
Agile BI: How to Deliver More Value in Less Time
PDF
ETIS10 - BI Governance Models & Strategies - Presentation
Agile Testing Days 2017 Intoducing AgileBI Sustainably - Excercises
Agile Data Warehousing
Agile Data Architecture
Agile Business Intelligence - course notes
Agile BI/DW - Aalborg 2009
Agile Data Warehousing
Agile BI success factors
AE - Architects for Business & ICT
Bringing Agility and Flexibility to Data Design and Integration
Business Intelligence Module 3
Dan Salameh resume V1.1b16
Agile methods and dw mha
ANIn Chennai April 2024 |Agile Engineering: Modernizing Legacy Systems by Ana...
Why ask why? Try agile BI!
Data Virtualization – Gateway to a Digital Business - Barry Devlin
Using open source BI. Practical experience 2012 - En
Agile Methods and Data Warehousing
Business Intelligence Presentation (1/2)
Agile BI: How to Deliver More Value in Less Time
ETIS10 - BI Governance Models & Strategies - Presentation
Ad

More from Swiss Data Forum Swiss Data Forum (20)

PDF
Cloud transition - The Trivadis approach
PDF
Internet of Things and Big Data
PDF
Optimiser votre infrastructure SQL Server avec Azure
PPTX
Digitalisation de la donnée Client
PDF
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...
PPTX
Building High-scalable Enterprise Solutions,
PPTX
Augmentez votre efficacité dans votre planification budgétaire
PPTX
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
PDF
Customer Event Hub - the modern Customer 360° view
PPTX
Montée en version de 300 bases de données vers Oracle 12c en 300 jours. Quel...
PDF
Le monde NOSQL pour les spécialistes du relationnel,
PDF
IoT Portal with PowerBI and SharePoint
PDF
Bigdata et datamining au service de la transition énergétique
PPTX
Retour d'expérience d'un environnement base de données multitenant
PPTX
Intelligence & Gouvernance
PDF
Big Data and Fast Data combined – is it possible?
PDF
Avec biGenius® sur Azure, oubliez la technique, concentrez vos efforts sur le...
PDF
Gouvernance de données
PPTX
Le Swiss Data Cloud, vu par l’opérateur UPC Cablecom Business
PDF
IoT – The reality of real world solutions
Cloud transition - The Trivadis approach
Internet of Things and Big Data
Optimiser votre infrastructure SQL Server avec Azure
Digitalisation de la donnée Client
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...
Building High-scalable Enterprise Solutions,
Augmentez votre efficacité dans votre planification budgétaire
Aujourd’hui la consolidation de bases de données Oracle c’est quoi ?
Customer Event Hub - the modern Customer 360° view
Montée en version de 300 bases de données vers Oracle 12c en 300 jours. Quel...
Le monde NOSQL pour les spécialistes du relationnel,
IoT Portal with PowerBI and SharePoint
Bigdata et datamining au service de la transition énergétique
Retour d'expérience d'un environnement base de données multitenant
Intelligence & Gouvernance
Big Data and Fast Data combined – is it possible?
Avec biGenius® sur Azure, oubliez la technique, concentrez vos efforts sur le...
Gouvernance de données
Le Swiss Data Cloud, vu par l’opérateur UPC Cablecom Business
IoT – The reality of real world solutions

Recently uploaded (20)

PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PDF
.pdf is not working space design for the following data for the following dat...
PPT
Quality review (1)_presentation of this 21
PDF
Mega Projects Data Mega Projects Data
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Database Infoormation System (DBIS).pptx
PPTX
Moving the Public Sector (Government) to a Digital Adoption
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
Computer network topology notes for revision
PDF
Launch Your Data Science Career in Kochi – 2025
PPTX
Global journeys: estimating international migration
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
.pdf is not working space design for the following data for the following dat...
Quality review (1)_presentation of this 21
Mega Projects Data Mega Projects Data
Introduction to Knowledge Engineering Part 1
Database Infoormation System (DBIS).pptx
Moving the Public Sector (Government) to a Digital Adoption
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
oil_refinery_comprehensive_20250804084928 (1).pptx
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Miokarditis (Inflamasi pada Otot Jantung)
Computer network topology notes for revision
Launch Your Data Science Career in Kochi – 2025
Global journeys: estimating international migration
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
IB Computer Science - Internal Assessment.pptx
Major-Components-ofNKJNNKNKNKNKronment.pptx

Data vault modeling et retour d'expérience