SlideShare a Scribd company logo
Data Visualization Nikhil Srivastava, 2015
Nikhil Srivastava
iHub Summer Data Jam
Data Visualization Nikhil Srivastava, 2015
About this Lecture
• Shortened version of longer course
• Course website
– Slides, demos, extra material
– Code samples and libraries
– Final projects
Data Visualization Nikhil Srivastava, 2015
Effective Data Visualization
Data Visualization Nikhil Srivastava, 2015
Nikhil Srivastava
nsrivast@gmail.com
0713 987 262
I build products & businesses in the fields of finance & technology.
I organize & visualize information for teaching & understanding.
nikhilsrivastava.com
Data Visualization Nikhil Srivastava, 2015
• What is Data Visualization?
• Thinking and Seeing
• From Data to Graphics
• Principles and Guidelines
• Building Visualizations
• Advanced Topics
introduction
foundation & theory
building blocks
design & critique
construction
advanced
Outline
Data Visualization Nikhil Srivastava, 2015
• What is Data Visualization?
• Thinking and Seeing
• From Data to Graphics
• Principles and Guidelines
• Building Visualizations
• Advanced Topics
introduction
foundation & theory
building blocks
design & critique
construction
advanced
Data Visualization Nikhil Srivastava, 2015
Data Visualization
Information Visualization
Scientific Visualization
Infographics
Statistical Graphics
Informative Art
Art
Science
Statistics
JournalismDesign
Visual Analytics
Data Visualization Nikhil Srivastava, 2015
City/Town County Population
Ahero Kisumu 76,828
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Ruiru Kiambu 238,858
Thika Kiambu 139,853
Data Visualization Nikhil Srivastava, 2015
City/Town County Population
Ahero Kisumu 76,828
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Ruiru Kiambu 238,858
Thika Kiambu 139,853
• Which is the most populous
city in the list?
• Which county in the list has
the most cities?
• Which county in the list has
the largest average city?
Data Visualization Nikhil Srivastava, 2015
Data Visualization Nikhil Srivastava, 2015
• Which is the most populous
city in the list?
• Which county in the list has
the most cities?
• Which county in the list has
the largest average city?
Data Visualization Nikhil Srivastava, 2015
• Which is the most populous
city in the list?
• Which county in the list has
the most cities?
• Which county in the list has
the largest average city?
• What is the population of
Limuru?
Data Visualization Nikhil Srivastava, 2015
Data Visualization is:
• Useful
– Answers user questions
– Reduces user workload
(by design, not by default)
Data Visualization Nikhil Srivastava, 2015
Anscombe’s quartet (1973)
Data Visualization Nikhil Srivastava, 2015
Anscombe’s quartet (1973)
Data Visualization Nikhil Srivastava, 2015
Data Visualization is:
• Important
– Understand structure and patterns
– Resolve ambiguity
– Locate outliers
Data Visualization Nikhil Srivastava, 2015
Data Visualization Nikhil Srivastava, 2015
Data Visualization is:
• Important
– Design decisions affect interpretation
Data Visualization Nikhil Srivastava, 2015
Data Visualization Nikhil Srivastava, 2015
Data Visualization Nikhil Srivastava, 2015
Data Visualization Nikhil Srivastava, 2015
Data Visualization is:
• Powerful
– Communicate, teach, inspire
Data Visualization Nikhil Srivastava, 2015
Data Visualization is:
• Relevant
– In one second …
– Open data, open technologies
– Growing use in business,
education, media, advertising …
Data Visualization Nikhil Srivastava, 2015
Definitions
• “the process that transforms (abstract) data into
interactive graphical representations” 1
• “finding the artificial memory that best supports our
natural means of perception” 2
• “visual representations of data to amplify
cognition” 3
• “giving information a visual representation” 4
Data Visualization Nikhil Srivastava, 2015
Focus Extra
purpose communicate explore, analyze
data numerical,
categorical
text, maps,
graphs, networks
feature representation animation,
Interactivity
Course Scope
Data Visualization Nikhil Srivastava, 2015
• What is Data Visualization?
• Thinking and Seeing
• From Data to Graphics
• Principles and Guidelines
• Building Visualizations
• Advanced Topics
introduction
foundation & theory
building blocks
design & critique
construction
advanced
Data Visualization Nikhil Srivastava, 2015
Bandwidth of Our Senses
Why Vision?
Data Visualization Nikhil Srivastava, 2015
The Hardware
Data Visualization Nikhil Srivastava, 2015
The Software
• High-level concepts: objects,
symbols
• Involves working memory
• Slower, serial, conscious
• Sensory input
• Low-level features: orientation,
shape, color, movement
• Rapid, parallel, automatic
Visual
Perception
“Bottom-up”
Data Visualization Nikhil Srivastava, 2015
The Software
• High-level concepts: objects,
symbols
• Involves working memory
• Slow, sequential, conscious
• Sensory input
• Low-level features: orientation,
shape, color, movement
• Rapid, parallel, automatic
Visual
Perception
“Bottom-up”
“Top-down”
Data Visualization Nikhil Srivastava, 2015
Task: Counting
How many 3’s?
1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686
Data Visualization Nikhil Srivastava, 2015
Task: Counting
How many 3’s?
1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686
1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686
Data Visualization Nikhil Srivastava, 2015
Task: Counting
Slow, sequential, conscious
Rapid, parallel, automatic
1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686
1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686
Data Visualization Nikhil Srivastava, 2015
Task: (Distractor) Search
Which side has the red circle?
Data Visualization Nikhil Srivastava, 2015
Task: (Distractor) Search
Which side has the red circle?
Data Visualization Nikhil Srivastava, 2015
Task: Search
Which side has the red circle?
Data Visualization Nikhil Srivastava, 2015
Task: Search
Which side has the red circle?
Data Visualization Nikhil Srivastava, 2015
Task: Search
Slow, sequential, conscious
Rapid, parallel, automatic
Data Visualization Nikhil Srivastava, 2015
Task: Unique Search
Slow, sequential, conscious
Rapid, parallel, automatic
(7)
(5)
(3)
Data Visualization Nikhil Srivastava, 2015
Lessons for Visualization
• Use “pre-attentive” attributes when possible
– Color, shape, orientation (depth, motion)
– Faster, higher bandwidth
• Caveats
– Working memory: magical number 7 (+/- 2)
– Be careful mixing attributes
Data Visualization Nikhil Srivastava, 2015
Example: Too Many Attributes
Data Visualization Nikhil Srivastava, 2015
Example: Too Many Attributes
Data Visualization Nikhil Srivastava, 2015
Eye != Camera
Data Visualization Nikhil Srivastava, 2015
Eye != Camera
limited aperture
limited color
Data Visualization Nikhil Srivastava, 2015
Data Visualization Nikhil Srivastava, 2015
Eye != Camera
Saccades: limited time and location
Data Visualization Nikhil Srivastava, 2015
Eye != Camera: Relative
A
B
Data Visualization Nikhil Srivastava, 2015
Eye != Camera: Relative
Data Visualization Nikhil Srivastava, 2015
Eye != Camera: Knowledge
Data Visualization Nikhil Srivastava, 2015
Eye != Camera: Knowledge
Data Visualization Nikhil Srivastava, 2015
Lessons for Visualization
• Human vision has limits and constraints:
aperture, color, time, location
• “What we see” depends on “what we
know”
• Attention and experience matters
Data Visualization Nikhil Srivastava, 2015
• What is Data Visualization?
• Thinking and Seeing
• From Data to Graphics
• Principles and Guidelines
• Building Visualizations
• Advanced Topics
introduction
foundation & theory
building blocks
design & critique
construction
advanced
Data Visualization Nikhil Srivastava, 2015
From Data to Graphics
What kind
of data do
we have?
How can we
represent the
data visually?
How can we
organize this into
a visualization?
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Visual
Encoding
Data Visualization Nikhil Srivastava, 2015
What kind
of data do
we have?
How can we
represent the
data visually?
How can we
organize this into
a visualization?
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Data Visualization Nikhil Srivastava, 2015
Data as Input
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Clean
Restructure
Explore
Analyze
DATA
Visualization Goals
Data Visualization Nikhil Srivastava, 2015
Model and Attribute
item attribute A attribute B … attribute M
item 1 value1_A value1_B …
item 2 value2_A value2_B …
… … …
item N valueN_M
Data Visualization Nikhil Srivastava, 2015
Data Types
CATEGORICAL ORDINAL NUMERICAL
Interval Ratio
Male / Female
Asia / Africa / Europe
True / False
Small / Med / Large
Low / High
Yes / Maybe / No
Latitude/Longitude
Compass direction
Time (event)
Length
Count
Time (duration)
= = = =
< > < > < >
+ - + -
* /
Data Visualization Nikhil Srivastava, 2015
Data Types: Example
• Which are categorical? (=)
• Which are ordinal? (= < >)
ID Gender Test Score Grade Size Temperature
1 Male 77 C Small 36.5
2 Female 85 B Large 37.2
3 Female 95 A Medium 36.7
4 Male 90 A Large 37.4
• Which are interval? (= < > + -)
• Which are ratio? (= < > + - * /)
Data Visualization Nikhil Srivastava, 2015
Data Type Transformation
CATEGORICAL ORDINAL NUMERICAL
Interval Ratio
Male / Female
Asia / Africa / Europe
True / False
Small / Med / Large
Low / High
Yes / Maybe / No
Time
Latitude/Longitude
Compass direction
Time
Length
Count
Binning/Cate
gorizing
Differencing/
Normalization
Data Visualization Nikhil Srivastava, 2015
Advanced Data Types
• Networks/Graphs
– Hierarchies/Trees
• Text
• Maps: points, regions, routes
Data Visualization Nikhil Srivastava, 2015
What kind
of data do
we have?
How can we
represent the
data visually?
How can we
organize this into
a visualization?
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Data Visualization Nikhil Srivastava, 2015
Visual Encodings
Marks
point
line
area
volume
Channels
position
size
shape
color
angle/tilt
Data Visualization Nikhil Srivastava, 2015
Channel Effectiveness
Data Visualization Nikhil Srivastava, 2015
Channel Effectiveness
“Spatial position is such a good visual
coding of data that the first decision of
visualization design is which variables get
spatial encoding at the expense of others”
Data Visualization Nikhil Srivastava, 2015
Color as a Channel
Categorical Quantitative
Hue Good
(6-8 max)
Poor
Value Poor Good
Saturation Poor Okay
Data Visualization Nikhil Srivastava, 2015
What kind
of data do
we have?
How can we
represent the
data visually?
How can we
organize this into
a visualization?
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Scatter Plot point position 2 quantitative
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Scatter + Hue point position,
color
2 quantitative,
1 categorical
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Scatter + Size
(“Bubble”)
point position,
size
3 quantitative
Data Visualization Nikhil Srivastava, 2015
Scatter Plot – Applications
CORRELATION GROUPING OUTLIERS
Data Visualization Nikhil Srivastava, 2015
Scatter Plot – Dangers
OCCLUSION
(DENSITY)
OCCLUSION
(OVERLAP)
3-D
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Line Chart line position
(orientation)
2 quantitative
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Area Chart area size (length) 2 quantitative
Data Visualization Nikhil Srivastava, 2015
Line Chart – Applications
PATTERN OVER TIME COMPARISON
Data Visualization Nikhil Srivastava, 2015
Line Chart – Dangers
Y SCALING
X SCALING
OVERLOAD
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Bar Chart line size (length) 1 categorical,
1 quantitative
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Histogram line size (length) 1 ordinal/quantitative,
1 quantitative (count)
Data Visualization Nikhil Srivastava, 2015
Bar Chart – Applications
COMPARE CATEGORIES DISTRIBUTION
Data Visualization Nikhil Srivastava, 2015
Bar Chart – Dangers
TOO MANY CATEGORIES
POORLY SORTED
Data Visualization Nikhil Srivastava, 2015
type mark channel data represented
Pie Chart area size (angle) 1 quantitative
Data Visualization Nikhil Srivastava, 2015
Pie Chart – Dangers
AREA SCALE SIMILAR AREAS OVERLOAD
Data Visualization Nikhil Srivastava, 2015
Multi-Series Bar Charts
GROUPED
BAR CHART
STACKED BAR
CHART
Data Visualization Nikhil Srivastava, 2015
Multi-Series Line Charts
MULTIPLE
LINE
STACKED
AREA CHART
Data Visualization Nikhil Srivastava, 2015
Normalization
NORMALIZED BAR NORMALIZED AREA
Data Visualization Nikhil Srivastava, 2015
Small Multiples Chart
Data Visualization Nikhil Srivastava, 2015
Advanced Charts
Treemap
(Hierarchical Data)
Channels: ?
Strengths:
nested relationships
Concerns:
order vs aspect ratio
Data Visualization Nikhil Srivastava, 2015
Advanced Charts
Multi-Level Pie
(Hierarchical Data)
Channels: ?
Strengths:
nested relationships
Concerns:
readability
Data Visualization Nikhil Srivastava, 2015
Advanced Charts
Heat Map
(Table/Field Data)
Channels: ?
Strengths: pattern/outlier detection
Concerns: ordering/ clustering
Data Visualization Nikhil Srivastava, 2015
Advanced Charts
Choropleth Map
(Region Data)
Channels: ?
Strengths:
geography
Concerns:
region size
color spectrum
Data Visualization Nikhil Srivastava, 2015
Advanced Charts
Cartogram
(Region Data)
Channels: ?
Strengths: geographic pattern
Concerns: base map knowledge
Data Visualization Nikhil Srivastava, 2015
• What is Data Visualization?
• Thinking and Seeing
• From Data to Graphics
• Principles and Guidelines
• Building Visualizations
• Advanced Topics
introduction
foundation & theory
building blocks
design & critique
construction
advanced
Data Visualization Nikhil Srivastava, 2015
From Science to Art
• Design principles*
• Style guidelines*
*dependent on visualization context
and objective (and author)
Data Visualization Nikhil Srivastava, 2015
Design Principles
Data Visualization Nikhil Srivastava, 2015
Design Principles
• Integrity
– Tell the truth with data
• Effectiveness
– Achieve visualization objectives
• Aesthetics
– Be compelling, vivid, beautiful
Data Visualization Nikhil Srivastava, 2015
Integrity
Lie Ratio =
size of effect in graphic
size of effect in data
Data Visualization Nikhil Srivastava, 2015
Integrity
Data Visualization Nikhil Srivastava, 2015
Integrity
“show data variation, not design variation”
Data Visualization Nikhil Srivastava, 2015
Effectiveness*
Data/Ink Ratio =
ink representing data
total ink
*according
to Tufte
Data Visualization Nikhil Srivastava, 2015
Effectiveness*
*according
to Tufte
avoid “chart junk”
Data Visualization Nikhil Srivastava, 2015
Avoid Chart Junk
Data Visualization Nikhil Srivastava, 2015
Avoid Chart Junk
Data Visualization Nikhil Srivastava, 2015
Avoid Chart Junk
Data Visualization Nikhil Srivastava, 2015
Avoid Chart Junk
Data Visualization Nikhil Srivastava, 2015
Avoid Chart Junk
Data Visualization Nikhil Srivastava, 2015
Avoid Chart Junk
Data Visualization Nikhil Srivastava, 2015
Effectiveness (Few)
Data Visualization Nikhil Srivastava, 2015
Practical Guidelines
• Avoid 3-D charts
• Focus on substance over graphics
• Avoid separate legends and keys
• Faint grids/guidelines
• Avoid unnecessary textures and colors
Data Visualization Nikhil Srivastava, 2015
Color Guidelines
• To label
• To emphasize
• To liven or decorate
Data Visualization Nikhil Srivastava, 2015
Bad Color
Data Visualization Nikhil Srivastava, 2015
Good Color
Data Visualization Nikhil Srivastava, 2015
More Color Guidelines
• Use color only when necessary
• Use saturated colors for data labels, thin
lines, small areas
• Use less saturated colors for large areas,
backgrounds
• Use tools like ColorBrewer
Data Visualization Nikhil Srivastava, 2015
• What is Data Visualization?
• Thinking and Seeing
• From Data to Graphics
• Principles and Guidelines
• Building Visualizations
• Advanced Topics
introduction
foundation & theory
building blocks
design & critique
construction
advanced
Data Visualization Nikhil Srivastava, 2015
What Software to Use?
Athi River Machakos 139,380
Awasi Kisumu 93,369
Kangundo-Tala Machakos 218,557
Karuri Kiambu 129,934
Kiambu Kiambu 88,869
Kikuyu Kiambu 233,231
Kisumu Kisumu 409,928
Kitale Trans-Nzoia 106,187
Kitui Kitui 155,896
Limuru Kiambu 104,282
Machakos Machakos 150,041
Molo Nakuru 107,806
Mwingi Kitui 83,803
Naivasha Nakuru 181,966
Nakuru Nakuru 307,990
Nandi Hills Trans-Nzoia 73,626
Clean
Restructure
Explore
Analyze
DATA
Visualization Goals
Data Visualization Nikhil Srivastava, 2015
Visualization Software
• Web friendly
– Highcharts
– InfoVis
– Processing
– D3
• Statistics
– Python (Matplotlib)
– R (ggplot2)
• Maps
– Google Charts
– Leaflet
– CartoDB
• Dashboards
• Graphs
– GraphViz
– Gephi
Data Visualization Nikhil Srivastava, 2015
Highcharts - Reference
• Examples
– Hello, Chart
– Basic Charts
• Documentation, API
• Highcharts Cloud
Data Visualization Nikhil Srivastava, 2015
• What is Data Visualization?
• Thinking and Seeing
• From Data to Graphics
• Principles and Guidelines
• Building Visualizations
• Advanced Topics
introduction
foundation & theory
building blocks
design & critique
construction
advanced
Data Visualization Nikhil Srivastava, 2015
The Ebb and Flow of Movies
NY Times, 2008
Advanced Visualizations
Data Visualization Nikhil Srivastava, 2015
Word Cloud - “Data Visualization” Wikipedia Page
Wordle
Data Visualization Nikhil Srivastava, 2015
ZIPScribble
Robert Kosara, 2006
Data Visualization Nikhil Srivastava, 2015
Twitter Networks
PJ Lamberson, 2012
Data Visualization Nikhil Srivastava, 2015
Blogs
• Infosthetics.com
• Visualizing.org
• FlowingData.com
Data Visualization Nikhil Srivastava, 2015
Nikhil Srivastava
nsrivast@gmail.com

More Related Content

PPTX
Data & Analytics Club - Data Visualization Workshop
PPTX
SeeingAndThinking
PPTX
Advanced Visualizations
PPTX
Data Visualization and Dashboard Design
PDF
Lean Analytics: How to get more out of your data science team
PDF
Francie & Claudia - SAFe, Minds, & Corporate Culture
PPT
Journalism and Society
PPTX
Statistical Tests for dummies
Data & Analytics Club - Data Visualization Workshop
SeeingAndThinking
Advanced Visualizations
Data Visualization and Dashboard Design
Lean Analytics: How to get more out of your data science team
Francie & Claudia - SAFe, Minds, & Corporate Culture
Journalism and Society
Statistical Tests for dummies

Viewers also liked (20)

PPTX
Journalism In Post Conflict Society
PDF
Journalism, Society and New Media
PPTX
The Difference Between t-tests and ANOVAs
PPTX
Intro to Graphing Data Powerpoint-7th and 8th Grade
ODP
Visualiation of quantitative information
PPT
Anova and T-Test
PPT
T-test (Revised version)
ODP
Qualitative research, lab report overview, and review of lectures 1 to 7
PPTX
Two-Way ANOVA Overview & SPSS interpretation
PDF
T test and ANOVA
ODP
ANOVA II
PPTX
Introduction to graph class 8
PPTX
Graphical representation of data mohit verma
PDF
Graphical presentation of data
PDF
Analysis of Variance (ANOVA)
ODP
Multiple Linear Regression II and ANOVA I
PPTX
The 8 Hats of Data Visualisation
PPTX
Analysis of variance (ANOVA)
PPTX
Presentation of data
PPTX
DATA WAREHOUSING
Journalism In Post Conflict Society
Journalism, Society and New Media
The Difference Between t-tests and ANOVAs
Intro to Graphing Data Powerpoint-7th and 8th Grade
Visualiation of quantitative information
Anova and T-Test
T-test (Revised version)
Qualitative research, lab report overview, and review of lectures 1 to 7
Two-Way ANOVA Overview & SPSS interpretation
T test and ANOVA
ANOVA II
Introduction to graph class 8
Graphical representation of data mohit verma
Graphical presentation of data
Analysis of Variance (ANOVA)
Multiple Linear Regression II and ANOVA I
The 8 Hats of Data Visualisation
Analysis of variance (ANOVA)
Presentation of data
DATA WAREHOUSING
Ad

Similar to Data Visualization Summary iHub (20)

PPTX
What is Data Visualization
PPTX
From Data To Graphics
PPTX
Data visualization is the representation of data through use of common graphi...
PDF
Data Viz CE 2014 Intro and Overview
PPTX
Data visualization of Big Data analytics
PPTX
Unit III.pptx
PPTX
Introduction to Data Visualization Slides
PPTX
Datamining data visualization
PPTX
Data visualisation
PPTX
Data vizualization Techniques in Data Analytics and visualization
PPTX
Infographics & Data Visualisation
PDF
Data Visualization for Non-Programmers
PDF
Data visualization for development
PPTX
Data visualisation in data analytics with python
PDF
Webinar - Introduction to Data Visualisations and Analytics.
PDF
Storytelling with Data - See | Show | Tell | Engage
PPTX
Data-Visualization an Introduction of statistics
PDF
The Value of Data Visualization for Data Science Professionals.pdf
PDF
7-Steps to Perform Data Visualization- Pickl.AI
PDF
Mini-Training: DataViz, data-driven documents and D3.js
What is Data Visualization
From Data To Graphics
Data visualization is the representation of data through use of common graphi...
Data Viz CE 2014 Intro and Overview
Data visualization of Big Data analytics
Unit III.pptx
Introduction to Data Visualization Slides
Datamining data visualization
Data visualisation
Data vizualization Techniques in Data Analytics and visualization
Infographics & Data Visualisation
Data Visualization for Non-Programmers
Data visualization for development
Data visualisation in data analytics with python
Webinar - Introduction to Data Visualisations and Analytics.
Storytelling with Data - See | Show | Tell | Engage
Data-Visualization an Introduction of statistics
The Value of Data Visualization for Data Science Professionals.pdf
7-Steps to Perform Data Visualization- Pickl.AI
Mini-Training: DataViz, data-driven documents and D3.js
Ad

Recently uploaded (20)

PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Cell Structure & Organelles in detailed.
PDF
Classroom Observation Tools for Teachers
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Computing-Curriculum for Schools in Ghana
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Supply Chain Operations Speaking Notes -ICLT Program
Final Presentation General Medicine 03-08-2024.pptx
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Cell Structure & Organelles in detailed.
Classroom Observation Tools for Teachers
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
VCE English Exam - Section C Student Revision Booklet
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
O7-L3 Supply Chain Operations - ICLT Program
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Computing-Curriculum for Schools in Ghana
102 student loan defaulters named and shamed – Is someone you know on the list?
O5-L3 Freight Transport Ops (International) V1.pdf
human mycosis Human fungal infections are called human mycosis..pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Final Presentation General Medicine 03-08-2024.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Supply Chain Operations Speaking Notes -ICLT Program

Data Visualization Summary iHub

  • 1. Data Visualization Nikhil Srivastava, 2015 Nikhil Srivastava iHub Summer Data Jam
  • 2. Data Visualization Nikhil Srivastava, 2015 About this Lecture • Shortened version of longer course • Course website – Slides, demos, extra material – Code samples and libraries – Final projects
  • 3. Data Visualization Nikhil Srivastava, 2015 Effective Data Visualization
  • 4. Data Visualization Nikhil Srivastava, 2015 Nikhil Srivastava nsrivast@gmail.com 0713 987 262 I build products & businesses in the fields of finance & technology. I organize & visualize information for teaching & understanding. nikhilsrivastava.com
  • 5. Data Visualization Nikhil Srivastava, 2015 • What is Data Visualization? • Thinking and Seeing • From Data to Graphics • Principles and Guidelines • Building Visualizations • Advanced Topics introduction foundation & theory building blocks design & critique construction advanced Outline
  • 6. Data Visualization Nikhil Srivastava, 2015 • What is Data Visualization? • Thinking and Seeing • From Data to Graphics • Principles and Guidelines • Building Visualizations • Advanced Topics introduction foundation & theory building blocks design & critique construction advanced
  • 7. Data Visualization Nikhil Srivastava, 2015 Data Visualization Information Visualization Scientific Visualization Infographics Statistical Graphics Informative Art Art Science Statistics JournalismDesign Visual Analytics
  • 8. Data Visualization Nikhil Srivastava, 2015 City/Town County Population Ahero Kisumu 76,828 Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626 Ruiru Kiambu 238,858 Thika Kiambu 139,853
  • 9. Data Visualization Nikhil Srivastava, 2015 City/Town County Population Ahero Kisumu 76,828 Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626 Ruiru Kiambu 238,858 Thika Kiambu 139,853 • Which is the most populous city in the list? • Which county in the list has the most cities? • Which county in the list has the largest average city?
  • 10. Data Visualization Nikhil Srivastava, 2015
  • 11. Data Visualization Nikhil Srivastava, 2015 • Which is the most populous city in the list? • Which county in the list has the most cities? • Which county in the list has the largest average city?
  • 12. Data Visualization Nikhil Srivastava, 2015 • Which is the most populous city in the list? • Which county in the list has the most cities? • Which county in the list has the largest average city? • What is the population of Limuru?
  • 13. Data Visualization Nikhil Srivastava, 2015 Data Visualization is: • Useful – Answers user questions – Reduces user workload (by design, not by default)
  • 14. Data Visualization Nikhil Srivastava, 2015 Anscombe’s quartet (1973)
  • 15. Data Visualization Nikhil Srivastava, 2015 Anscombe’s quartet (1973)
  • 16. Data Visualization Nikhil Srivastava, 2015 Data Visualization is: • Important – Understand structure and patterns – Resolve ambiguity – Locate outliers
  • 17. Data Visualization Nikhil Srivastava, 2015
  • 18. Data Visualization Nikhil Srivastava, 2015 Data Visualization is: • Important – Design decisions affect interpretation
  • 19. Data Visualization Nikhil Srivastava, 2015
  • 20. Data Visualization Nikhil Srivastava, 2015
  • 21. Data Visualization Nikhil Srivastava, 2015
  • 22. Data Visualization Nikhil Srivastava, 2015 Data Visualization is: • Powerful – Communicate, teach, inspire
  • 23. Data Visualization Nikhil Srivastava, 2015 Data Visualization is: • Relevant – In one second … – Open data, open technologies – Growing use in business, education, media, advertising …
  • 24. Data Visualization Nikhil Srivastava, 2015 Definitions • “the process that transforms (abstract) data into interactive graphical representations” 1 • “finding the artificial memory that best supports our natural means of perception” 2 • “visual representations of data to amplify cognition” 3 • “giving information a visual representation” 4
  • 25. Data Visualization Nikhil Srivastava, 2015 Focus Extra purpose communicate explore, analyze data numerical, categorical text, maps, graphs, networks feature representation animation, Interactivity Course Scope
  • 26. Data Visualization Nikhil Srivastava, 2015 • What is Data Visualization? • Thinking and Seeing • From Data to Graphics • Principles and Guidelines • Building Visualizations • Advanced Topics introduction foundation & theory building blocks design & critique construction advanced
  • 27. Data Visualization Nikhil Srivastava, 2015 Bandwidth of Our Senses Why Vision?
  • 28. Data Visualization Nikhil Srivastava, 2015 The Hardware
  • 29. Data Visualization Nikhil Srivastava, 2015 The Software • High-level concepts: objects, symbols • Involves working memory • Slower, serial, conscious • Sensory input • Low-level features: orientation, shape, color, movement • Rapid, parallel, automatic Visual Perception “Bottom-up”
  • 30. Data Visualization Nikhil Srivastava, 2015 The Software • High-level concepts: objects, symbols • Involves working memory • Slow, sequential, conscious • Sensory input • Low-level features: orientation, shape, color, movement • Rapid, parallel, automatic Visual Perception “Bottom-up” “Top-down”
  • 31. Data Visualization Nikhil Srivastava, 2015 Task: Counting How many 3’s? 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686
  • 32. Data Visualization Nikhil Srivastava, 2015 Task: Counting How many 3’s? 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686
  • 33. Data Visualization Nikhil Srivastava, 2015 Task: Counting Slow, sequential, conscious Rapid, parallel, automatic 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686
  • 34. Data Visualization Nikhil Srivastava, 2015 Task: (Distractor) Search Which side has the red circle?
  • 35. Data Visualization Nikhil Srivastava, 2015 Task: (Distractor) Search Which side has the red circle?
  • 36. Data Visualization Nikhil Srivastava, 2015 Task: Search Which side has the red circle?
  • 37. Data Visualization Nikhil Srivastava, 2015 Task: Search Which side has the red circle?
  • 38. Data Visualization Nikhil Srivastava, 2015 Task: Search Slow, sequential, conscious Rapid, parallel, automatic
  • 39. Data Visualization Nikhil Srivastava, 2015 Task: Unique Search Slow, sequential, conscious Rapid, parallel, automatic (7) (5) (3)
  • 40. Data Visualization Nikhil Srivastava, 2015 Lessons for Visualization • Use “pre-attentive” attributes when possible – Color, shape, orientation (depth, motion) – Faster, higher bandwidth • Caveats – Working memory: magical number 7 (+/- 2) – Be careful mixing attributes
  • 41. Data Visualization Nikhil Srivastava, 2015 Example: Too Many Attributes
  • 42. Data Visualization Nikhil Srivastava, 2015 Example: Too Many Attributes
  • 43. Data Visualization Nikhil Srivastava, 2015 Eye != Camera
  • 44. Data Visualization Nikhil Srivastava, 2015 Eye != Camera limited aperture limited color
  • 45. Data Visualization Nikhil Srivastava, 2015
  • 46. Data Visualization Nikhil Srivastava, 2015 Eye != Camera Saccades: limited time and location
  • 47. Data Visualization Nikhil Srivastava, 2015 Eye != Camera: Relative A B
  • 48. Data Visualization Nikhil Srivastava, 2015 Eye != Camera: Relative
  • 49. Data Visualization Nikhil Srivastava, 2015 Eye != Camera: Knowledge
  • 50. Data Visualization Nikhil Srivastava, 2015 Eye != Camera: Knowledge
  • 51. Data Visualization Nikhil Srivastava, 2015 Lessons for Visualization • Human vision has limits and constraints: aperture, color, time, location • “What we see” depends on “what we know” • Attention and experience matters
  • 52. Data Visualization Nikhil Srivastava, 2015 • What is Data Visualization? • Thinking and Seeing • From Data to Graphics • Principles and Guidelines • Building Visualizations • Advanced Topics introduction foundation & theory building blocks design & critique construction advanced
  • 53. Data Visualization Nikhil Srivastava, 2015 From Data to Graphics What kind of data do we have? How can we represent the data visually? How can we organize this into a visualization? Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626 Visual Encoding
  • 54. Data Visualization Nikhil Srivastava, 2015 What kind of data do we have? How can we represent the data visually? How can we organize this into a visualization? Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626
  • 55. Data Visualization Nikhil Srivastava, 2015 Data as Input Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626 Clean Restructure Explore Analyze DATA Visualization Goals
  • 56. Data Visualization Nikhil Srivastava, 2015 Model and Attribute item attribute A attribute B … attribute M item 1 value1_A value1_B … item 2 value2_A value2_B … … … … item N valueN_M
  • 57. Data Visualization Nikhil Srivastava, 2015 Data Types CATEGORICAL ORDINAL NUMERICAL Interval Ratio Male / Female Asia / Africa / Europe True / False Small / Med / Large Low / High Yes / Maybe / No Latitude/Longitude Compass direction Time (event) Length Count Time (duration) = = = = < > < > < > + - + - * /
  • 58. Data Visualization Nikhil Srivastava, 2015 Data Types: Example • Which are categorical? (=) • Which are ordinal? (= < >) ID Gender Test Score Grade Size Temperature 1 Male 77 C Small 36.5 2 Female 85 B Large 37.2 3 Female 95 A Medium 36.7 4 Male 90 A Large 37.4 • Which are interval? (= < > + -) • Which are ratio? (= < > + - * /)
  • 59. Data Visualization Nikhil Srivastava, 2015 Data Type Transformation CATEGORICAL ORDINAL NUMERICAL Interval Ratio Male / Female Asia / Africa / Europe True / False Small / Med / Large Low / High Yes / Maybe / No Time Latitude/Longitude Compass direction Time Length Count Binning/Cate gorizing Differencing/ Normalization
  • 60. Data Visualization Nikhil Srivastava, 2015 Advanced Data Types • Networks/Graphs – Hierarchies/Trees • Text • Maps: points, regions, routes
  • 61. Data Visualization Nikhil Srivastava, 2015 What kind of data do we have? How can we represent the data visually? How can we organize this into a visualization? Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626
  • 62. Data Visualization Nikhil Srivastava, 2015 Visual Encodings Marks point line area volume Channels position size shape color angle/tilt
  • 63. Data Visualization Nikhil Srivastava, 2015 Channel Effectiveness
  • 64. Data Visualization Nikhil Srivastava, 2015 Channel Effectiveness “Spatial position is such a good visual coding of data that the first decision of visualization design is which variables get spatial encoding at the expense of others”
  • 65. Data Visualization Nikhil Srivastava, 2015 Color as a Channel Categorical Quantitative Hue Good (6-8 max) Poor Value Poor Good Saturation Poor Okay
  • 66. Data Visualization Nikhil Srivastava, 2015 What kind of data do we have? How can we represent the data visually? How can we organize this into a visualization? Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626
  • 67. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Scatter Plot point position 2 quantitative
  • 68. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Scatter + Hue point position, color 2 quantitative, 1 categorical
  • 69. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Scatter + Size (“Bubble”) point position, size 3 quantitative
  • 70. Data Visualization Nikhil Srivastava, 2015 Scatter Plot – Applications CORRELATION GROUPING OUTLIERS
  • 71. Data Visualization Nikhil Srivastava, 2015 Scatter Plot – Dangers OCCLUSION (DENSITY) OCCLUSION (OVERLAP) 3-D
  • 72. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Line Chart line position (orientation) 2 quantitative
  • 73. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Area Chart area size (length) 2 quantitative
  • 74. Data Visualization Nikhil Srivastava, 2015 Line Chart – Applications PATTERN OVER TIME COMPARISON
  • 75. Data Visualization Nikhil Srivastava, 2015 Line Chart – Dangers Y SCALING X SCALING OVERLOAD
  • 76. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Bar Chart line size (length) 1 categorical, 1 quantitative
  • 77. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Histogram line size (length) 1 ordinal/quantitative, 1 quantitative (count)
  • 78. Data Visualization Nikhil Srivastava, 2015 Bar Chart – Applications COMPARE CATEGORIES DISTRIBUTION
  • 79. Data Visualization Nikhil Srivastava, 2015 Bar Chart – Dangers TOO MANY CATEGORIES POORLY SORTED
  • 80. Data Visualization Nikhil Srivastava, 2015 type mark channel data represented Pie Chart area size (angle) 1 quantitative
  • 81. Data Visualization Nikhil Srivastava, 2015 Pie Chart – Dangers AREA SCALE SIMILAR AREAS OVERLOAD
  • 82. Data Visualization Nikhil Srivastava, 2015 Multi-Series Bar Charts GROUPED BAR CHART STACKED BAR CHART
  • 83. Data Visualization Nikhil Srivastava, 2015 Multi-Series Line Charts MULTIPLE LINE STACKED AREA CHART
  • 84. Data Visualization Nikhil Srivastava, 2015 Normalization NORMALIZED BAR NORMALIZED AREA
  • 85. Data Visualization Nikhil Srivastava, 2015 Small Multiples Chart
  • 86. Data Visualization Nikhil Srivastava, 2015 Advanced Charts Treemap (Hierarchical Data) Channels: ? Strengths: nested relationships Concerns: order vs aspect ratio
  • 87. Data Visualization Nikhil Srivastava, 2015 Advanced Charts Multi-Level Pie (Hierarchical Data) Channels: ? Strengths: nested relationships Concerns: readability
  • 88. Data Visualization Nikhil Srivastava, 2015 Advanced Charts Heat Map (Table/Field Data) Channels: ? Strengths: pattern/outlier detection Concerns: ordering/ clustering
  • 89. Data Visualization Nikhil Srivastava, 2015 Advanced Charts Choropleth Map (Region Data) Channels: ? Strengths: geography Concerns: region size color spectrum
  • 90. Data Visualization Nikhil Srivastava, 2015 Advanced Charts Cartogram (Region Data) Channels: ? Strengths: geographic pattern Concerns: base map knowledge
  • 91. Data Visualization Nikhil Srivastava, 2015 • What is Data Visualization? • Thinking and Seeing • From Data to Graphics • Principles and Guidelines • Building Visualizations • Advanced Topics introduction foundation & theory building blocks design & critique construction advanced
  • 92. Data Visualization Nikhil Srivastava, 2015 From Science to Art • Design principles* • Style guidelines* *dependent on visualization context and objective (and author)
  • 93. Data Visualization Nikhil Srivastava, 2015 Design Principles
  • 94. Data Visualization Nikhil Srivastava, 2015 Design Principles • Integrity – Tell the truth with data • Effectiveness – Achieve visualization objectives • Aesthetics – Be compelling, vivid, beautiful
  • 95. Data Visualization Nikhil Srivastava, 2015 Integrity Lie Ratio = size of effect in graphic size of effect in data
  • 96. Data Visualization Nikhil Srivastava, 2015 Integrity
  • 97. Data Visualization Nikhil Srivastava, 2015 Integrity “show data variation, not design variation”
  • 98. Data Visualization Nikhil Srivastava, 2015 Effectiveness* Data/Ink Ratio = ink representing data total ink *according to Tufte
  • 99. Data Visualization Nikhil Srivastava, 2015 Effectiveness* *according to Tufte avoid “chart junk”
  • 100. Data Visualization Nikhil Srivastava, 2015 Avoid Chart Junk
  • 101. Data Visualization Nikhil Srivastava, 2015 Avoid Chart Junk
  • 102. Data Visualization Nikhil Srivastava, 2015 Avoid Chart Junk
  • 103. Data Visualization Nikhil Srivastava, 2015 Avoid Chart Junk
  • 104. Data Visualization Nikhil Srivastava, 2015 Avoid Chart Junk
  • 105. Data Visualization Nikhil Srivastava, 2015 Avoid Chart Junk
  • 106. Data Visualization Nikhil Srivastava, 2015 Effectiveness (Few)
  • 107. Data Visualization Nikhil Srivastava, 2015 Practical Guidelines • Avoid 3-D charts • Focus on substance over graphics • Avoid separate legends and keys • Faint grids/guidelines • Avoid unnecessary textures and colors
  • 108. Data Visualization Nikhil Srivastava, 2015 Color Guidelines • To label • To emphasize • To liven or decorate
  • 109. Data Visualization Nikhil Srivastava, 2015 Bad Color
  • 110. Data Visualization Nikhil Srivastava, 2015 Good Color
  • 111. Data Visualization Nikhil Srivastava, 2015 More Color Guidelines • Use color only when necessary • Use saturated colors for data labels, thin lines, small areas • Use less saturated colors for large areas, backgrounds • Use tools like ColorBrewer
  • 112. Data Visualization Nikhil Srivastava, 2015 • What is Data Visualization? • Thinking and Seeing • From Data to Graphics • Principles and Guidelines • Building Visualizations • Advanced Topics introduction foundation & theory building blocks design & critique construction advanced
  • 113. Data Visualization Nikhil Srivastava, 2015 What Software to Use? Athi River Machakos 139,380 Awasi Kisumu 93,369 Kangundo-Tala Machakos 218,557 Karuri Kiambu 129,934 Kiambu Kiambu 88,869 Kikuyu Kiambu 233,231 Kisumu Kisumu 409,928 Kitale Trans-Nzoia 106,187 Kitui Kitui 155,896 Limuru Kiambu 104,282 Machakos Machakos 150,041 Molo Nakuru 107,806 Mwingi Kitui 83,803 Naivasha Nakuru 181,966 Nakuru Nakuru 307,990 Nandi Hills Trans-Nzoia 73,626 Clean Restructure Explore Analyze DATA Visualization Goals
  • 114. Data Visualization Nikhil Srivastava, 2015 Visualization Software • Web friendly – Highcharts – InfoVis – Processing – D3 • Statistics – Python (Matplotlib) – R (ggplot2) • Maps – Google Charts – Leaflet – CartoDB • Dashboards • Graphs – GraphViz – Gephi
  • 115. Data Visualization Nikhil Srivastava, 2015 Highcharts - Reference • Examples – Hello, Chart – Basic Charts • Documentation, API • Highcharts Cloud
  • 116. Data Visualization Nikhil Srivastava, 2015 • What is Data Visualization? • Thinking and Seeing • From Data to Graphics • Principles and Guidelines • Building Visualizations • Advanced Topics introduction foundation & theory building blocks design & critique construction advanced
  • 117. Data Visualization Nikhil Srivastava, 2015 The Ebb and Flow of Movies NY Times, 2008 Advanced Visualizations
  • 118. Data Visualization Nikhil Srivastava, 2015 Word Cloud - “Data Visualization” Wikipedia Page Wordle
  • 119. Data Visualization Nikhil Srivastava, 2015 ZIPScribble Robert Kosara, 2006
  • 120. Data Visualization Nikhil Srivastava, 2015 Twitter Networks PJ Lamberson, 2012
  • 121. Data Visualization Nikhil Srivastava, 2015 Blogs • Infosthetics.com • Visualizing.org • FlowingData.com
  • 122. Data Visualization Nikhil Srivastava, 2015 Nikhil Srivastava nsrivast@gmail.com

Editor's Notes

  • #3: Lastly, before we get started – a few notes on the course. We’re going to use a variety of formats: lectures, discussion, demos, homework, coding, presentations. (The first class will be more lecture than usual.) Also, please jump in with questions and discussion anytime. Please continue to monitor the course website. It will have links to everything we cover in class as well as extra material. It will also have links to code samples and libraries, and we’ll put all the projects up at the end of the class. The website will be available after the class ends for your reference.
  • #4: We’ll learn about what it means for DV to be effective - to be purposefully designed, to use appropriate techniques, and to achieve a specific purpose.
  • #5: Who I am, where I’m from, what I do, what I’m about.
  • #7: Alright, let’s get started – what is data visualization?
  • #8: It’s difficult to define precisely: as a field, DV has many related and overlapping goals and descriptions. It is often used interchangeably with different terms, and it falls under many different disciplines.
  • #9: Better than a definition is an example. Let’s take a look at this table of Kenyan cities showing city name, county name, and city population. Take a moment to understand the structure of this data, because I’m about to ask you a few questions on it.
  • #10: Better than a definition is an example. Let’s take a look at this table of Kenyan cities showing city name, county name, and city population. Take a moment to understand the structure of this data, because I’m about to ask you a few questions on it.
  • #11: Now, let’s answer the same questions by using the visualization. What are the cognitive steps required? How easy or difficult is the process?
  • #12: Now, let’s answer the same questions by using the visualization. What are the cognitive steps required? How easy or difficult is the process?
  • #13: Now let’s ask an additional question we didn’t ask before.
  • #14: We’ve learned that data visualization can be useful in telling us things about a set of data, making it easier to find information and answer questions. We’ve also learned that this usefulness depends both on the design of the visualization and the specific information we are looking for.
  • #15: Let’s take a look at another example. This is a data set called Anscombe’s Quartet, named after the statistician who devised it. It consists of four separate sets of data, each of which is a list of ten pairs of numbers. So there are ten different X and Y values that are paired. To make this a bit more concrete, you can imagine that each data set describes ten people, X represents their height and Y represents their weight. The interesting thing is that all four of these data sets have exactly the same relationship between the X and Y numbers. All X values have the same average and standard deviation, and so do all Y values. Furthermore, the correlation between X and Y is the same for all sets. And except for the last one (which has a bunch of 8s), there’s not much we can do to distinguish them or describe them meaningfully by just looking at the numbers in the table. Now let’s see what happens when we plot them.
  • #16: Here we’ve visualized the data in what’s known as a scatter plot. Each dot represents one of the ten pairs, located on the horizontal axis by X value and on the vertical axis by Y value. By visualizing the data, we see patterns, outliers, and relationships that were impossible to detect in the chart.
  • #17: So we’ve learned that DV is important. It can help us resolve ambiguous data, locate outliers, and generally understand the structure and pattern of a data set.
  • #20: Locations of geocoded tweets in Nairobi before the 2013 presidential elections, a collaborative between Ushahidi and Hivos.
  • #21: Infographic of twitter activity in Africa in late 2013 produced by Portland Communications.
  • #22: Interactive tool from the Gapminder Foundation animating the health and wealth of world countries over time. This screenshot shows the historical path of Kenya from 1800 to 2013. Note the number of data types (life expectancy, GDP, population per country and year) and variety of visual encodings (x- and y- position, size, color, time).
  • #25: [1] Alexander Lex, Harvard CS171 (2015) [2] Bertin (1967) [3] Sneiderman et al. (1999) [4] John Stasko, CS7450 (2013)
  • #27: Alright, let’s get started – what is data visualization?
  • #28: Visualization by Tor Norretranders, referenced by David McCandless, demonstrating the data bandwidth of each of our senses. Note: this is not a very good visualization! (Is the size of the sight region measured by the blue shape only, or the full rectangle?)
  • #29: This hierarchy persists. Also, at each level we have detections of different features and objects. Face-specific cells.
  • #65: Readings in Information Visualization: Using Vision to Think (Ben Schneiderman et al, 1999)