SlideShare a Scribd company logo
Day 3 of Free Intuitive Calculus Course: Limits by Factoring
Example 1
Example 1
Let’s consider the limit:
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
lim
x→2
x2 − 4
x − 2
=
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
lim
x→2
x2 − 4
x − 2
= lim
x→2
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
lim
x→2
x2 − 4
x − 2
= lim
x→2
(x − 2)(x + 2)
x − 2
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
lim
x→2
x2 − 4
x − 2
= lim
x→2
$$$$(x − 2)(x + 2)
$$$x − 2
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
lim
x→2
x2 − 4
x − 2
= lim
x→2
$$$$(x − 2)(x + 2)
$$$x − 2
= lim
x→2
(x + 2)
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
lim
x→2
x2 − 4
x − 2
= lim
x→2
$$$$(x − 2)(x + 2)
$$$x − 2
= lim
x→2
(x + 2) = 2 + 2 =
Example 1
Let’s consider the limit:
lim
x→2
x2 − 4
x − 2
We note that at x = 2, our function is indeterminate.
It equals 0
0!.
But we can factor:
lim
x→2
x2 − 4
x − 2
= lim
x→2
$$$$(x − 2)(x + 2)
$$$x − 2
= lim
x→2
(x + 2) = 2 + 2 = 4
Example 1
Example 1
What is the graph of this function?
Example 1
What is the graph of this function?
f (x) =
x2 − 2
x + 2
Example 1
What is the graph of this function?
f (x) =
x2 − 2
x + 2
Example 1
What is the graph of this function?
f (x) =
x2 − 2
x + 2
It is the graph of x + 2, but with a hole!
Example 2
Example 2
lim
x→1
x3 − 1
x − 1
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
lim
x→1
x3 − 1
x − 1
=
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
lim
x→1
x3 − 1
x − 1
= lim
x→1
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
lim
x→1
x3 − 1
x − 1
= lim
x→1
(x − 1)(x2 + x + 1)
x − 1
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
lim
x→1
x3 − 1
x − 1
= lim
x→1
$$$$(x − 1)(x2 + x + 1)
$$$x − 1
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
lim
x→1
x3 − 1
x − 1
= lim
x→1
$$$$(x − 1)(x2 + x + 1)
$$$x − 1
= lim
x→1
x2
+ x + 1
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
lim
x→1
x3 − 1
x − 1
= lim
x→1
$$$$(x − 1)(x2 + x + 1)
$$$x − 1
= lim
x→1
x2
+ x + 1 = 12
+ 1 + 1
Example 2
lim
x→1
x3 − 1
x − 1
Remember how to factor the numerator?
lim
x→1
x3 − 1
x − 1
= lim
x→1
$$$$(x − 1)(x2 + x + 1)
$$$x − 1
= lim
x→1
x2
+ x + 1 = 12
+ 1 + 1 = 3
Example 3
Example 3
lim
h→0
(a + h)3 − a3
h
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
a3 + 3a2h + 3ah2 + h3 − a3
h
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
lim
h→0
3a2h + 3ah2 + h3
h
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
lim
h→0
3a2h + 3ah2 + h3
h
= lim
h→0
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
lim
h→0
3a2h + 3ah2 + h3
h
= lim
h→0
h 3a2 + 3ah + h2
h
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
lim
h→0
3a2h + 3ah2 + h3
h
= lim
h→0
¡h 3a2 + 3ah + h2
¡h
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
lim
h→0
3a2h + 3ah2 + h3
h
= lim
h→0
¡h 3a2 + 3ah + h2
¡h
= lim
h→0
3a2
+ 3ah + h2
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
lim
h→0
3a2h + 3ah2 + h3
h
= lim
h→0
¡h 3a2 + 3ah + h2
¡h
= lim
h→0
3a2
+ 3ah + h2
= 3a2
+ 3a.0 + 02
Example 3
lim
h→0
(a + h)3 − a3
h
Here a is a constant. Let’s expand (a + h)3:
lim
h→0
  a3 + 3a2h + 3ah2 + h3 −  a3
h
=
lim
h→0
3a2h + 3ah2 + h3
h
= lim
h→0
¡h 3a2 + 3ah + h2
¡h
= lim
h→0
3a2
+ 3ah + h2
= 3a2
+ 3a.0 + 02
= 3a2
Day 3 of Free Intuitive Calculus Course: Limits by Factoring

More Related Content

PDF
Day 2: Basic Properties of Limits
PDF
Trigonometric Limits
PDF
Day 5 of the Intuitive Online Calculus Course: The Squeeze Theorem
PDF
Day 1: Intuitive Idea and Notation
PDF
Limits by Rationalization
PDF
Limits by Factoring
PPTX
Theorems on limits
KEY
1201 ch 12 day 1
Day 2: Basic Properties of Limits
Trigonometric Limits
Day 5 of the Intuitive Online Calculus Course: The Squeeze Theorem
Day 1: Intuitive Idea and Notation
Limits by Rationalization
Limits by Factoring
Theorems on limits
1201 ch 12 day 1

What's hot (20)

KEY
1202 ch 12 day 2
PDF
Derivatives Lesson Oct 15
KEY
1203 ch 12 day 3
PDF
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
PPSX
Limit - Mohd Noor
PPTX
PPTX
Derivatives
PDF
Lesson 1 Nov 12 09
PDF
Lesson 8: Derivatives of Polynomials and Exponential functions
PPTX
Rules of derivatives 2.2
PDF
Limits Involving Number e
PDF
Limits and derivatives
PDF
Functions of several variables
PPTX
Integral calculus
PDF
Derivatives of Trigonometric Functions, Part 2
PPT
Fundamental theorem of algebra
KEY
1204 ch 12 day 4
PPT
4.3 derivative of exponential functions
PPTX
4.4 l'hopital's rule
PPT
4.3 derivatives of inv erse trig. functions
1202 ch 12 day 2
Derivatives Lesson Oct 15
1203 ch 12 day 3
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Limit - Mohd Noor
Derivatives
Lesson 1 Nov 12 09
Lesson 8: Derivatives of Polynomials and Exponential functions
Rules of derivatives 2.2
Limits Involving Number e
Limits and derivatives
Functions of several variables
Integral calculus
Derivatives of Trigonometric Functions, Part 2
Fundamental theorem of algebra
1204 ch 12 day 4
4.3 derivative of exponential functions
4.4 l'hopital's rule
4.3 derivatives of inv erse trig. functions
Ad

Similar to Day 3 of Free Intuitive Calculus Course: Limits by Factoring (20)

PDF
Revmidterm 1
PPTX
17 integrals of rational functions x
PPT
functions limits and continuity
PPT
Functions limits and continuity
PDF
Calculus 08 techniques_of_integration
PDF
Mat 121-Limits education tutorial 22 I.pdf
PDF
Limits of a function: Introductory to Calculus
PPT
L4 one sided limits limits at infinity
PDF
Trig substitution
PDF
Limits at Infinity, Part 3
PDF
Limits infinity-3
PPT
Presentacion calculo1
PPT
Derivatives
PDF
7 L'Hospital.pdf
PPT
Duality
PDF
limits and continuity
PDF
Implicit Differentiation, Part 2
PPT
CHAPTER 1.ppt
PDF
solving a trig problem and sketching a graph example problems
PPTX
LESSON-1-DERIVATIVES.pptxvjjhggkkkkkhggfff
Revmidterm 1
17 integrals of rational functions x
functions limits and continuity
Functions limits and continuity
Calculus 08 techniques_of_integration
Mat 121-Limits education tutorial 22 I.pdf
Limits of a function: Introductory to Calculus
L4 one sided limits limits at infinity
Trig substitution
Limits at Infinity, Part 3
Limits infinity-3
Presentacion calculo1
Derivatives
7 L'Hospital.pdf
Duality
limits and continuity
Implicit Differentiation, Part 2
CHAPTER 1.ppt
solving a trig problem and sketching a graph example problems
LESSON-1-DERIVATIVES.pptxvjjhggkkkkkhggfff
Ad

Recently uploaded (20)

PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
RMMM.pdf make it easy to upload and study
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Lesson notes of climatology university.
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Computing-Curriculum for Schools in Ghana
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
master seminar digital applications in india
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Sports Quiz easy sports quiz sports quiz
Supply Chain Operations Speaking Notes -ICLT Program
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
RMMM.pdf make it easy to upload and study
STATICS OF THE RIGID BODIES Hibbelers.pdf
Insiders guide to clinical Medicine.pdf
VCE English Exam - Section C Student Revision Booklet
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
2.FourierTransform-ShortQuestionswithAnswers.pdf
Lesson notes of climatology university.
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Microbial diseases, their pathogenesis and prophylaxis
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Computing-Curriculum for Schools in Ghana
O7-L3 Supply Chain Operations - ICLT Program
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
master seminar digital applications in india
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Sports Quiz easy sports quiz sports quiz

Day 3 of Free Intuitive Calculus Course: Limits by Factoring

  • 4. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2
  • 5. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate.
  • 6. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!.
  • 7. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor:
  • 8. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor: lim x→2 x2 − 4 x − 2 =
  • 9. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor: lim x→2 x2 − 4 x − 2 = lim x→2
  • 10. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor: lim x→2 x2 − 4 x − 2 = lim x→2 (x − 2)(x + 2) x − 2
  • 11. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor: lim x→2 x2 − 4 x − 2 = lim x→2 $$$$(x − 2)(x + 2) $$$x − 2
  • 12. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor: lim x→2 x2 − 4 x − 2 = lim x→2 $$$$(x − 2)(x + 2) $$$x − 2 = lim x→2 (x + 2)
  • 13. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor: lim x→2 x2 − 4 x − 2 = lim x→2 $$$$(x − 2)(x + 2) $$$x − 2 = lim x→2 (x + 2) = 2 + 2 =
  • 14. Example 1 Let’s consider the limit: lim x→2 x2 − 4 x − 2 We note that at x = 2, our function is indeterminate. It equals 0 0!. But we can factor: lim x→2 x2 − 4 x − 2 = lim x→2 $$$$(x − 2)(x + 2) $$$x − 2 = lim x→2 (x + 2) = 2 + 2 = 4
  • 16. Example 1 What is the graph of this function?
  • 17. Example 1 What is the graph of this function? f (x) = x2 − 2 x + 2
  • 18. Example 1 What is the graph of this function? f (x) = x2 − 2 x + 2
  • 19. Example 1 What is the graph of this function? f (x) = x2 − 2 x + 2 It is the graph of x + 2, but with a hole!
  • 22. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator?
  • 23. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator? lim x→1 x3 − 1 x − 1 =
  • 24. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator? lim x→1 x3 − 1 x − 1 = lim x→1
  • 25. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator? lim x→1 x3 − 1 x − 1 = lim x→1 (x − 1)(x2 + x + 1) x − 1
  • 26. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator? lim x→1 x3 − 1 x − 1 = lim x→1 $$$$(x − 1)(x2 + x + 1) $$$x − 1
  • 27. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator? lim x→1 x3 − 1 x − 1 = lim x→1 $$$$(x − 1)(x2 + x + 1) $$$x − 1 = lim x→1 x2 + x + 1
  • 28. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator? lim x→1 x3 − 1 x − 1 = lim x→1 $$$$(x − 1)(x2 + x + 1) $$$x − 1 = lim x→1 x2 + x + 1 = 12 + 1 + 1
  • 29. Example 2 lim x→1 x3 − 1 x − 1 Remember how to factor the numerator? lim x→1 x3 − 1 x − 1 = lim x→1 $$$$(x − 1)(x2 + x + 1) $$$x − 1 = lim x→1 x2 + x + 1 = 12 + 1 + 1 = 3
  • 31. Example 3 lim h→0 (a + h)3 − a3 h
  • 32. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3:
  • 33. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0 a3 + 3a2h + 3ah2 + h3 − a3 h
  • 34. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h =
  • 35. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h = lim h→0 3a2h + 3ah2 + h3 h
  • 36. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h = lim h→0 3a2h + 3ah2 + h3 h = lim h→0
  • 37. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h = lim h→0 3a2h + 3ah2 + h3 h = lim h→0 h 3a2 + 3ah + h2 h
  • 38. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h = lim h→0 3a2h + 3ah2 + h3 h = lim h→0 ¡h 3a2 + 3ah + h2 ¡h
  • 39. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h = lim h→0 3a2h + 3ah2 + h3 h = lim h→0 ¡h 3a2 + 3ah + h2 ¡h = lim h→0 3a2 + 3ah + h2
  • 40. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h = lim h→0 3a2h + 3ah2 + h3 h = lim h→0 ¡h 3a2 + 3ah + h2 ¡h = lim h→0 3a2 + 3ah + h2 = 3a2 + 3a.0 + 02
  • 41. Example 3 lim h→0 (a + h)3 − a3 h Here a is a constant. Let’s expand (a + h)3: lim h→0   a3 + 3a2h + 3ah2 + h3 −  a3 h = lim h→0 3a2h + 3ah2 + h3 h = lim h→0 ¡h 3a2 + 3ah + h2 ¡h = lim h→0 3a2 + 3ah + h2 = 3a2 + 3a.0 + 02 = 3a2