SlideShare a Scribd company logo
Implicit Differentiation, Part 2
Implicit Differentiation, Part 2
Example 2
Example 2
Let’s find y given that:
Example 2
Let’s find y given that:
4x2
y − 5y = x3
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y − 5
dy
dx
=
d
dx
x3
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
dy
dx
=
d
dx
x3
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
d
dx
x3
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
4.
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
4.(2x).
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
4.(2x).y+
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
4.(2x).y + 4x2
.
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
4.(2x).y + 4x2
.y −
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
4.(2x).y + 4x2
.y − 5y =
Example 2
Let’s find y given that:
4x2
y − 5y = x3
First, we apply the derivative to both sides:
d
dx
4x2
y − 5y =
d
dx
x3
d
dx
4x2
y
product rule!
−5
¡
¡
¡!
y
dy
dx
=
&
&
&
&&b
3x2
d
dx
x3
Here we apply the product rule:
4.(2x).y + 4x2
.y − 5y = 3x2
Example 2
Example 2
We have the relation:
Example 2
We have the relation:
8xy + 4x2
y − 5y = 3x2
Example 2
We have the relation:
8xy + 4x2
y − 5y = 3x2
We only need to solve for y :
Example 2
We have the relation:
8xy + 4x2
y − 5y = 3x2
We only need to solve for y :
y 4x2
− 5 = 3x2
− 8xy
Example 2
We have the relation:
8xy + 4x2
y − 5y = 3x2
We only need to solve for y :
y 4x2
− 5 = 3x2
− 8xy
y =
3x2 − 8xy
4x2 − 5
Example 2
We have the relation:
8xy + 4x2
y − 5y = 3x2
We only need to solve for y :
y 4x2
− 5 = 3x2
− 8xy
y =
3x2 − 8xy
4x2 − 5
Example 3
Example 3
Let’s consider the equation:
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
d
dx
a
2
3
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
2
3
.
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
2
3
.x
2
3
−1
+
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
2
3
.x
2
3
−1
+
2
3
.
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
2
3
.x
2
3
−1
+
2
3
.y
2
3
−1
.
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
2
3
.x
2
3
−1
+
2
3
.y
2
3
−1
.y = 0
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
2
3
.x
2
3
−1
+
2
3
.y
2
3
−1
.y = 0
2
3
.x−1
3 +
2
3
.y−1
3 .y = 0
Example 3
Let’s consider the equation:
x
2
3 + y
2
3 = a
2
3
Let’s find y :
d
dx
x
2
3 + y
2
3 =
¨¨¨
¨¨B0
d
dx
a
2
3
d
dx
x
2
3 +
d
dx
y
2
3 = 0
Here we apply the chain rule:
2
3
.x
2
3
−1
+
2
3
.y
2
3
−1
.y = 0
£
££2
3
.x−1
3 +
£
££2
3
.y−1
3 .y = 0
Example 3
Example 3
We now have the equation:
Example 3
We now have the equation:
x−1
3 + y−1
3 y = 0
Example 3
We now have the equation:
x−1
3 + y−1
3 y = 0
We just solve for y :
Example 3
We now have the equation:
x−1
3 + y−1
3 y = 0
We just solve for y :
y−1
3 y = −x−1
3
Example 3
We now have the equation:
x−1
3 + y−1
3 y = 0
We just solve for y :
y−1
3 y = −x−1
3
y = −
x−1
3
y−1
3
Example 3
We now have the equation:
x−1
3 + y−1
3 y = 0
We just solve for y :
y−1
3 y = −x−1
3
y = −
x−1
3
y−1
3
Implicit Differentiation, Part 2

More Related Content

PPT
4.1 implicit differentiation
PDF
Lesson 11: Implicit Differentiation
PPT
Chain Rule
PPT
The chain rule
PPT
Chain Rule
PPT
P9 quotient
PPT
P9 chainrule
PPT
P9 products
4.1 implicit differentiation
Lesson 11: Implicit Differentiation
Chain Rule
The chain rule
Chain Rule
P9 quotient
P9 chainrule
P9 products

What's hot (20)

PPTX
The Chain Rule Powerpoint Lesson
PDF
Lesson 11: The Chain Rule
PPT
Pt 3&4 turunan fungsi implisit dan cyclometri
PPTX
4.1 the chain rule
PDF
Day 2: Basic Properties of Limits
PPT
6.1 & 6.4 an overview of the area problem area
DOCX
PPT
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
PDF
9-9 Notes
PDF
93311880 limites-trigonometricos
PDF
01 derivadas
PDF
Day 1: Intuitive Idea and Notation
PDF
Cuaderno+de+integrales
PDF
Solve ODE - BVP through the Least Squares Method
PPTX
Factoring polynomials
PPTX
1a factorization ok
PDF
maths basics
PDF
Trigonometric Limits
PDF
Ejerciciosderivadasresueltos
The Chain Rule Powerpoint Lesson
Lesson 11: The Chain Rule
Pt 3&4 turunan fungsi implisit dan cyclometri
4.1 the chain rule
Day 2: Basic Properties of Limits
6.1 & 6.4 an overview of the area problem area
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
9-9 Notes
93311880 limites-trigonometricos
01 derivadas
Day 1: Intuitive Idea and Notation
Cuaderno+de+integrales
Solve ODE - BVP through the Least Squares Method
Factoring polynomials
1a factorization ok
maths basics
Trigonometric Limits
Ejerciciosderivadasresueltos
Ad

Viewers also liked (12)

RTF
Centre comercial
PPT
Pengantar Antropologi
PPTX
блиц турнир 2012 (отзывы)
PDF
Ficha técnica
PPSX
PDF
Meddelelser 36 1991
PPT
Pengantar Sosiologi
DOC
Géographie urbaine
DOC
Plancher 1
PPTX
Workplace violence prevention workshop lesson 1
PDF
Copia di a on mars eng
Centre comercial
Pengantar Antropologi
блиц турнир 2012 (отзывы)
Ficha técnica
Meddelelser 36 1991
Pengantar Sosiologi
Géographie urbaine
Plancher 1
Workplace violence prevention workshop lesson 1
Copia di a on mars eng
Ad

Similar to Implicit Differentiation, Part 2 (20)

PPTX
Diifferential equation akshay
PDF
lec12.pdf
PPTX
Antiderivatives: Power, Sum and Difference
PDF
Derivatives of Trigonometric Functions, Part 2
PDF
Implicit Differentiation, Part 1
PPSX
Chapter 4- Learning Outcome 1_Mathematics for Technologists
PDF
College textbook business math and statistics - section b - business mathem...
PPTX
Rules of Derivative
PPTX
DERIVATIVES implicit function.pptx
PPTX
2.7 chain rule short cuts
PDF
Lesson 10: the Product and Quotient Rules
PDF
Math refresher
DOCX
Chain rule
DOCX
Chain rule
PDF
math1مرحلة اولى -compressed.pdf
PPTX
differentiol equation.pptx
PDF
intro to Implicit differentiation
PDF
Em05 pe
PPTX
Integral and Differential CalculusI.pptx
PPTX
Linear Rules
Diifferential equation akshay
lec12.pdf
Antiderivatives: Power, Sum and Difference
Derivatives of Trigonometric Functions, Part 2
Implicit Differentiation, Part 1
Chapter 4- Learning Outcome 1_Mathematics for Technologists
College textbook business math and statistics - section b - business mathem...
Rules of Derivative
DERIVATIVES implicit function.pptx
2.7 chain rule short cuts
Lesson 10: the Product and Quotient Rules
Math refresher
Chain rule
Chain rule
math1مرحلة اولى -compressed.pdf
differentiol equation.pptx
intro to Implicit differentiation
Em05 pe
Integral and Differential CalculusI.pptx
Linear Rules

Recently uploaded (20)

PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Computing-Curriculum for Schools in Ghana
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Pharma ospi slides which help in ospi learning
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Sports Quiz easy sports quiz sports quiz
Abdominal Access Techniques with Prof. Dr. R K Mishra
Computing-Curriculum for Schools in Ghana
VCE English Exam - Section C Student Revision Booklet
Microbial disease of the cardiovascular and lymphatic systems
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
human mycosis Human fungal infections are called human mycosis..pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Insiders guide to clinical Medicine.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf

Implicit Differentiation, Part 2

  • 4. Example 2 Let’s find y given that:
  • 5. Example 2 Let’s find y given that: 4x2 y − 5y = x3
  • 6. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides:
  • 7. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3
  • 8. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y − 5 dy dx = d dx x3
  • 9. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 dy dx = d dx x3
  • 10. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = d dx x3
  • 11. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3
  • 12. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule:
  • 13. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule: 4.
  • 14. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule: 4.(2x).
  • 15. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule: 4.(2x).y+
  • 16. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule: 4.(2x).y + 4x2 .
  • 17. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule: 4.(2x).y + 4x2 .y −
  • 18. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule: 4.(2x).y + 4x2 .y − 5y =
  • 19. Example 2 Let’s find y given that: 4x2 y − 5y = x3 First, we apply the derivative to both sides: d dx 4x2 y − 5y = d dx x3 d dx 4x2 y product rule! −5 ¡ ¡ ¡! y dy dx = & & & &&b 3x2 d dx x3 Here we apply the product rule: 4.(2x).y + 4x2 .y − 5y = 3x2
  • 21. Example 2 We have the relation:
  • 22. Example 2 We have the relation: 8xy + 4x2 y − 5y = 3x2
  • 23. Example 2 We have the relation: 8xy + 4x2 y − 5y = 3x2 We only need to solve for y :
  • 24. Example 2 We have the relation: 8xy + 4x2 y − 5y = 3x2 We only need to solve for y : y 4x2 − 5 = 3x2 − 8xy
  • 25. Example 2 We have the relation: 8xy + 4x2 y − 5y = 3x2 We only need to solve for y : y 4x2 − 5 = 3x2 − 8xy y = 3x2 − 8xy 4x2 − 5
  • 26. Example 2 We have the relation: 8xy + 4x2 y − 5y = 3x2 We only need to solve for y : y 4x2 − 5 = 3x2 − 8xy y = 3x2 − 8xy 4x2 − 5
  • 28. Example 3 Let’s consider the equation:
  • 29. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3
  • 30. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y :
  • 31. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = d dx a 2 3
  • 32. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3
  • 33. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0
  • 34. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule:
  • 35. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule: 2 3 .
  • 36. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule: 2 3 .x 2 3 −1 +
  • 37. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule: 2 3 .x 2 3 −1 + 2 3 .
  • 38. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule: 2 3 .x 2 3 −1 + 2 3 .y 2 3 −1 .
  • 39. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule: 2 3 .x 2 3 −1 + 2 3 .y 2 3 −1 .y = 0
  • 40. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule: 2 3 .x 2 3 −1 + 2 3 .y 2 3 −1 .y = 0 2 3 .x−1 3 + 2 3 .y−1 3 .y = 0
  • 41. Example 3 Let’s consider the equation: x 2 3 + y 2 3 = a 2 3 Let’s find y : d dx x 2 3 + y 2 3 = ¨¨¨ ¨¨B0 d dx a 2 3 d dx x 2 3 + d dx y 2 3 = 0 Here we apply the chain rule: 2 3 .x 2 3 −1 + 2 3 .y 2 3 −1 .y = 0 £ ££2 3 .x−1 3 + £ ££2 3 .y−1 3 .y = 0
  • 43. Example 3 We now have the equation:
  • 44. Example 3 We now have the equation: x−1 3 + y−1 3 y = 0
  • 45. Example 3 We now have the equation: x−1 3 + y−1 3 y = 0 We just solve for y :
  • 46. Example 3 We now have the equation: x−1 3 + y−1 3 y = 0 We just solve for y : y−1 3 y = −x−1 3
  • 47. Example 3 We now have the equation: x−1 3 + y−1 3 y = 0 We just solve for y : y−1 3 y = −x−1 3 y = − x−1 3 y−1 3
  • 48. Example 3 We now have the equation: x−1 3 + y−1 3 y = 0 We just solve for y : y−1 3 y = −x−1 3 y = − x−1 3 y−1 3