SlideShare a Scribd company logo
딥러닝을 통한 자율주행의 인지
June. 30, 2019
Dongyul Lee
• 자율주행 인지의 목적
• 자율주행의 인지 대상
• Classification
• 탐지
• 의미 분할
Contents - 컨볼루션 심층 신경망을 이용한 탐지/의미분할
2
• Path planning
• 경로제어, 회피제어, (depth estimation)
• Static object detection for slam
자율주행 인지의 목적
3
https://taylor.raack.info/2018/01/autonomous-vehicle-technology-path-planning/
https://www.researchgate.net/figure/The-proposed-SLAM-aware-object-recognition-system-is-able-to-robustly-localize-and_fig1_319770107
자율주행의 인지 대상
4
• Cityscape – 27(+3 void)개의 클래스에 대한 dataset 제공
• 5k fine +20k coarse annotation frames
• Mapillary
• BDD100k
• Apolloscape
https://www.cityscapes-dataset.com/
• Cityscape
• Mapillary
• 100 object categories, 60 of those instance-specific
• 25k annotation images (+데이터의 질이 좋음)
• Global geographic reach (다양한지역에서 촬영)
• High variability in weather conditions and capturing times
• Broad range of camera sensors, varying focal length, image aspect ratios, and different types of camera noise
• Different capturing viewpoints (from road, sidewalks, and off-road)
• BDD100k
• Apolloscape
자율주행의 인지 대상
5 https://blog.mapillary.com/product/2017/05/03/mapillary-vistas-dataset.html
• Cityscape
• Mapillary
• BDD100k
• Object의 경우 100k database 제공 (2D bounding box 제공)
• Mapillary와 같이 다양한 속성의 분포를 갖는 data 제공
• +다양한 lane category제공 (제어를 위해 instance 구분됨)
• Apolloscape
자율주행의 인지 대상
6 https://arxiv.org/pdf/1805.04687.pdf
• Cityscape
• Mapillary
• BDD100k
• Apolloscape
• resolution 3384 x 2710.
• About 200K image frames with corresponding pixel-level annotations
• 25 different labels covered by five groups.
• Including lidar object dataset for 3D bounding box
• 110 000+ frames high quality pixel-level annotations
• For HD-map
자율주행의 인지 대상
7 http://apolloscape.auto/
• History
컨볼루션 심층 신경망 (CNN)
8 Illustrationof LeCun et al. 1998 from CS231n 2017 Lecture 1
• Convolution (Dilated convolution)
• Non-linear Activations (ReLu, ReLu6, …)
• Batch normalization (Group Normalization, Instance Normalization, …)
• Pooling (max pooling, average pooling, …)
• Skip connection
• Loss (L1, L2, log loss, …)
• => 이들의 조합 + FC (fully connected layers)
Classification
9 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf
• Convolution (Dilated convolution)
• Non-linear Activations (ReLu, ReLu6, …)
• Batch normalization (Group Normalization, Instance Normalization, …)
• Pooling (max pooling, average pooling, …)
• Skip connection
• Loss (L1, L2, log loss, …)
• => 이들의 조합 + FC (fully connected layers)
Classification CNN Architectures
10 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf
• 탐지와 의미 분할을 위한 특징(feature) 인코딩 모듈
• 그럼 어떠한 인코딩 모듈을 사용해야 하는가?
• 디코딩 모듈(탐지, 의미분할)과 잘 맞는 네트워크 적용
• 동작환경(모바일 vs 서버), 요구사항 (시간, 파워, 성능)에 따라 최적의 효용을 갖는
네트워크 사용
Classification 의 역할
11 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf
• 이미지 내에 타겟 물체가 어느 위치에 있는지를 class 정보와 함께 찾는 것
• 위치 (x,y,w,h): (x, y) – box의 좌상단, (w, h) – box의 폭과 높이
• class 정보 : classification
탐지
12
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-
495ef744fab
탐지
13
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-
495ef744fab
• 어떻게 찾는가?
• CNN을 통해 (w,h,c)차원의 feature로 변환 후 최적의 box를 proposal
• 어떻게 CNN을 설계하는가?
• Classification의 FC layer를 제외한 layer를 인코딩(백본) 레이어로 사용
탐지
14 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf
탐지 딥러닝 흐름
15 https://hoya012.github.io/blog/Tutorials-of-Object-Detection-Using-Deep-Learning-what-is-object-detection/
탐지 딥러닝 흐름
16 https://slideslive.com/38917182/an-overview-of-googles-work-on-automl-and-future-directions
• COCO dataset leaderboard를 참조
탐지 딥러닝 흐름
17 https://hoya012.github.io/blog/Tutorials-of-Object-Detection-Using-Deep-Learning-what-is-object-detection/
• AutoML의 등장 (ICML 2019)
탐지 딥러닝 흐름
18 https://slideslive.com/38917182/an-overview-of-googles-work-on-automl-and-future-directions
기존 NASNet
• Pixel-wise classification
• Semantic segmentation
• Instance segmentation
• Panoptic segmentation (= Semantic segmentation + Instance segmentation)
의미 분할
19 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture12.pdf
Semantic segmentation
20 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture12.pdf
Instance segmentation
21 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture12.pdf
Instance segmentation
22 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture12.pdf
Panoptic segmentation
23 https://arxiv.org/pdf/1801.00868.pdf
Panoptic segmentation
24
Panoptic segmentation
25 https://arxiv.org/pdf/1901.03784.pdf
Thank you
26

More Related Content

PDF
Computer vision for autonomous vehicles
PDF
Single shot multiboxdetectors
PPTX
Single shot multiboxdetectors
PPTX
White box in Computer Vision
PDF
Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning
PDF
PR12-CAM
PDF
Recent advances of AI for medical imaging : Engineering perspectives
PDF
Centertrack and naver airush 2020 review
Computer vision for autonomous vehicles
Single shot multiboxdetectors
Single shot multiboxdetectors
White box in Computer Vision
Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning
PR12-CAM
Recent advances of AI for medical imaging : Engineering perspectives
Centertrack and naver airush 2020 review

Similar to Deep learning image recognition for autonomous driving(classification, object detection, segmentation) (20)

PDF
Going Deeper with Convolutions
PDF
Lecture 6: Convolutional Neural Networks
PDF
[Paper] DetectoRS for Object Detection
PDF
[2A4]DeepLearningAtNAVER
PDF
Pr045 deep lab_semantic_segmentation
PPTX
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
PPTX
NBDT : Neural-backed Decision Tree 2021 ICLR
PDF
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
PDF
K-Fashion 경진대회 3등 수상자 솔루션
PDF
[ 2021 AI + X 여름 캠프 ] 3. computer vision applications
PPTX
Pytorch kr devcon
PPTX
You only look once
PPTX
YOLO v1
PDF
Introduction to deep learning
PPTX
Graph Neural Network #2-1 (PinSage)
PDF
Koss 1605 machine_learning_mariocho_t10
PPTX
20230213_ComputerVision_연구.pptx
PDF
Regularizing Class-wise Predictions via Self-knowledge Distillation
PDF
보다 유연한 이미지 변환을 하려면?
PPTX
Deep Learning for AI (2)
Going Deeper with Convolutions
Lecture 6: Convolutional Neural Networks
[Paper] DetectoRS for Object Detection
[2A4]DeepLearningAtNAVER
Pr045 deep lab_semantic_segmentation
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
NBDT : Neural-backed Decision Tree 2021 ICLR
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
K-Fashion 경진대회 3등 수상자 솔루션
[ 2021 AI + X 여름 캠프 ] 3. computer vision applications
Pytorch kr devcon
You only look once
YOLO v1
Introduction to deep learning
Graph Neural Network #2-1 (PinSage)
Koss 1605 machine_learning_mariocho_t10
20230213_ComputerVision_연구.pptx
Regularizing Class-wise Predictions via Self-knowledge Distillation
보다 유연한 이미지 변환을 하려면?
Deep Learning for AI (2)
Ad

Recently uploaded (20)

PPTX
Lecture 3b C Library xnxjxjxjxkx_ ESP32.pptx
PPTX
Gayatri Cultural Educational Society.pptx
PDF
EC290C NL EC290CNL Volvo excavator specs.pdf
PDF
Caterpillar Cat 315C Excavator (Prefix ANF) Service Repair Manual Instant Dow...
PPTX
Intro to ISO 9001 2015.pptx for awareness
PDF
Volvo EC20C Excavator Step-by-step Maintenance Instructions pdf
PDF
Volvo EC290C NL EC290CNL excavator weight.pdf
PDF
industrial engineering and safety system
PDF
Volvo EC290C NL EC290CNL engine Manual.pdf
PPTX
Zeem: Transition Your Fleet, Seamlessly by Margaret Boelter
PPTX
Paediatric History & Clinical Examination.pptx
PPTX
Fire Fighting Unit IV industrial safety.pptx
PDF
How Much does a Volvo EC290C NL EC290CNL Weight.pdf
PPTX
laws of thermodynamics with complete explanation
PDF
Volvo EC290C NL EC290CNL Hydraulic Excavator Specs Manual.pdf
PPTX
capstoneoooooooooooooooooooooooooooooooooo
PPTX
building_blocks.pptxdcsDVabdbzfbtydtyyjtj67
PDF
3-REasdfghjkl;[poiunvnvncncn-Process.pdf
PDF
Caterpillar CAT 311B EXCAVATOR (8GR00001-UP) Operation and Maintenance Manual...
PPTX
Culture by Design.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Lecture 3b C Library xnxjxjxjxkx_ ESP32.pptx
Gayatri Cultural Educational Society.pptx
EC290C NL EC290CNL Volvo excavator specs.pdf
Caterpillar Cat 315C Excavator (Prefix ANF) Service Repair Manual Instant Dow...
Intro to ISO 9001 2015.pptx for awareness
Volvo EC20C Excavator Step-by-step Maintenance Instructions pdf
Volvo EC290C NL EC290CNL excavator weight.pdf
industrial engineering and safety system
Volvo EC290C NL EC290CNL engine Manual.pdf
Zeem: Transition Your Fleet, Seamlessly by Margaret Boelter
Paediatric History & Clinical Examination.pptx
Fire Fighting Unit IV industrial safety.pptx
How Much does a Volvo EC290C NL EC290CNL Weight.pdf
laws of thermodynamics with complete explanation
Volvo EC290C NL EC290CNL Hydraulic Excavator Specs Manual.pdf
capstoneoooooooooooooooooooooooooooooooooo
building_blocks.pptxdcsDVabdbzfbtydtyyjtj67
3-REasdfghjkl;[poiunvnvncncn-Process.pdf
Caterpillar CAT 311B EXCAVATOR (8GR00001-UP) Operation and Maintenance Manual...
Culture by Design.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Ad

Deep learning image recognition for autonomous driving(classification, object detection, segmentation)

  • 1. 딥러닝을 통한 자율주행의 인지 June. 30, 2019 Dongyul Lee
  • 2. • 자율주행 인지의 목적 • 자율주행의 인지 대상 • Classification • 탐지 • 의미 분할 Contents - 컨볼루션 심층 신경망을 이용한 탐지/의미분할 2
  • 3. • Path planning • 경로제어, 회피제어, (depth estimation) • Static object detection for slam 자율주행 인지의 목적 3 https://taylor.raack.info/2018/01/autonomous-vehicle-technology-path-planning/ https://www.researchgate.net/figure/The-proposed-SLAM-aware-object-recognition-system-is-able-to-robustly-localize-and_fig1_319770107
  • 4. 자율주행의 인지 대상 4 • Cityscape – 27(+3 void)개의 클래스에 대한 dataset 제공 • 5k fine +20k coarse annotation frames • Mapillary • BDD100k • Apolloscape https://www.cityscapes-dataset.com/
  • 5. • Cityscape • Mapillary • 100 object categories, 60 of those instance-specific • 25k annotation images (+데이터의 질이 좋음) • Global geographic reach (다양한지역에서 촬영) • High variability in weather conditions and capturing times • Broad range of camera sensors, varying focal length, image aspect ratios, and different types of camera noise • Different capturing viewpoints (from road, sidewalks, and off-road) • BDD100k • Apolloscape 자율주행의 인지 대상 5 https://blog.mapillary.com/product/2017/05/03/mapillary-vistas-dataset.html
  • 6. • Cityscape • Mapillary • BDD100k • Object의 경우 100k database 제공 (2D bounding box 제공) • Mapillary와 같이 다양한 속성의 분포를 갖는 data 제공 • +다양한 lane category제공 (제어를 위해 instance 구분됨) • Apolloscape 자율주행의 인지 대상 6 https://arxiv.org/pdf/1805.04687.pdf
  • 7. • Cityscape • Mapillary • BDD100k • Apolloscape • resolution 3384 x 2710. • About 200K image frames with corresponding pixel-level annotations • 25 different labels covered by five groups. • Including lidar object dataset for 3D bounding box • 110 000+ frames high quality pixel-level annotations • For HD-map 자율주행의 인지 대상 7 http://apolloscape.auto/
  • 8. • History 컨볼루션 심층 신경망 (CNN) 8 Illustrationof LeCun et al. 1998 from CS231n 2017 Lecture 1
  • 9. • Convolution (Dilated convolution) • Non-linear Activations (ReLu, ReLu6, …) • Batch normalization (Group Normalization, Instance Normalization, …) • Pooling (max pooling, average pooling, …) • Skip connection • Loss (L1, L2, log loss, …) • => 이들의 조합 + FC (fully connected layers) Classification 9 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf
  • 10. • Convolution (Dilated convolution) • Non-linear Activations (ReLu, ReLu6, …) • Batch normalization (Group Normalization, Instance Normalization, …) • Pooling (max pooling, average pooling, …) • Skip connection • Loss (L1, L2, log loss, …) • => 이들의 조합 + FC (fully connected layers) Classification CNN Architectures 10 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture05.pdf
  • 11. • 탐지와 의미 분할을 위한 특징(feature) 인코딩 모듈 • 그럼 어떠한 인코딩 모듈을 사용해야 하는가? • 디코딩 모듈(탐지, 의미분할)과 잘 맞는 네트워크 적용 • 동작환경(모바일 vs 서버), 요구사항 (시간, 파워, 성능)에 따라 최적의 효용을 갖는 네트워크 사용 Classification 의 역할 11 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf
  • 12. • 이미지 내에 타겟 물체가 어느 위치에 있는지를 class 정보와 함께 찾는 것 • 위치 (x,y,w,h): (x, y) – box의 좌상단, (w, h) – box의 폭과 높이 • class 정보 : classification 탐지 12 https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning- 495ef744fab
  • 14. • 어떻게 CNN을 설계하는가? • Classification의 FC layer를 제외한 layer를 인코딩(백본) 레이어로 사용 탐지 14 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture09.pdf
  • 15. 탐지 딥러닝 흐름 15 https://hoya012.github.io/blog/Tutorials-of-Object-Detection-Using-Deep-Learning-what-is-object-detection/
  • 16. 탐지 딥러닝 흐름 16 https://slideslive.com/38917182/an-overview-of-googles-work-on-automl-and-future-directions
  • 17. • COCO dataset leaderboard를 참조 탐지 딥러닝 흐름 17 https://hoya012.github.io/blog/Tutorials-of-Object-Detection-Using-Deep-Learning-what-is-object-detection/
  • 18. • AutoML의 등장 (ICML 2019) 탐지 딥러닝 흐름 18 https://slideslive.com/38917182/an-overview-of-googles-work-on-automl-and-future-directions 기존 NASNet
  • 19. • Pixel-wise classification • Semantic segmentation • Instance segmentation • Panoptic segmentation (= Semantic segmentation + Instance segmentation) 의미 분할 19 http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture12.pdf