SlideShare a Scribd company logo
Deep 
Learning 
at 
NAVER 
DEVIEW 
2014 
NAVER 
LABS 
김 정 희 수석연구원 
2014. 09. 30
Contents 
2 
1. Deep learning overview 
2. Deep learning at NAVER 
3. Deep learning?
1. 
Deep 
Learning 
Overview
Deep 
Learning 
Overview 
4 
Machine 
learning 
with 
Deep 
neural 
networks
Machine 
Learning 
5 
Observable 
Data 
Modeling 
(Learning) 
Informa?on
Machine 
Learning 
6 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
Speech 
DEVIEW 
2014 
Recogni?on 
Speech 
Text
Machine 
Learning 
7 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
One 
Language 
Another 
Language 
Machine 
I 
am 
a 
boy 
Transla?on 
나는 소년이다
Machine 
Learning 
8 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
Image 
고양이 
Classify 
Image 
Category
Machine 
Learning 
9 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
HOW 
?
Machine 
Learning 
10 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
LDA
Machine 
Learning 
11 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
Gaussian 
Mixture
Machine 
Learning 
12 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
Non-­‐nega8ve 
Matrix 
Factoriza8on
Machine 
Learning 
13 
Observable 
Data 
Modeling 
(Learning) 
Informa?on 
Deep 
Neural 
Networks
Deep 
Neural 
Networks 
-­‐ 
Learning 
14 
Input 
Data 
Weight 
Matrix 
Probability 
of 
Each 
Class 
Back 
propaga8on 
1980년대 
확립
Why 
Deep 
Learning? 
Yoshua 
Bengio 
2014 
KDDNN 
15 
• NAVER 
Speech 
recogniNon 
§ 20 
% 
error 
rate 
개선
Why 
Deep 
Learning? 
Yoshua 
Bengio 
2014 
KDDNN 
16 
• ImageNet 
ClassificaNon 
2012 
§ Krizhevsky 
et 
al 
(convnet) 
-­‐ 
16.4 
% 
error 
( 
top 
– 
5 
) 
§ Next 
best 
( 
non 
– 
convnet 
) 
-­‐ 
26.2 
% 
error
Why 
Deep 
Learning? 
Yoshua 
Bengio 
2014 
KDDNN 
17
2. 
Deep 
Learning 
at 
NAVER
Rebirth 
of 
Deep 
Learning 
19 
New Algorithms Big Data Hardware
Primary 
Check 
Points 
of 
Deep 
Learning 
20 
New Algorithms Big Data Hardware
ConvoluNonal 
neural 
networks 
2012 
21 
FFNN 
CNN 
Alex 
Krizhevsky 
et 
al. 
2012 
NIPSNN
Image 
classificaNon 
(m.ndrive.naver.com) 
22 
FFNN 
CNN 
RNN
ConvoluNonal 
neural 
networks 
2014 
23 
FFNN 
CNN 
Chris?an 
Szegedy 
et 
al. 
2014 
ILSVRCNN
Deep 
Neural 
Networks 
24 
C_1 
C_2 
ŸŸŸ 
C_n 
FFNN 
CNN 
Non 
Linear 
Ac?va?on 
Sigmoid 
ŸŸŸ 
ŸŸŸ 
ŸŸŸ 
Output 
Layer 
Hidden 
Layer 
Input 
Layer
Back 
-­‐ 
propagaNon 
25 
C_1 
C_2 
ŸŸŸ 
C_n 
FFNN 
CNN 
Non 
Linear 
Ac?va?on 
Sigmoid 
ŸŸŸ 
ŸŸŸ 
ŸŸŸ 
Back-­‐ 
propgata?on 
Error 의 미분값
Exploding 
or 
Vanishing 
26 
FFNN 
CNN
Recurrent 
neural 
networks 
27 
FFNN 
CNN 
RNN
Recurrent 
Neural 
Networks 
28 
• SequenNal 
data 
Analysis 
§ Video 
§ RoboNcs 
§ Language 
model
Recurrent 
neural 
networks 
29 
FFNN 
CNN 
T 
= 
R1N0N0 
?
Recurrent 
Neural 
Networks 
30 
100 
개의 
Hidden 
Layer
Long 
Short-­‐Term 
Memory 
31 
FFNN 
CNN 
T 
= 
R1N0N0 
?
Language 
Model 
32 
• Language 
model 
§ w(1), 
w(2), 
w(3), 
… 
, 
w(n) 
의 단어열이 주어졌을 때, 
§ 확률 p( 
w(1), 
w(2), 
w(3), 
… 
, 
w(m) 
) 위한 확률 모델
LM 
ApplicaNon 
(1) 
33 
• Speech 
recogniNon 
§ 같은 발음 / 다른 철자 
o 위성이 지구 ( 궤도 / 괴도 ) 
를 돌고 있다. 
o (궤도 / 괴도) 루팡을 읽었다.
LM 
ApplicaNon 
(2) 
34 
• Machine 
translaNon 
§ 같은 철자 / 다른 의미 
o The 
town 
lies 
on 
the 
coat. 
o She 
lies 
about 
her 
age.
Recurrent 
Neural 
Networks 
-­‐ 
LM 
35 
• 에측 정확도 향상 
§ 기존 방법 : 
KN-­‐5 
§ 실험 Data 
set 
: 
Penn 
tree 
bank 
§ 척도 : 
perplexity 
§ 20% 향상
Primary 
Check 
Points 
of 
Deep 
Learning 
36 
New Algorithms Big Data Hardware
Neural 
Networks 
37 
• Data-­‐driven 
§ 학습 Data 
에 기초해 해당 Class 
의 확률이 최대가 되도록 
§ Prior 
knowledge 
를 사용하지 않는다. 
! 학습 Data를 그대로 모사하는 것
Neural 
Networks 
38 
• Big 
data 
가 아니면 문제가 생긴다 
§ Why? 
§ 보유한 학습 Data 
가 이 세상의 모든 Data 
라고 할 수 있나?
Before 
– 
Big 
Data 
39 
Real 
World 
Data 
Small 
Learning 
Data
Before 
– 
Big 
Data 
40 
Real 
World 
Data
Before 
– 
Big 
Data 
41 
Real 
World 
Data 
Small 
Learning 
Data
Before 
– 
Big 
Data 
42 
Real 
World 
Data
Before 
– 
Big 
Data 
43 
Real 
World 
Data
Before 
– 
Big 
Data 
44 
Real 
World 
Data 
ERROR 
!!!
Human 
Case 
45 
MiYe 
광고 이미지
Before 
– 
Big 
Data 
46 
Real 
World 
Data 
ERROR 
!!!
Prior 
Know-­‐ 
ledge 
Before 
– 
Big 
Data 
47 
Real 
World 
Data 
Small 
Leaning 
Data 
ERROR 
!!!
GMM 
Before 
– 
Big 
Data 
48 
Real 
World 
Data 
Small 
Speech 
Data 
ERROR 
!!!
Gabor 
Filter 
Before 
– 
Big 
Data 
49 
Real 
World 
Data 
Small 
Image 
Data 
ERROR 
!!!
Image 
classificaNon 
(m.ndrive.naver.com) 
50 
FFNN 
CNN 
RNN
ConvoluNonal 
neural 
networks 
51 
FFNN 
CNN 
Alex 
Krizhevsky 
et 
al. 
2012 
NIPSNN
기존 Approach 
52 
FFNN 
CNN 
RNN 
Image 
Pixels 
Hand-­‐ 
designed 
Feature 
Extractor 
Trainable 
Classifier 
Object 
Class
Deep 
Learning 
53 
FFNN 
CNN 
RNN 
Image 
Pixels 
Trainable 
Feature 
Extractor 
Trainable 
Classifier 
Object 
Class
ConvoluNonal 
neural 
networks 
54 
FFNN 
CNN 
Hierarchical 
Trained 
Filters 
Alex 
Krizhevsky 
et 
al. 
2012 
NIPSNN
RepresentaNon 
Learning 
55 
RNN 
Rob 
Fergus 
2013 
NIPSNN
Prior 
Know-­‐ 
ledge 
Afer 
– 
Big 
Data 
56 
Real 
World 
Data 
Small 
Leaning 
Data 
ERROR 
!!! 
Big 
Learning 
Data
Big 
Data 
57 
• Neural 
networks 
§ Supervised 
learning 
§ 무작정 data 
만 많이 있어서는 안된다 
§ 정답이 있는 data가 많이 있어야 한다
Big 
Data 
58 
• 정답이 있는 DB를 대량으로 구축하기 힘들다면… 
§ Semi-­‐supervised 
learning 
§ Supervised 
Learning 
+ 
Unsupervised 
Learning
Big 
Data 
59 
• Big 
Data 
를 구축하기 힘들다면… 
§ 서비스 개발 진입 장벽
Big 
Data 
60 
• Big 
Data 
를 구축하기 힘들다면… 
§ 일단 만들고 beta 
서비스 하자 !
Transfer 
Learning 
61 
• Deep 
learning 
! 
RepresentaNon 
learning 
§ 유사 Domain 
에서 학습된 내용을 다른 도메인으로 
§ 한국어 음성인식 ! 일본어 음성인식 
§ 중국어 OCR 
! 
일본어 OCR 
§ 이미지 feature 
extractor
Transfer 
Learning 
– 
Image 
62 
FFNN 
CNN 
Supervised 
Trained 
Feature 
Extractor 
Alex 
Krizhevsky 
et 
al. 
2012 
NIPSNN
Transfer 
Learning 
– 
Speech 
RecogniNon 
63
Speech 
recogniNon 
64 
FFNN 
CNN 
RNN 
• Transfer 
learning 
§ 일본어, 영어 인식 엔진 개발 
§ 소량의 데이터 
§ 한국어와 유사한 정확도
Primary 
Check 
Points 
of 
Deep 
Learning 
65 
New Algorithms Big Data Hardware
계산량 
7000 
3000 
… 
3000 
500 
5 
hidden 
layers 
58.5 
M 
parameters
Sparseness 
• 작은 weight 
값들 존재
계산량 감소 Idea 
모든 weight가 필요하지는 않다.
Dimension 
ReducNon 
• PCA와 같은 Dimension 
ReducNon 
§ Layer의 output을 Feature 
§ Linear 
TransformaNon을 이용 
§ 필요없는 Dimension을 줄이는 ReducNon
7000 
R 
3000 
Dimension 
ReducNon 
• 7000 
x 
3000 
>= 
7000 
x 
R 
+ 
3000 
x 
R 
• 2100 
>= 
R
• Weight 
matrix 를 두 개의 matrix 
곱으로 분리하는 matrix 
factorizaNon 
• Weight 
matrix는 low-­‐rank 
matrix 
Dimension 
ReducNon 
[7000 ×3000] =[7000 × R][R×3000]
Dimension 
ReducNon 
• NAVER 
§ Weight 
64% 
감소 
§ 성능 저하 없음
GPU 
• OpNmizaNon 
의 어려움 
§ Deep 
learning 
용 GPU 
library 
들 release 
§ Ex) 
Nvidia 
-­‐ 
CuNet
3. 
Deep 
Learning?
Deep 
Learning 
– 
The 
One 
Ring? 
75 
State 
of 
the 
art 
by 
Abstruse 
Goose
Deep 
Learning 
– 
The 
One 
Ring? 
76 
State 
of 
the 
art 
by 
Abstruse 
Goose
Deep 
Learning 
– 
The 
One 
Ring? 
77 
State 
of 
the 
art 
by 
Abstruse 
Goose
Deep 
Learning 
– 
Current 
Status 
78 
Yoshua 
Bengio 
KDD 
2014
79

More Related Content

PDF
Deep Learning - Convolutional Neural Networks
PDF
Deep learning - Conceptual understanding and applications
PPTX
머신러닝 시그 세미나_(deep learning for visual recognition)
PDF
Introduction to deep learning in python and Matlab
PDF
Tutorial on Deep Learning
PDF
From Conventional Machine Learning to Deep Learning and Beyond.pptx
PDF
Deep learning - A Visual Introduction
PDF
Introduce Deep learning & A.I. Applications
Deep Learning - Convolutional Neural Networks
Deep learning - Conceptual understanding and applications
머신러닝 시그 세미나_(deep learning for visual recognition)
Introduction to deep learning in python and Matlab
Tutorial on Deep Learning
From Conventional Machine Learning to Deep Learning and Beyond.pptx
Deep learning - A Visual Introduction
Introduce Deep learning & A.I. Applications

What's hot (20)

PDF
Deep learning in Computer Vision
PDF
Neural Networks and Deep Learning
PDF
Deep Learning and Reinforcement Learning
PDF
Python for Image Understanding: Deep Learning with Convolutional Neural Nets
PPTX
An introduction to Machine Learning (and a little bit of Deep Learning)
PPTX
Deep Learning - A Literature survey
PDF
[DSC 2016] 系列活動:李宏毅 / 一天搞懂深度學習
PPTX
Deep Learning Jump Start
PDF
Deep Learning And Business Models (VNITC 2015-09-13)
PPTX
What Deep Learning Means for Artificial Intelligence
PDF
Deep Learning and the state of AI / 2016
PDF
Intro To Convolutional Neural Networks
PPTX
Deep learning: the future of recommendations
PPTX
Machine Learning, Deep Learning and Data Analysis Introduction
PPTX
Building distributed deep learning engine
PPTX
Deep learning: what? how? why? How to win a Kaggle competition
PDF
Language translation with Deep Learning (RNN) with TensorFlow
 
PDF
Introduction to Deep learning
PDF
Deep Learning: a birds eye view
PPTX
What Deep Learning Means for Artificial Intelligence
Deep learning in Computer Vision
Neural Networks and Deep Learning
Deep Learning and Reinforcement Learning
Python for Image Understanding: Deep Learning with Convolutional Neural Nets
An introduction to Machine Learning (and a little bit of Deep Learning)
Deep Learning - A Literature survey
[DSC 2016] 系列活動:李宏毅 / 一天搞懂深度學習
Deep Learning Jump Start
Deep Learning And Business Models (VNITC 2015-09-13)
What Deep Learning Means for Artificial Intelligence
Deep Learning and the state of AI / 2016
Intro To Convolutional Neural Networks
Deep learning: the future of recommendations
Machine Learning, Deep Learning and Data Analysis Introduction
Building distributed deep learning engine
Deep learning: what? how? why? How to win a Kaggle competition
Language translation with Deep Learning (RNN) with TensorFlow
 
Introduction to Deep learning
Deep Learning: a birds eye view
What Deep Learning Means for Artificial Intelligence
Ad

Viewers also liked (9)

PDF
알파고 해부하기 1부
PPTX
기계학습(Machine learning) 입문하기
PDF
Introduction to Machine Learning and Deep Learning
PPTX
쫄지말자딥러닝2 - CNN RNN 포함버전
PDF
Deview deep learning-김정희
PDF
알파고 (바둑 인공지능)의 작동 원리
PDF
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
PDF
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
PPTX
기계학습 / 딥러닝이란 무엇인가
알파고 해부하기 1부
기계학습(Machine learning) 입문하기
Introduction to Machine Learning and Deep Learning
쫄지말자딥러닝2 - CNN RNN 포함버전
Deview deep learning-김정희
알파고 (바둑 인공지능)의 작동 원리
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
딥러닝과 강화 학습으로 나보다 잘하는 쿠키런 AI 구현하기 DEVIEW 2016
기계학습 / 딥러닝이란 무엇인가
Ad

Similar to [2A4]DeepLearningAtNAVER (20)

PDF
Recent advances of AI for medical imaging : Engineering perspectives
PDF
Nlp and transformer (v3s)
PDF
Koss 1605 machine_learning_mariocho_t10
PDF
ESM Machine learning 5주차 Review by Mario Cho
PDF
Introduction to deep learning
PPTX
White box in Computer Vision
PDF
Parallelformers
PDF
Differentiable Neural Computer
PDF
Deep learning image recognition for autonomous driving(classification, objec...
PPTX
Deep learning based recommender systems (lab seminar paper review)
PDF
오토인코더의 모든 것
PDF
[NDC2017] 딥러닝으로 게임 콘텐츠 제작하기 - VAE를 이용한 콘텐츠 생성 기법 연구 사례
PPTX
Deep Learning for AI (2)
PDF
Deep Learning for Chatbot (3/4)
PPTX
NBDT : Neural-backed Decision Tree 2021 ICLR
PDF
2021 04-01-dalle
PDF
Lecture 6: Convolutional Neural Networks
PPTX
Machine translation survey - vol1
PDF
Introduction to GAN
PDF
딥러닝 논문읽기 모임 - 송헌 Deep sets 슬라이드
Recent advances of AI for medical imaging : Engineering perspectives
Nlp and transformer (v3s)
Koss 1605 machine_learning_mariocho_t10
ESM Machine learning 5주차 Review by Mario Cho
Introduction to deep learning
White box in Computer Vision
Parallelformers
Differentiable Neural Computer
Deep learning image recognition for autonomous driving(classification, objec...
Deep learning based recommender systems (lab seminar paper review)
오토인코더의 모든 것
[NDC2017] 딥러닝으로 게임 콘텐츠 제작하기 - VAE를 이용한 콘텐츠 생성 기법 연구 사례
Deep Learning for AI (2)
Deep Learning for Chatbot (3/4)
NBDT : Neural-backed Decision Tree 2021 ICLR
2021 04-01-dalle
Lecture 6: Convolutional Neural Networks
Machine translation survey - vol1
Introduction to GAN
딥러닝 논문읽기 모임 - 송헌 Deep sets 슬라이드

More from NAVER D2 (20)

PDF
[211] 인공지능이 인공지능 챗봇을 만든다
PDF
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
PDF
[215] Druid로 쉽고 빠르게 데이터 분석하기
PDF
[245]Papago Internals: 모델분석과 응용기술 개발
PDF
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
PDF
[235]Wikipedia-scale Q&A
PDF
[244]로봇이 현실 세계에 대해 학습하도록 만들기
PDF
[243] Deep Learning to help student’s Deep Learning
PDF
[234]Fast & Accurate Data Annotation Pipeline for AI applications
PDF
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
PDF
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
PDF
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
PDF
[224]네이버 검색과 개인화
PDF
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
PDF
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
PDF
[213] Fashion Visual Search
PDF
[232] TensorRT를 활용한 딥러닝 Inference 최적화
PDF
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
PDF
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
PDF
[223]기계독해 QA: 검색인가, NLP인가?
[211] 인공지능이 인공지능 챗봇을 만든다
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[215] Druid로 쉽고 빠르게 데이터 분석하기
[245]Papago Internals: 모델분석과 응용기술 개발
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[235]Wikipedia-scale Q&A
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[243] Deep Learning to help student’s Deep Learning
[234]Fast & Accurate Data Annotation Pipeline for AI applications
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[224]네이버 검색과 개인화
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[213] Fashion Visual Search
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[223]기계독해 QA: 검색인가, NLP인가?

Recently uploaded (20)

PPT
What is a Computer? Input Devices /output devices
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PPTX
Tartificialntelligence_presentation.pptx
PDF
WOOl fibre morphology and structure.pdf for textiles
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
cloud_computing_Infrastucture_as_cloud_p
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
Web App vs Mobile App What Should You Build First.pdf
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PPT
Module 1.ppt Iot fundamentals and Architecture
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Architecture types and enterprise applications.pdf
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
What is a Computer? Input Devices /output devices
Chapter 5: Probability Theory and Statistics
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Tartificialntelligence_presentation.pptx
WOOl fibre morphology and structure.pdf for textiles
Group 1 Presentation -Planning and Decision Making .pptx
cloud_computing_Infrastucture_as_cloud_p
Enhancing emotion recognition model for a student engagement use case through...
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
A novel scalable deep ensemble learning framework for big data classification...
Web App vs Mobile App What Should You Build First.pdf
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Module 1.ppt Iot fundamentals and Architecture
Programs and apps: productivity, graphics, security and other tools
Hindi spoken digit analysis for native and non-native speakers
1 - Historical Antecedents, Social Consideration.pdf
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Architecture types and enterprise applications.pdf
Final SEM Unit 1 for mit wpu at pune .pptx

[2A4]DeepLearningAtNAVER