This document discusses deep reinforcement learning through policy optimization. It begins with an introduction to reinforcement learning and how deep neural networks can be used to approximate policies, value functions, and models. It then discusses how deep reinforcement learning can be applied to problems in robotics, business operations, and other machine learning domains. The document reviews how reinforcement learning relates to other machine learning problems like supervised learning and contextual bandits. It provides an overview of policy gradient methods and the cross-entropy method for policy optimization before discussing Markov decision processes, parameterized policies, and specific policy gradient algorithms like the vanilla policy gradient algorithm and trust region policy optimization.
Related topics: