SlideShare a Scribd company logo
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
NIPS 2016 読み会
@Preferred Networks
2017/1/19
NIPS 2016
Overview and Deep Learning Topics
@hamadakoichi
濱田晃一
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
2	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
3	
Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.
講師
・TokyoWebmining 主催者
 - 機械学習の実活用コミュニティ。登録人数 1500人超。
 - 7年継続、累積59回開催
濱田晃一 (@hamadakoichi)
・執筆:Mobageを支える技術
Analytics Architect
・博士 : 量子統計場の理論 (理論物理)
・DeNA全サービスを対象とし、大規模機械学習活用したサービス開発
 - 数千万ユーザー、50億アクション/日、テキスト、画像、ソーシャルグラフ
 - 体験設計から、分散学習アルゴリズムの設計・実装まで
・Deep Learning
 - 画像表現学習・画像生成
   対話・キャラクター表現学習、等
4	
Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
5	
Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved.
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
6	
NIPS 2016
・第30回の開催
・期間: 2016年12月5-10日
・ICML 33回に続き長い伝統
・チュートリアル: 5(1日)
・本会議: 5-8(4日)
・ワークショップ: 9-10(2日)
・開催地: バルセロナ(スペイン)
貼る:会場雰囲気
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
7	
NIPS 2016
参加者が 6000人に増加 (2015年の1.5倍)
※Terrence Sejnowskiは NIPS foundationの President
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
8	
NIPS Features
・採択の92%はポスター
・採択率: 23%
・投稿数: 2500+、採択数: 568
・Oral(45) : 20分の口頭発表 + ポスター
・Poster(523) : ポスターのみ
・少数トラックでの進行(最大3)
(昨年までシングルトラックだったがパラレルに)
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
9	
NIPS Features
・ポスター発表による活発な議論
(昨年までの19-24時の5時間ポスターからは時間縮小したが、最後まで活発な議論)
・210 min(3.5 hour)/ day
・130 Poster x 4 days
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
10	
NIPS2016 Hot Topics
引用元:
The review process for NIPS 2016
http://www.tml.cs.uni-tuebingen.de/team/
luxburg/misc/nips2016/index.php
Deep Learning Computer Vision Large Scale Learning Learning Theory Optimization Sparsity
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
11	
NIPS2016 Hot Topics
Tutorial 3/9、Symposium 2/3 が Deep Learning
Reinforcement Learning, Generative Adversarial Net, Recurrent Net
Tutorial Symposium
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
12	
NIPS2016 Hot Topics
Tutorial Symposium
Tutorial 3/9、Symposium 2/3 が Deep Learning
Reinforcement Learning, Generative Adversarial Net, Recurrent Net
上記2トピックに関し、本会議論文をピックアップし概要紹介します
(Reinforcement Learningは、このNIPS読み会での個別論文の発表も多いため)
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
13	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
14	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
15	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
16	
Generative Adversarial Network (GAN)
Generative Adversarial Nets(GAN)
Goodfellow+, NIPS2014
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
17	
Generative Adversarial Network (GAN)
Generator(生成器)と Discriminator(識別器)を戦わせ
生成精度を向上させる
識別器: “本物画像”と “生成器が作った偽画像”を識別する
生成器: 生成画像を識別器に“本物画像”と誤識別させようとする
(Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation)
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
18	
Generative Adversarial Network (GAN)
Minimax Objective function
Discriminator が
「本物画像」を「本物」と識別
(Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation)
Discriminator が
「生成画像」を「偽物」と識別する
Discriminatorは
正しく識別しようとする
(最大化)
Generatorは Discriminator に誤識別させようとする(最小化)
Generator(生成器)と Discriminator(識別器)を戦わせ
生成精度を向上させる
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
19	
自然画像の表現ベクトル空間学習・演算・画像生成
ICLR16: Deep Convolutional GAN : DCGAN (Radford+)
自然画像のクリアな画像生成 画像演算
Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks.
Alec Radford, Luke Metz, Soumith Chintala.
arXiv:1511.06434. In ICLR 2016.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
20	
ICML16: Autoencoding beyond pixels (Larsen+)
Autoencoding beyond pixels using a learned similarity metric.
Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
Ole Winther.
arXiv:1512.09300. In ICML 2016.
自然画像の表現ベクトル空間学習・演算・画像生成
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
21	
ICML16: Generative Adversarial Text to Image Synthesis(Reed+)
Generative Adversarial Text to Image Synthesis.
Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen
Logeswaran, Bernt Schiele, Honglak Lee.
arXiv:1605.05396. In ICML 2016.
文章からの画像生成
文章で条件付したGAN
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
22	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
23	
Generative Adversarial Text to Image Synthesis(Reed+)
Learning What and Where to Draw.
Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee.
arXiv:1610.02454. In NIPS 2016.
文章からの画像生成
表示位置情報も条件付したGAN
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
24	
InfoGAN (Chen+)
InfoGAN: Interpretable Representation
Learning by Information Maximizing
Generative Adversarial Nets.
Xi Chen, Yan Duan, Rein Houthooft, John
Schulman, Ilya Sutskever, Pieter Abbeel.
arXiv:1606.03657. In NIPS 2016
Latent code c、Generator 出力との Mutual Information を加え
GANで狙って表現ベクトル空間を学習
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
25	
3Dモデルの表現ベクトル空間学習・演算・生成
3D GAN (Wu+)
3Dモデルの生成 3Dモデル演算
写真からの3Dモデル生成
3D VAE-GAN
3D GAN
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling.
Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, Joshua B. Tenenbaum.
arXiv:1610.07584. In NIPS 2016.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
26	
Generating Videos with Scene Dynamics(Vondrick+)
動画の表現ベクトル空間学習・動画生成
Generating Videos with Scene Dynamics.
Carl Vondrick, Hamed Pirsiavash, Antonio Torralba. In NIPS 2016.
http://web.mit.edu/vondrick/tinyvideo/
動画生成 1画像からその後の動画生成
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
27	
f-GAN (Nowozin+)
GAN目的関数を Symmetric JS-divergence から
f-divergence に一般化。各Divergence を用い学習・評価
f-GAN: Training Generative
Neural samplers using
variational Divergence
Minimization.
Sebastian Nowozin, Botond
Cseke, Ryota Tomioka.
arXiv:1606.00709.
In NIPS 2016.
Kernel Density Estimation on the MNIST
f-divergence
LSUN
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
28	
Improved Techniques for Training GANs (Salimans+)
Improved Techniques for Training GANs.
Tim Salimans, Ian Goodfellow, Wojciech
Zaremba, Vicki Cheung, Alec Radford, Xi Chen.
arXiv:1606.03498. In NIPS 2016.
収束が難しいGANの学習方法論
GAN半教師あり学習
1. Feature Matching
2. Minibatch discrimination
3. Historical averaging
4. One-sided label smoothing
5. Virtual batch normalization
Techniques Semi-supervised learning
MNIST
Semi-supervised training
with feature matching
Semi-supervised training
with feature matching and
minibatch discrimination
CIFAR-10
Generated samples
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
29	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
30	
Extended Architectures for Generative Adversarial Nets 2016
Extended Architectures for GANs
Figure by Chris Olah (2016) : https://twitter.com/ch402/status/793535193835417601
Ex)
Conditional Image Synthesis With
Auxiliary Classifier GANs.
Augustus Odena, Christopher Olah,
Jonathon Shlens.
arXiv:1610.09585.
Generative Adversarial Net の各種拡張
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
31	
Stack GAN: Text to PhotoRealistic Image Synthesis(Zhang+2016)
1段目で文章から低解像度画像を生成
2段目で低解像度画像から高解像度画像を生成
StackGAN: Text to Photo-realistic Image
Synthesis with Stacked Generative Adversarial
Networks.
Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas.
arXiv:1612.03242.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
32	
Plug & Play Generative Networks (Nguyen+2016)
高解像度な画像生成
227 x 227 ImageNet
Plug & Play Generative Networks: Conditional
Iterative Generation of Images in Latent Space.
Anh Nguyen, Jason Yosinski, Yoshua Bengio,
Alexey Dosovitskiy, Jeff Clune.
arXiv:1612.00005.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
33	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
34	
Phased LSTM (Neil+)
時間で開閉するGateを導入した LSTM
Sensor Data 等、Event 駆動の長期系列特徴を学習
Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences.
Daniel Neil, Michael Pfeiffer, Shih-Chii Liu.
arXiv:1610.09513. In NIPS 2016.
LSTM Phased LSTM
Phased LSTM Behavior
Frequency Discrimination Task
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
35	
Using Fast Weights to Attend to the Recent Past (Ba+)
早く学習・減衰する Fast Weight 追加で、系列固有の情報を扱う
Slow Weight での長期特徴とあわせ、双方の系列特徴を学習
Using Fast Weights to Attend to the Recent Past.
Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu.
arXiv:1610.06258. In NIPS 2016.
Associative Retrieval Task
Classification Error Test Log Likelihood
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
36	
Learning to learn by GD by GD (Andrychowicz+)
LSTMを用いたOptimizer
Parameterごとに 勾配系列から適切な次の更新量を算出
Learning to learn by gradient descent by gradient descent.
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford,
Nando de Freitas.
arXiv:1606.04474. In NIPS 2016.
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
37	
Matching Network for One Shot Learning (Vinyals+)
Attention Mechanism を用いた One Shot Learning
参照構造を学習しておき、新規小規模データセットでも高精度で動作
Matching Networks for One Shot Learning.
Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Koray Kavukcuoglu, Daan Wierstra.
arXiv:1606.04080. In NIPS 2016.
Omniglot
miniImageNet
Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
38	
AGENDA
◆Deep Learning Topics
◆NIPS 2016 Overview
◆Generative Adversarial Networks(GANs)
◆Recurrent Neural Networks(RNNs)
◆GANs
◆GANs in NIPS2016
◆Recent GANs
◆RNNs in NIPS2016

More Related Content

PPTX
Deepfakesの生成および検出
PDF
Anime Generation with AI
PDF
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
PDF
AIによるアニメ生成の挑戦
PDF
Generative Adversarial Networks @ ICML 2019
PPTX
Deep Learning Jump Start
PPTX
[DL輪読会]Image-to-Image Translation with Conditional Adversarial Networks
PDF
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Deepfakesの生成および検出
Anime Generation with AI
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
AIによるアニメ生成の挑戦
Generative Adversarial Networks @ ICML 2019
Deep Learning Jump Start
[DL輪読会]Image-to-Image Translation with Conditional Adversarial Networks
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換

Viewers also liked (19)

PDF
Value iteration networks
PPTX
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
PDF
Dual Learning for Machine Translation (NIPS 2016)
PPT
時系列データ3
PDF
Fast and Probvably Seedings for k-Means
PDF
Interaction Networks for Learning about Objects, Relations and Physics
PPTX
Introduction of "TrailBlazer" algorithm
PDF
Learning to learn by gradient descent by gradient descent
PDF
Conditional Image Generation with PixelCNN Decoders
PDF
Safe and Efficient Off-Policy Reinforcement Learning
PPTX
Introduction of “Fairness in Learning: Classic and Contextual Bandits”
PDF
Improving Variational Inference with Inverse Autoregressive Flow
PDF
[DL輪読会]Convolutional Sequence to Sequence Learning
PDF
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
PPTX
Differential privacy without sensitivity [NIPS2016読み会資料]
PDF
Matching networks for one shot learning
PPTX
ICML2016読み会 概要紹介
PDF
論文紹介 Pixel Recurrent Neural Networks
PDF
Deep Learning - The Past, Present and Future of Artificial Intelligence
Value iteration networks
InfoGAN: Interpretable Representation Learning by Information Maximizing Gen...
Dual Learning for Machine Translation (NIPS 2016)
時系列データ3
Fast and Probvably Seedings for k-Means
Interaction Networks for Learning about Objects, Relations and Physics
Introduction of "TrailBlazer" algorithm
Learning to learn by gradient descent by gradient descent
Conditional Image Generation with PixelCNN Decoders
Safe and Efficient Off-Policy Reinforcement Learning
Introduction of “Fairness in Learning: Classic and Contextual Bandits”
Improving Variational Inference with Inverse Autoregressive Flow
[DL輪読会]Convolutional Sequence to Sequence Learning
論文紹介 Combining Model-Based and Model-Free Updates for Trajectory-Centric Rein...
Differential privacy without sensitivity [NIPS2016読み会資料]
Matching networks for one shot learning
ICML2016読み会 概要紹介
論文紹介 Pixel Recurrent Neural Networks
Deep Learning - The Past, Present and Future of Artificial Intelligence

Similar to NIPS 2016 Overview and Deep Learning Topics (20)

PDF
Tutorial of GANs in Gifu Univ
PDF
NIPS+読み会・関西 #7 発表資料
PDF
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
PDF
画像生成・生成モデル メタサーベイ
PDF
GAN0420
PDF
Generative Adversarial Networksの基礎と応用について
PPTX
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
PDF
Transformer 動向調査 in 画像認識
PDF
210610 SSIIi2021 Computer Vision x Trasnformer
PDF
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
PDF
機械学習応用システムの安全性の研究動向と今後の展望
PDF
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
PDF
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
PDF
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
PDF
Domain transfer サーベイ
PPTX
Generative adversarial networks
PDF
Generative Adversarial Networks And Deep Learning Roshani Raut
PPTX
GAN Deep. Learning architecture and applications.pptx
PDF
Tutorial of GANs in Gifu Univ
NIPS+読み会・関西 #7 発表資料
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
画像生成・生成モデル メタサーベイ
GAN0420
Generative Adversarial Networksの基礎と応用について
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
Transformer 動向調査 in 画像認識
210610 SSIIi2021 Computer Vision x Trasnformer
【DL輪読会】Toward Fast and Stabilized GAN Training for Highfidelity Few-shot Imag...
機械学習応用システムの安全性の研究動向と今後の展望
【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Mach...
TensorFlow London: Progressive Growing of GANs for increased stability, quali...
Jakub Langr (University of Oxford) - Overview of Generative Adversarial Netwo...
Domain transfer サーベイ
Generative adversarial networks
Generative Adversarial Networks And Deep Learning Roshani Raut
GAN Deep. Learning architecture and applications.pptx

More from Koichi Hamada (20)

PDF
Generative Adversarial Networks (GAN) @ NIPS2017
PDF
DeNAのAI活用したサービス開発
PDF
対話返答生成における個性の追加反映
PDF
DeNAの機械学習・深層学習活用した 体験提供の挑戦
PDF
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
PDF
DeNAの大規模データマイニング活用したサービス開発
PDF
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
PDF
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
PDF
複雑ネットワーク上の伝搬法則の数理
PDF
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
PDF
データマイニングCROSS 第2部-機械学習・大規模分散処理
PDF
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
PDF
"Mahout Recommendation" - #TokyoWebmining 14th
PDF
Mahout JP - #TokyoWebmining 11th #MahoutJP
PDF
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
PDF
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
PDF
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
PDF
Mahout Canopy Clustering - #TokyoWebmining 9
PDF
Apache Mahout - Random Forests - #TokyoWebmining #8
PDF
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー
Generative Adversarial Networks (GAN) @ NIPS2017
DeNAのAI活用したサービス開発
対話返答生成における個性の追加反映
DeNAの機械学習・深層学習活用した 体験提供の挑戦
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
DeNAの大規模データマイニング活用したサービス開発
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
複雑ネットワーク上の伝搬法則の数理
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 第2部-機械学習・大規模分散処理
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
"Mahout Recommendation" - #TokyoWebmining 14th
Mahout JP - #TokyoWebmining 11th #MahoutJP
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
Mahout Canopy Clustering - #TokyoWebmining 9
Apache Mahout - Random Forests - #TokyoWebmining #8
「樹木モデルとランダムフォレスト-機械学習による分類・予測-」-データマイニングセミナー

Recently uploaded (20)

PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
2Systematics of Living Organisms t-.pptx
PDF
The scientific heritage No 166 (166) (2025)
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPT
protein biochemistry.ppt for university classes
PPTX
BIOMOLECULES PPT........................
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
Microbiology with diagram medical studies .pptx
POSITIONING IN OPERATION THEATRE ROOM.ppt
Comparative Structure of Integument in Vertebrates.pptx
Derivatives of integument scales, beaks, horns,.pptx
2Systematics of Living Organisms t-.pptx
The scientific heritage No 166 (166) (2025)
Taita Taveta Laboratory Technician Workshop Presentation.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
AlphaEarth Foundations and the Satellite Embedding dataset
Introduction to Fisheries Biotechnology_Lesson 1.pptx
HPLC-PPT.docx high performance liquid chromatography
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
protein biochemistry.ppt for university classes
BIOMOLECULES PPT........................
Viruses (History, structure and composition, classification, Bacteriophage Re...
Classification Systems_TAXONOMY_SCIENCE8.pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Microbiology with diagram medical studies .pptx

NIPS 2016 Overview and Deep Learning Topics

  • 1. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. NIPS 2016 読み会 @Preferred Networks 2017/1/19 NIPS 2016 Overview and Deep Learning Topics @hamadakoichi 濱田晃一 Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved.
  • 2. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 2 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 3. 3 Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved. 講師 ・TokyoWebmining 主催者  - 機械学習の実活用コミュニティ。登録人数 1500人超。  - 7年継続、累積59回開催 濱田晃一 (@hamadakoichi) ・執筆:Mobageを支える技術 Analytics Architect ・博士 : 量子統計場の理論 (理論物理) ・DeNA全サービスを対象とし、大規模機械学習活用したサービス開発  - 数千万ユーザー、50億アクション/日、テキスト、画像、ソーシャルグラフ  - 体験設計から、分散学習アルゴリズムの設計・実装まで ・Deep Learning  - 画像表現学習・画像生成    対話・キャラクター表現学習、等
  • 4. 4 Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved. AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 5. 5 Copyright (C) 2014 DeNA Co.,Ltd. All Rights Reserved. AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 6. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 6 NIPS 2016 ・第30回の開催 ・期間: 2016年12月5-10日 ・ICML 33回に続き長い伝統 ・チュートリアル: 5(1日) ・本会議: 5-8(4日) ・ワークショップ: 9-10(2日) ・開催地: バルセロナ(スペイン) 貼る:会場雰囲気
  • 7. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 7 NIPS 2016 参加者が 6000人に増加 (2015年の1.5倍) ※Terrence Sejnowskiは NIPS foundationの President
  • 8. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 8 NIPS Features ・採択の92%はポスター ・採択率: 23% ・投稿数: 2500+、採択数: 568 ・Oral(45) : 20分の口頭発表 + ポスター ・Poster(523) : ポスターのみ ・少数トラックでの進行(最大3) (昨年までシングルトラックだったがパラレルに)
  • 9. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 9 NIPS Features ・ポスター発表による活発な議論 (昨年までの19-24時の5時間ポスターからは時間縮小したが、最後まで活発な議論) ・210 min(3.5 hour)/ day ・130 Poster x 4 days
  • 10. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 10 NIPS2016 Hot Topics 引用元: The review process for NIPS 2016 http://www.tml.cs.uni-tuebingen.de/team/ luxburg/misc/nips2016/index.php Deep Learning Computer Vision Large Scale Learning Learning Theory Optimization Sparsity
  • 11. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 11 NIPS2016 Hot Topics Tutorial 3/9、Symposium 2/3 が Deep Learning Reinforcement Learning, Generative Adversarial Net, Recurrent Net Tutorial Symposium
  • 12. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 12 NIPS2016 Hot Topics Tutorial Symposium Tutorial 3/9、Symposium 2/3 が Deep Learning Reinforcement Learning, Generative Adversarial Net, Recurrent Net 上記2トピックに関し、本会議論文をピックアップし概要紹介します (Reinforcement Learningは、このNIPS読み会での個別論文の発表も多いため)
  • 13. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 13 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 14. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 14 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 15. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 15 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 16. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 16 Generative Adversarial Network (GAN) Generative Adversarial Nets(GAN) Goodfellow+, NIPS2014
  • 17. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 17 Generative Adversarial Network (GAN) Generator(生成器)と Discriminator(識別器)を戦わせ 生成精度を向上させる 識別器: “本物画像”と “生成器が作った偽画像”を識別する 生成器: 生成画像を識別器に“本物画像”と誤識別させようとする (Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation)
  • 18. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 18 Generative Adversarial Network (GAN) Minimax Objective function Discriminator が 「本物画像」を「本物」と識別 (Goodfellow+, NIPS2014, Deep Learning Workshop, Presentation) Discriminator が 「生成画像」を「偽物」と識別する Discriminatorは 正しく識別しようとする (最大化) Generatorは Discriminator に誤識別させようとする(最小化) Generator(生成器)と Discriminator(識別器)を戦わせ 生成精度を向上させる
  • 19. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 19 自然画像の表現ベクトル空間学習・演算・画像生成 ICLR16: Deep Convolutional GAN : DCGAN (Radford+) 自然画像のクリアな画像生成 画像演算 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. Alec Radford, Luke Metz, Soumith Chintala. arXiv:1511.06434. In ICLR 2016.
  • 20. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 20 ICML16: Autoencoding beyond pixels (Larsen+) Autoencoding beyond pixels using a learned similarity metric. Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther. arXiv:1512.09300. In ICML 2016. 自然画像の表現ベクトル空間学習・演算・画像生成
  • 21. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 21 ICML16: Generative Adversarial Text to Image Synthesis(Reed+) Generative Adversarial Text to Image Synthesis. Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee. arXiv:1605.05396. In ICML 2016. 文章からの画像生成 文章で条件付したGAN
  • 22. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 22 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 23. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 23 Generative Adversarial Text to Image Synthesis(Reed+) Learning What and Where to Draw. Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee. arXiv:1610.02454. In NIPS 2016. 文章からの画像生成 表示位置情報も条件付したGAN
  • 24. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 24 InfoGAN (Chen+) InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. arXiv:1606.03657. In NIPS 2016 Latent code c、Generator 出力との Mutual Information を加え GANで狙って表現ベクトル空間を学習
  • 25. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 25 3Dモデルの表現ベクトル空間学習・演算・生成 3D GAN (Wu+) 3Dモデルの生成 3Dモデル演算 写真からの3Dモデル生成 3D VAE-GAN 3D GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, Joshua B. Tenenbaum. arXiv:1610.07584. In NIPS 2016.
  • 26. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 26 Generating Videos with Scene Dynamics(Vondrick+) 動画の表現ベクトル空間学習・動画生成 Generating Videos with Scene Dynamics. Carl Vondrick, Hamed Pirsiavash, Antonio Torralba. In NIPS 2016. http://web.mit.edu/vondrick/tinyvideo/ 動画生成 1画像からその後の動画生成
  • 27. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 27 f-GAN (Nowozin+) GAN目的関数を Symmetric JS-divergence から f-divergence に一般化。各Divergence を用い学習・評価 f-GAN: Training Generative Neural samplers using variational Divergence Minimization. Sebastian Nowozin, Botond Cseke, Ryota Tomioka. arXiv:1606.00709. In NIPS 2016. Kernel Density Estimation on the MNIST f-divergence LSUN
  • 28. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 28 Improved Techniques for Training GANs (Salimans+) Improved Techniques for Training GANs. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. arXiv:1606.03498. In NIPS 2016. 収束が難しいGANの学習方法論 GAN半教師あり学習 1. Feature Matching 2. Minibatch discrimination 3. Historical averaging 4. One-sided label smoothing 5. Virtual batch normalization Techniques Semi-supervised learning MNIST Semi-supervised training with feature matching Semi-supervised training with feature matching and minibatch discrimination CIFAR-10 Generated samples
  • 29. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 29 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 30. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 30 Extended Architectures for Generative Adversarial Nets 2016 Extended Architectures for GANs Figure by Chris Olah (2016) : https://twitter.com/ch402/status/793535193835417601 Ex) Conditional Image Synthesis With Auxiliary Classifier GANs. Augustus Odena, Christopher Olah, Jonathon Shlens. arXiv:1610.09585. Generative Adversarial Net の各種拡張
  • 31. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 31 Stack GAN: Text to PhotoRealistic Image Synthesis(Zhang+2016) 1段目で文章から低解像度画像を生成 2段目で低解像度画像から高解像度画像を生成 StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas. arXiv:1612.03242.
  • 32. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 32 Plug & Play Generative Networks (Nguyen+2016) 高解像度な画像生成 227 x 227 ImageNet Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space. Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, Jeff Clune. arXiv:1612.00005.
  • 33. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 33 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016
  • 34. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 34 Phased LSTM (Neil+) 時間で開閉するGateを導入した LSTM Sensor Data 等、Event 駆動の長期系列特徴を学習 Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences. Daniel Neil, Michael Pfeiffer, Shih-Chii Liu. arXiv:1610.09513. In NIPS 2016. LSTM Phased LSTM Phased LSTM Behavior Frequency Discrimination Task
  • 35. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 35 Using Fast Weights to Attend to the Recent Past (Ba+) 早く学習・減衰する Fast Weight 追加で、系列固有の情報を扱う Slow Weight での長期特徴とあわせ、双方の系列特徴を学習 Using Fast Weights to Attend to the Recent Past. Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu. arXiv:1610.06258. In NIPS 2016. Associative Retrieval Task Classification Error Test Log Likelihood
  • 36. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 36 Learning to learn by GD by GD (Andrychowicz+) LSTMを用いたOptimizer Parameterごとに 勾配系列から適切な次の更新量を算出 Learning to learn by gradient descent by gradient descent. Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas. arXiv:1606.04474. In NIPS 2016.
  • 37. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 37 Matching Network for One Shot Learning (Vinyals+) Attention Mechanism を用いた One Shot Learning 参照構造を学習しておき、新規小規模データセットでも高精度で動作 Matching Networks for One Shot Learning. Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra. arXiv:1606.04080. In NIPS 2016. Omniglot miniImageNet
  • 38. Copyright (C) 2016 DeNA Co.,Ltd. All Rights Reserved. 38 AGENDA ◆Deep Learning Topics ◆NIPS 2016 Overview ◆Generative Adversarial Networks(GANs) ◆Recurrent Neural Networks(RNNs) ◆GANs ◆GANs in NIPS2016 ◆Recent GANs ◆RNNs in NIPS2016