SlideShare a Scribd company logo
Lecture 5 Smaller Network: CNN
 We know it is good to learn a small model.
 From this fully connected model, do we really need all
the edges?
 Can some of these be shared?
Consider learning an image:
Some patterns are much smaller than
the whole image
“beak” detector
Can represent a small region with fewer parameters
Same pattern appears in different places:
They can be compressed!
What about training a lot of such “small” detectors
and each detector must “move around”.
“upper-left
beak” detector
“middle beak”
detector
They can be compressed
to the same parameters.
A convolutional layer
A filter
A CNN is a neural network with some convolutional layers
(and some other layers). A convolutional layer has a number
of filters that does convolutional operation.
Beak detector
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
…
…
These are the network
parameters to be learned.
Each filter detects a
small pattern (3 x 3).
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
3 -1
stride=1
Dot
product
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
3 -3
If stride=2
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
3 -1 -3 -1
-3 1 0 -3
-3 -3 0 1
3 -2 -2 -1
stride=1
Convolution
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
3 -1 -3 -1
-3 1 0 -3
-3 -3 0 1
3 -2 -2 -1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
-1 -1 -1 -1
-1 -1 -2 1
-1 -1 -2 1
-1 0 -4 3
Repeat this for each filter
stride=1
Two 4 x 4 images
Forming 2 x 4 x 4 matrix
Feature
Map
Color image: RGB 3 channels
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
1 -1 -1
-1 1 -1
-1 -1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 1 -1
-1 1 -1
-1 1 -1
-1 1 -1
-1 1 -1
-1 1 -1
Color image
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
image
convolution
-1 1 -1
-1 1 -1
-1 1 -1
1 -1 -1
-1 1 -1
-1 -1 1
1
x
2
x
…
…
36
x
…
…
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
Convolution v.s. Fully Connected
Fully-
connected
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
1
2
3
…
8
9
…
1
3
14
15
… Only connect to
9 inputs, not
fully connected
4:
10:
16
1
0
0
0
0
1
0
0
0
0
1
1
3
fewer parameters!
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
1:
2:
3:
…
7:
8:
9:
…
1
3:
14:
15:
…
4:
10:
16:
1
0
0
0
0
1
0
0
0
0
1
1
3
-1
Shared weights
6 x 6 image
Fewer parameters
Even fewer parameters
The whole CNN
Fully Connected
Feedforward network
cat dog ……
Convolution
Max Pooling
Convolution
Max Pooling
Flattened
Can
repeat
many
times
Max Pooling
3 -1 -3 -1
-3 1 0 -3
-3 -3 0 1
3 -2 -2 -1
-1 1 -1
-1 1 -1
-1 1 -1
Filter 2
-1 -1 -1 -1
-1 -1 -2 1
-1 -1 -2 1
-1 0 -4 3
1 -1 -1
-1 1 -1
-1 -1 1
Filter 1
Why Pooling
 Subsampling pixels will not change the object
Subsampling
bird
bird
We can subsample the pixels to make image
smaller fewer parameters to characterize the image
A CNN compresses a fully connected
network in two ways:
Reducing number of connections
Shared weights on the edges
Max pooling further reduces the complexity
Max Pooling
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
6 x 6 image
3 0
1
3
-1 1
3
0
2 x 2 image
Each filter
is a channel
New image
but smaller
Conv
Max
Pooling
The whole CNN
Convolution
Max Pooling
Convolution
Max Pooling
Can
repeat
many
times
A new image
The number of channels
is the number of filters
Smaller than the original
image
3 0
1
3
-1 1
3
0
The whole CNN
Fully Connected
Feedforward network
cat dog ……
Convolution
Max Pooling
Convolution
Max Pooling
Flattened
A new image
A new image
Flattening
3 0
1
3
-1 1
3
0 Flattened
3
0
1
3
-1
1
0
3
Fully Connected
Feedforward network
Only modified the network structure and
input format (vector -> 3-D tensor)
CNN in Keras
Convolution
Max Pooling
Convolution
Max Pooling
input
1 -1 -1
-1 1 -1
-1 -1 1
-1 1 -1
-1 1 -1
-1 1 -1
There are
25 3x3
filters.
…
…
Input_shape = ( 28 , 28 , 1)
1: black/white, 3: RGB
28 x 28 pixels
3 -1
-3 1
3
Only modified the network structure and
input format (vector -> 3-D array)
CNN in Keras
Convolution
Max Pooling
Convolution
Max Pooling
Input
1 x 28 x 28
25 x 26 x 26
25 x 13 x 13
50 x 11 x 11
50 x 5 x 5
How many parameters for
each filter?
How many parameters
for each filter?
9
225=
25x9
Only modified the network structure and
input format (vector -> 3-D array)
CNN in Keras
Convolution
Max Pooling
Convolution
Max Pooling
Input
1 x 28 x 28
25 x 26 x 26
25 x 13 x 13
50 x 11 x 11
50 x 5 x 5
Flattened
1250
Fully connected
feedforward network
Output
AlphaGo
Neural
Network
(19 x 19
positions)
Next move
19 x 19 matrix
Black: 1
white: -1
none: 0
Fully-connected feedforward
network can be used
But CNN performs much better
AlphaGo’s policy network
Note: AlphaGo does not use Max Pooling.
The following is quotation from their Nature article:
CNN in speech recognition
Time
Frequency
Spectrogram
CNN
Image
The filters move in the
frequency direction.
CNN in text classification
Source of image:
http://citeseerx.ist.psu.edu/viewdoc/downlo
ad?doi=10.1.1.703.6858&rep=rep1&type=p
df
?

More Related Content

PPT
Convolutional Neural Networks definicion y otros
PPTX
Deep-Learning-2017-Lecture5CNN.pptx
PDF
convolutional neural network and its applications.pdf
PPTX
Deep-LearningwithVisualExamplesExplaine.pptx
PPT
Deep Learning approach in Machine learning
PPT
Introduction to Deep-Learning-CNN Arch.ppt
PPTX
Machine learning algorithms like CNN and LSTM
PPT
digital image processing - convolutional networks
Convolutional Neural Networks definicion y otros
Deep-Learning-2017-Lecture5CNN.pptx
convolutional neural network and its applications.pdf
Deep-LearningwithVisualExamplesExplaine.pptx
Deep Learning approach in Machine learning
Introduction to Deep-Learning-CNN Arch.ppt
Machine learning algorithms like CNN and LSTM
digital image processing - convolutional networks

Similar to Deep-Learning-2017-Lecture5CNN.ppt (17)

PDF
AI_Theory: Covolutional_neuron_network.pdf
PDF
convolutional neural networks for machine learning
PDF
Practical Deep Learning Using Tensor Flow - Sandeep Kath
PDF
cnn.pdf
PPT
Adv.TopicsAICNN.ppt
PPTX
Deep learning in E-Commerce Applications and Challenges (CNN)
PPTX
CNN_AH.pptx
PPTX
CNN_AH.pptx
PPTX
Deep learning
PPTX
Introduction to convolutional networks .pptx
PPTX
Deep learning requirement and notes for novoice
PDF
Overview of Convolutional Neural Networks
 
PPTX
Introduction to Convolutional Neural Networks
PDF
dfdshofdifhdifhdfhgfoighfgofgfgfgfgdfdfdfdf
PDF
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
PDF
super-cheatsheet-deep-learning.pdf
AI_Theory: Covolutional_neuron_network.pdf
convolutional neural networks for machine learning
Practical Deep Learning Using Tensor Flow - Sandeep Kath
cnn.pdf
Adv.TopicsAICNN.ppt
Deep learning in E-Commerce Applications and Challenges (CNN)
CNN_AH.pptx
CNN_AH.pptx
Deep learning
Introduction to convolutional networks .pptx
Deep learning requirement and notes for novoice
Overview of Convolutional Neural Networks
 
Introduction to Convolutional Neural Networks
dfdshofdifhdifhdfhgfoighfgofgfgfgfgdfdfdfdf
_AI_Stanford_Super_#DeepLearning_Cheat_Sheet!_😊🙃😀🙃😊.pdf
super-cheatsheet-deep-learning.pdf
Ad

Recently uploaded (20)

PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
 
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Machine learning based COVID-19 study performance prediction
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Assigned Numbers - 2025 - BluetoothÂŽ Document
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
 
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Programs and apps: productivity, graphics, security and other tools
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
 
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Advanced methodologies resolving dimensionality complications for autism neur...
MIND Revenue Release Quarter 2 2025 Press Release
sap open course for s4hana steps from ECC to s4
Machine learning based COVID-19 study performance prediction
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Per capita expenditure prediction using model stacking based on satellite ima...
“AI and Expert System Decision Support & Business Intelligence Systems”
Assigned Numbers - 2025 - BluetoothÂŽ Document
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Digital-Transformation-Roadmap-for-Companies.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
 
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Spectroscopy.pptx food analysis technology
Programs and apps: productivity, graphics, security and other tools
Ad

Deep-Learning-2017-Lecture5CNN.ppt

  • 1. Lecture 5 Smaller Network: CNN  We know it is good to learn a small model.  From this fully connected model, do we really need all the edges?  Can some of these be shared?
  • 2. Consider learning an image: Some patterns are much smaller than the whole image “beak” detector Can represent a small region with fewer parameters
  • 3. Same pattern appears in different places: They can be compressed! What about training a lot of such “small” detectors and each detector must “move around”. “upper-left beak” detector “middle beak” detector They can be compressed to the same parameters.
  • 4. A convolutional layer A filter A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation. Beak detector
  • 5. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 … … These are the network parameters to be learned. Each filter detects a small pattern (3 x 3).
  • 6. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 3 -1 stride=1 Dot product
  • 7. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 3 -3 If stride=2
  • 8. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 3 -1 -3 -1 -3 1 0 -3 -3 -3 0 1 3 -2 -2 -1 stride=1
  • 9. Convolution 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 3 -1 -3 -1 -3 1 0 -3 -3 -3 0 1 3 -2 -2 -1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 -1 -1 -1 -1 -1 -1 -2 1 -1 -1 -2 1 -1 0 -4 3 Repeat this for each filter stride=1 Two 4 x 4 images Forming 2 x 4 x 4 matrix Feature Map
  • 10. Color image: RGB 3 channels 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 Color image
  • 11. 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 image convolution -1 1 -1 -1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 x 2 x … … 36 x … … 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 Convolution v.s. Fully Connected Fully- connected
  • 12. 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 1 2 3 … 8 9 … 1 3 14 15 … Only connect to 9 inputs, not fully connected 4: 10: 16 1 0 0 0 0 1 0 0 0 0 1 1 3 fewer parameters!
  • 13. 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1 1: 2: 3: … 7: 8: 9: … 1 3: 14: 15: … 4: 10: 16: 1 0 0 0 0 1 0 0 0 0 1 1 3 -1 Shared weights 6 x 6 image Fewer parameters Even fewer parameters
  • 14. The whole CNN Fully Connected Feedforward network cat dog …… Convolution Max Pooling Convolution Max Pooling Flattened Can repeat many times
  • 15. Max Pooling 3 -1 -3 -1 -3 1 0 -3 -3 -3 0 1 3 -2 -2 -1 -1 1 -1 -1 1 -1 -1 1 -1 Filter 2 -1 -1 -1 -1 -1 -1 -2 1 -1 -1 -2 1 -1 0 -4 3 1 -1 -1 -1 1 -1 -1 -1 1 Filter 1
  • 16. Why Pooling  Subsampling pixels will not change the object Subsampling bird bird We can subsample the pixels to make image smaller fewer parameters to characterize the image
  • 17. A CNN compresses a fully connected network in two ways: Reducing number of connections Shared weights on the edges Max pooling further reduces the complexity
  • 18. Max Pooling 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 6 x 6 image 3 0 1 3 -1 1 3 0 2 x 2 image Each filter is a channel New image but smaller Conv Max Pooling
  • 19. The whole CNN Convolution Max Pooling Convolution Max Pooling Can repeat many times A new image The number of channels is the number of filters Smaller than the original image 3 0 1 3 -1 1 3 0
  • 20. The whole CNN Fully Connected Feedforward network cat dog …… Convolution Max Pooling Convolution Max Pooling Flattened A new image A new image
  • 21. Flattening 3 0 1 3 -1 1 3 0 Flattened 3 0 1 3 -1 1 0 3 Fully Connected Feedforward network
  • 22. Only modified the network structure and input format (vector -> 3-D tensor) CNN in Keras Convolution Max Pooling Convolution Max Pooling input 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 There are 25 3x3 filters. … … Input_shape = ( 28 , 28 , 1) 1: black/white, 3: RGB 28 x 28 pixels 3 -1 -3 1 3
  • 23. Only modified the network structure and input format (vector -> 3-D array) CNN in Keras Convolution Max Pooling Convolution Max Pooling Input 1 x 28 x 28 25 x 26 x 26 25 x 13 x 13 50 x 11 x 11 50 x 5 x 5 How many parameters for each filter? How many parameters for each filter? 9 225= 25x9
  • 24. Only modified the network structure and input format (vector -> 3-D array) CNN in Keras Convolution Max Pooling Convolution Max Pooling Input 1 x 28 x 28 25 x 26 x 26 25 x 13 x 13 50 x 11 x 11 50 x 5 x 5 Flattened 1250 Fully connected feedforward network Output
  • 25. AlphaGo Neural Network (19 x 19 positions) Next move 19 x 19 matrix Black: 1 white: -1 none: 0 Fully-connected feedforward network can be used But CNN performs much better
  • 26. AlphaGo’s policy network Note: AlphaGo does not use Max Pooling. The following is quotation from their Nature article:
  • 27. CNN in speech recognition Time Frequency Spectrogram CNN Image The filters move in the frequency direction.
  • 28. CNN in text classification Source of image: http://citeseerx.ist.psu.edu/viewdoc/downlo ad?doi=10.1.1.703.6858&rep=rep1&type=p df ?