SlideShare a Scribd company logo
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Dependent type semantics
and its Davidsonian extensions
Daisuke Bekki
Ochanomizu University, Faculty of Core Science
A talk at Laboratoire de linguistique formelle
15 Dec, 2022.
1 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Dependent Type Semantics (DTS) (Bekki 2014;
Bekki and Mineshima 2017; Bekki 2021)
I A framework of natural language semantics
I Unified approach to general inferences and
anaphora/presupposition resolution in terms of tpe checking
and proof search
Main features:
1. Proof-theoretic semantics:
From truth-conditions (denotations, models) to verification
conditions (proofs, contexts)
2. Anaphora/Presuppositions: A proof-theoretic alternative to
Dynamic Semantics (DRT, DPL, etc.)
3. Compositionality: Syntax-semantics interface via categorial
grammars (e.g. CCG, TLG, ACG, etc)
4. Computation: Implementation, Applications to Natural
Language Processing
2 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Dependent Types
3 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Per Martin-Löf
Martin-Löf (1984) “Intuitionistic type theory”
4 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
What are Π-types
Π-type is a type of fibred functions.
Simple function space Fibred function space
5 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
What are Σ-types
Σ-type is a type of fibred products.
Simple product space Fibred product space
6 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Notations
DTS notation Standard notation x 6∈ fv(B) x ∈ fv(B)
(x : A) → B (Πx : A)B A → B (∀x : A)B
(x : A) × B
or

x : A
B
 (Σx : A)B A ∧ B (∃x : A)B
Scope of the variable in Π-types: (x : A) → B
Scope of the variable in Σ-types:

x : A
B

7 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Π-type F/I/E rules
A : s1
x : A
i
.
.
.
.
B : s2
(x : A) → B : s2
(ΠF),i
where (s1, s2) ∈

(type, type),
(type, kind)

.
A : type
x : A
i
.
.
.
.
M : B
λx.M : (x : A) → B
(ΠI ),i
M : (x : A) → B N : A
MN : B[N/x]
(ΠE)
8 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Σ-type F/I/E rules
A : type
x : A
i
.
.
.
.
B : type
(x : A) × B : type
(ΣF),i
M : A N : B[M/x]
(M, N) : (x : A) × B
(ΣI )
M : (x : A) × B
π1(M) : A
(ΣE)
M : (x : A) × B
π2(M) : B[π1(M)/x]
(ΣE)
9 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Rules of DTS
Rules from Martin-Löf Type Theory
I Axioms and Structural rules
I Π-type (Dependent function type) [F/I/E]
I Σ-type (Dependent product type) [F/I/E]
I Intensional equality type [F/I/E]
I Disjoint union type [F/I/E]
I Enumeration type [F/I/E]
I Natural number type [F/I/E]
New rule in DTS
I @ (the ‘asperand’ operator)
I Anaphora and presupposition triggers
(linguistically speaking)
I Open proofs (logically speaking)
10 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Conjunction, Implication, and Negation
Definition

A
B

def
≡ (x : A) × B where x /
∈ fv(B).
A → B
def
≡ (x : A) → B where x /
∈ fv(B).
¬A
def
≡ (x : A) → ⊥
11 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Dynamics in Natural Language
Semantics
12 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
A theory of anaphora
I Anaphora representable by a constant symbol:
I Deictic use:
(1) (Pointing at John)
He was born in Detroit.
bornIn( j , d)
I Coreference:
(2) John loves a girl who hates him .
∃x(girl(x) ∧ love( j , x) ∧ hate(x, j ))
I Anaphora representable by a variable
I Bound variable anaphora:
(3) Every boy loves his father.
∀x (boy(x) → love(x, fatherOf( x )))
13 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
A theory of anaphora
I Anaphora not representable by FoL:
I E-type anaphora:
(4) A man entered into the park. He whistled.
I Donkey anaphora:
(5) Every farmer who owns a donkey beats it .
(6) If a farmer owns a donkey , he beats it .
I Anaphora not representable by FoL nor dynamic semantics:
I Syllogistic anaphora:
(7) Every girl received a present . Some girl opened it .
I Disjunctive antecedent:
(8) If Mary sees a horse or a pony , she waves to it .
14 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
E-type anaphora: Evans (1980)
(9) [A man]1 entered. He1 whistled.
The first-order SR (10) represents the truth condition of (9), thus
is a candidate of the SR of (9).
(10) ∃x(man(x) ∧ enter(x) ∧ whistle(x))
But the syntactic structure of the SR (10) does not correspond to
that of (9), where consists of two independent sentences. The
sentential boundary of (9) prefers the first-order
representation (11).
(11) ∃x(man(x) ∧ enter(x)) ∧ whistle( x )
However, the truth condition of (11) is different from that of the
mini-discourse (9) since the variable x in whistle(x) is not bound
by ∃.
15 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Donkey anaphora: Geach (1962)
For the donkey sentences (12), a first-order formula (13), whose
truth condition is the same as those of (12), is a candidate of its
SR.
(12) a. Every farmer who owns [a donkey]1 beats it1.
b. If [a farmer]1 owns [a donkey]2 , he1 beats it2.
(13) ∀x(farmer(x) → ∀y (donkey(y) ∧ own(x, y) →
beat(x, y)))
But the translation from the sentence (12) to (13) is not
straightforward since i) the indefinite noun phrase a donkey is
translated into a universal quantifier in (13) instead of an
existential quantifier, and ii) the syntactic structure of (13) does
not corresponds to that of (12).
16 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Donkey anaphora: Geach (1962)
(12) a. Every farmer who owns [a donkey]1 beats it1 .
b. If [a farmer]1 owns [a donkey]2, he1 beats it2 .
The syntactic parallel of (12) is, rather, the SR (14), in which the
indefinite noun phrase is translated into an existential
quantification.
(14) ∀x(farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y)) →
beat(x, y ))
However, (14) does not represent the truth condition of (12)
correctly since the variable y in beat(x, y) fails to be bound by ∃.
Therefore, neither (13) nor (14) qualifies as the SR of (12).
17 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
E-type anaphora: Ranta (1994)
(9) A man entered. He whistled.







u :



x : entity

man(x)
enter(x)




whistle( π1(u) )







Note:

x : A
B

is a type for pairs of A and B[x].
18 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Donkey anaphora: Sundholm (1986)
(12a) Every farmer who owns a donkey beats it .







u :







x : entity





farmer(x)



v :

y : entity
donkey(y)
#
own(x, π1v)






















→ beat(π1u, π1π1π2π2u
Note: (x : A) → B is a type for functions from A to B[x].
19 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
From TTG to DTS: Compositionality
Q: How could one get to these (dependently-typed)
representations from arbitrary sentences?
A: By lexicalization.
Q: How could we lexicalize context-dependent words like
pronouns?







u :



x : entity

man(x)
enter(x)




whistle( π1(u) )







20 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Dependent Type Semantics (DTS)
21 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
From TTG to DTS: Compositionality
Q: How could one get to these (dependently-typed)
representations from arbitrary sentences?
A: By lexicalization.
Q: How could we lexicalize context-dependent words like
pronouns?
A: By using underspecified terms.
Q: But how could we retrieve a context for an
underspecified term?
A: By type checking.
22 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Underspecified terms
DTS = DTT + underspecified terms @A
Definition (@-rule)
A : typej A true
@iA : A
where j ∈ N
(@)
I @-rule states that the well-formedness of @A requires:
I A is a well-formed type.
I the inhabitance of A (namely, A is a presuppositional content)
23 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
On parsing
We assume that an SR of a sentence is obtained by parsing and
semantic composition (assumed by one’s syntactic theory).
A sentence
⇓
Parsing
⇓
An underspecified SRs in DTS
24 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Lexical items in CCG-style
Surface form Syntactic category Semantic representation
every
(
T /(T NP)/N
T (T /NP)/N
λn.λp.λ~
x.

u :

x : entity
n(x)

→ p(π1u)~
x
a, some
(
T /(T NP)/N
T (T /NP)/N
λn.λp.λ~
x.

 u :

x : entity
n(x)

p(π1u)~
x


if
(
S/S/S
SS/S
λp.λq. (u : p) → q
who/whom
(
NN/(SNP )
NN/(S/NP )
λp.λn.λx.

nx
px

farmer N farmer
donkey N donkey
owns SNP/NP own
beats SNP/NP beat
he/him
(
T /(T NP) nom
T (T /NP) acc
λp.λ~
x.

 u@

x : entity
male(x)

p(π1u)~
x


it
(
T /(T NP) nom
T (T /NP) acc
λp.λ~
x.

 u@

x : entity
¬human(x)

p(π1u)~
x


the
(
T /(T NP)/N nom
T /(T NP)/N acc
λn.λp.λ~
x.

 u@

x : entity
n(x)

p(π1u)~
x


25 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Lexical items in CCG-style (anaphoric expressions)
PF CCG categories Semantic representations in DTS
he NP π1 @

x : entity
male(x)
 !
it NP π1 @

x : entity
¬human(x)
 !
the NP/N λn.π1 @

x : entity
nx
 !
26 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
E-type anaphora: Parsing
A
S/(SNP)/N
λn.λp.

 u :

x : entity
nx

p(π1u)


man
N
λx.man(x)
S/(SNP)
λp.

 u :

x : entity
man(x)

p(π1u)



entered
SNP
λx.enter(x)
S

 u :

x : entity
man(x)

enter(π1u)



27 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
E-type anaphora: Parsing
He
NP
π1 @

x : entity
male(x)

whistled
SNP
λx.whistle(x)
S
whistle π1 @

x : entity
male(x)
 !

28 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Progressive conjunction: Ranta (1994)
Definition (Progressive conjunction)
M; N
def
≡

u : M
N

where u /
∈ fv(N)
(9) [A man]1 entered. He 1 whistled.


x : entity

man(x)
enter(x)


 ; whistle(π1 @

x : entity
male(x)

)
=







u :


x : entity

man(x)
enter(x)



whistle(π1 @

x : entity
male(x)

)







29 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
E-type anahora: Type checking
.
.
.

 u :

x : entity
man(x)

enter(π1u)

 : type
whistle
: entity
→ type
(CON )
.
.
.

x : entity
male(x)

: type
v :

 u :

x : entity
man(x)

enter(π1u)


1
.
.
.
.

x : entity
male(x)

true
@

x : entity
male(x)

:

x : entity
male(x)
 (@)
π1 @

x : entity
male(x)

: entity
(ΣE)
whistle π1 @

x : entity
male(x)
 !
: type
(→E)







v :

 u :

x : entity
man(x)

enter(π1u)



x : entity
 !







: type
(ΣF),1
30 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
E-type anaphora: Proof search
v :

 u :

x : entity
man(x)

enter(π1u)


1
π1v :

x : entity
man(x)
 (ΣE)
π1π1v : entity
(ΣE)
v :

 u :

x : entity
man(x)

enter(π1u)


1
π1v :

x : entity
man(x)
 (ΣE)
m :

u :

x : entity
man(x)

→ male(π1
m(π1v) : male(π1π1v)
(π1π1v, m(π1v)) :

x : entity
male(x)
 (ΣE)
31 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
E-type anaphora: @-elimination
.
.
.
.

 u :

x : entity
man(x)

enter(π1u)

 : type
whistle : entity → type
v :

 u :

x : entity
man(x)

enter(π1u)


1
.
.
.
.
(π1π1v, m(π1v)) :

x : entity
male(x)

π1π1v : entity
(ΣE)
whistle( π1π1v ) : type
(ΠE)




v :

 u :

x : entity
man(x)

enter(π1u)


whistle( π1π1v )



 : type
(ΣF),1
32 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
@-elimination rules
Definition (@-elimination rules (excerpt))
u
w
v
DA
Γ ` A : s Γ ` M : JDAK
Γ ` ( @A ) : A
(@)
}

~ = M
u
w
w
v
DA
A : s1
x : A0
DB
B : s2
(x : A) → B : s2
(ΠF)
}


~ =
JDAK
A0 : s1
x : A0
JDBK
B0 : s2
(x : A0) → B0 : s2
(ΠF)
u
w
w
v
DA
A : s1
x : A0
DM
M : B
λx.M : (x : A) → B
(ΠI )
}


~ =
JDAK
A0 : s1
x : A0
JDM K
M0 : B0
λx.M0 : (x : A0) → B0
(ΠI )
u
w
v
DM
M : (x : A) → B
DN
N : A
MN : B0
(ΠE)
}

~ =
JDM K
M0 : (x : A0) → B0
JDN K
N0 : A0
M0N0 : B00
where B0[N0/x] β B00
(ΠE)
33 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
The model of language understanding
A sentence . . . A sentence
⇓ ⇓
Parsing . . . Parsing
⇓ ⇓
An underspecified SRs in UDTT . . . An underspecified SRs in UDTT
⇓ ⇓
Discoruse relation (e.g. Progressive conjunction)
⇓
An underspecified discourse representation in UDTT
⇓
Type checking + Proof search in UDTT
⇓
A proof diagram of the well-formedness of an SR in UDTT
⇓
@-elimination
⇓
A proof diagram of the well-formedness of an SR in DTT
⇓
Inference in DTT
34 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Event Semantics
35 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Davidsonian Extension
(15) John loves Mary.
(16) Classical DTS:
love(john, mary)
(17) Davidsonian DTS:

e : entity
love(e, john, mary)

(18) Neo-Davidsonian DTS:




e : Entity
love(e)
Ag(e) =entity john
Th(e) =entity mary)




36 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Event Continuation: Champollion (2015),
Mineshima et al. (2015)
John
S/(SNP)
λp.p(john)
runs
SNP
λx λk


e : entity
run(e, x)
k (e)


slowly
SNP(SNP)
λp.λx.λk.p(x)

λe.

slowly(e)
k(e)

SNP
λx.λk.




e : entity
run(e, x)
slowly(e)
k(e)





S
λk.




e : entity
run(e, john)
slowly(e)
k(e)





U




e : entity
run(e, john)
slowly(e)




CL
37 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Event Anaphora
(19) John ran slowly. Mary saw it.


e : entity
run(e, john)
slowly(e)

 ;



e : entity
see(e, mary, π1 @

e : entity
event(e)




=









u :


e : entity
run(e, john)
slowly(e)





e : entity
see(e, mary, π1 @

e : entity
event(e)













38 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Event Anaphora
(20) John ran slowly. Mary saw it.


e : entity
run(e, john)
slowly(e)

 ;



e : entity
see(e, mary, π1 @

e : entity
event(e)




=






u :


e : entity
run(e, john)
slowly(e)



e : entity
see(e, mary, π1u )







Given that:
` (e : entity) → (x : entity) → run(e, x) → event(e)
39 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Negative Events
Higginbotham (1983), Bernard and Champollion (2018):
(21) a. John saw Mary not leave.
b.
∃e








actual(e)∧
see(e)∧
exp(e) = John∧
∃e0


th(e) = e0∧
e0 ∈ Neg

λe00.
leave(e00)∧
ag(e00) = mary











cf. Axiom of Negation (Higginbotham 2000):
∃e ∈ Neg(P ).actual(e) ⇐
⇐
∀e0
∈ P.¬actual(e0
)
40 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Negative Events in DTS
(21a) John saw Mary not leave.
Proposal 1: ‘Neg’-event as a proof-term of a negative proposition




e : entity
ne : ¬

e0 : entity
leave(e0, mary)

see(John, e, ne)




I see becomes polymorphic
41 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Negative Events in DTS
(21a) John saw Mary not leave.
Proposal 2: ‘Neg’-event as a universe






e : entity
ne : U
dec (ne) =type ¬

e0 : entity
leave(e0, mary)

see(John, e, ne)






I see becomes monomorphic
I sorttype-level equation is used
I Some postulate is necessary to imply the factivity
42 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Summary
43 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Compositional Theory of Anaphora
I DTS provides a unified analysis for (general) inferences and
anaphora resolusion mechanisms (at least) for:
I Deictic use and coreference
I Bound variable anaphora (BVA)
I E-type anaphora
I Donkey anaphora
I Bridging anaphora
I Syllogistic anaphora
I Disjunctive antecedents
44 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Compositional Theory of Anaphora
I The background theory for DTS is an extention of DTT with
underspecified terms and the @-rule .
I Lexical items of anaphoric expressions and presupposition
triggers are represented by using underspecified terms.
I Context retrieval in DTS reduces to type checking .
I Anaphora resolution and presupposition binding in DTS
reduces to proof search .
I @-elimination translates a proof diagram of DTS into a proof
diagram of DTT, by which an SR in DTT is obtained with all
anaphora resolved.
45 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Natural language semantics via dependent types:
Classics
I Donkey anaphora: Sundholm (1986)
I Translation from DRS to dependent type representations: Ahn
and Kolb (1990)
I Summation: Fox (1994a,b)
I Ranta’s TTG (Relative and Implicational Donkey Sentences,
Branching Quantifiers, Intensionality, Tense): Ranta (1994)
I Translation from Montague Grammar to dependent type
representations: Dávila-Pérez (1995)
I Presupposition Binding and Accommodation, Bridging:
Krahmer and Piwek (1999), Piwek and Krahmer (2000)
46 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Natural language semantics via dependent types:
Recent frameworks
I Type Theory with Record (TTR): Cooper (2005)
I Modern Type Theory: Luo (1997, 1999, 2010, 2012), Asher
and Luo (2012), Chatzikyriakidis (2014)
I Semantics with Dependent Types: Grudzinska and
Zawadowski (2014; 2017)
I Dependent Type Semantics (DTS): Bekki (2014), Bekki
and Mineshima (2017)
I (Dynamic Categorial Grammar: Martin and Pollard (2014))
47 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Semantic Analyses by DTS
I Generalized Quantifiers : Tanaka (2014)
I Honorification : Watanabe et al. (2014)
I Conventional Implicature : Bekki and McCready (2015)
I Factive Presuppositions : Tanaka et al. (2015)(2017)
I Dependent Plural Anaphora : Tanaka+(2017)
I Paycheck sentences : Tanaka+(2018) in NLCS2018
I Coercion and Metaphor : Kinoshita+(2018)
I Questions : Watanabe+(NLCS’19), Funakura (2022) in
LENLS19
I Comparision with DRT : Yana+(2019) in JoLLI
48 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Semantic Analyses by DTS
I Development of an automated theorem prover for the
fragment of DTS: Daido and Bekki (2020) in LENLS17
I A Proof-theoretic Analysis of Weak Crossover : Bekki (2021)
in LENLS18
I The proviso problem from a proof-theoretic perspective:
Yana+(2021) in LACL2021
I Integrating Deep Neural Network with Dependent Type
Semantics: Bekki+(2021) in LACompLing2021,
Bekki+(2022) in NALOMA’22
49 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Thank you!
50 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference I
Ahn, R. and H.-P. Kolb. (1990) “Discourse Representation meets
Constructive Mathematics”, In: L. Kalman and L. Polos (eds.):
Papers from the Second Symposium on Logic and Language.
Akademiai Kiado, pp.1–18.
Asher, N. and Z. Luo. (2012) “Formalisation of coercions in lexical
semantics”, In the Proceedings of Sinn und Bedeutung 17.
pp.63–80.
Bekki, D. (2014) “Representing Anaphora with Dependent Types”,
In the Proceedings of N. Asher and S. V. Soloviev (eds.):
Logical Aspects of Computational Linguistics (8th international
conference, LACL2014, Toulouse, France, June 2014
Proceedings), LNCS 8535. pp.14–29, Springer, Heiderburg.
51 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference II
Bekki, D. and E. McCready. (2015) “CI via DTS”, In: New
Frontiers in Artificial Intelligence (JSAI-isAI 2014 Workshops,
LENLS, JURISIN, and GABA, Yokohama, Japan, November
23-24, 2014, Revised Selected Papers), Vol. LNAI 9067.
Springer, pp.23–36.
Bekki, D. and K. Mineshima. (2017) “Context-passing and
Underspecification in Dependent Type Semantics”, In: Modern
Perspectives in Type Theoretical Semantics, Studies of
Linguistics and Philosophy. Springer, pp.11–41.
Bernard, T. and L. Champollion. (2018) “Negative events in
compositional semantics”, In the Proceedings of SALT 28.
pp.512–532.
52 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference III
Champollion, L. (2015) “The interaction of compositional
semantics and event semantics”, Linguistics and Philosophy
38(1), pp.31–66.
Chatzikyriakidis, S. (2014) “Adverbs in a Modern Type Theory”,
In: N. Asher and S. V. Soloviev (eds.): Logical Aspect of
Computational Linguistics, 8th International Conference,
LACL2014, Toulouse, France, June 18-20, 2014 Proceedings.
Springer.
Cooper, R. (2005) “Records and Record Types in Semantic
Theory”, Journal of Logic and Computation 15(2), pp.99–112.
Dávila-Pérez, R. (1995) “Semantics and Parsing in Intuitionistic
Categorial Grammar”, Thesis, University of Essex. Ph.D. thesis.
Evans, G. (1980) “Pronouns”, Linguistic Inquiry 11, pp.337–362.
53 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference IV
Fox, C. (1994a) “Discourse Representation, Type Theory and
Property Theory”, In the Proceedings of H. Bunt, R. Muskens,
and G. Rentier (eds.): the International Workshop on
Computational Semantics. pp.71–80.
Fox, C. (1994b) “Existence Presuppositions and Category
Mistakes”, Acta Linguistica Hungarica 42(3/4), pp.325–339.
Geach, P. (1962) Reference and Generality: An Examination of
Some Medieval and Modern Theories. Ithaca, New York, Cornell
University Press.
Higginbotham, J. (1983) “The logic of perceptual reports: An
extensional alternative to situation semantics”, The Journal of
Philosophy 80(2), pp.100–127.
54 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference V
Krahmer, E. and P. Piwek. (1999) “Presupposition Projection as
Proof Construction”, In: H. Bunt and R. Muskens (eds.):
Computing Meanings: Current Issues in Computational
Semantics, Studies in Linguistics Philosophy Series. Dordrecht,
Kluwer Academic Publishers.
Luo, Z. (1997) “Coercive subtyping in type theory”, In: D. van
Dalen and M. Bezem (eds.): CSL 1996. LNCS, vol. 1258.
Heidelberg, Springer.
Luo, Z. (1999) “Coercive subtyping”, Journal of Logic and
Computation 9(1), pp.105–130.
Luo, Z. (2010) “Type-theoretical semantics with coercive
subtyping”, In the Proceedings of Semantics and Linguistic
Theory 20 (SALT 20).
55 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference VI
Luo, Z. (2012) “Formal Semantics in Modern Type Theories with
Coercive Subtyping”, Linguistics and Philosophy 35(6).
Martin, S. and C. J. Pollard. (2014) “A dynamic categorial
grammar”, In the Proceedings of Formal Grammar 19, LNCS
8612.
Mineshima, K., P. Martı́nez-Gómez, Y. Miyao, and D. Bekki.
(2015) “Higher-order logical inference with compositional
semantics”, In the Proceedings of Conference on Empirical
Methods in Natural Language Processing (EMNLP2015).
pp.2055–2061.
Piwek, P. and E. Krahmer. (2000) “Presuppositions in Context:
Constructing Bridges”, In: P. Bonzon, M. Cavalcanti, and R.
Nossum (eds.): Formal Aspects of Context, Applied Logic
Series. Dordrecht, Kluwer Academic Publishers.
56 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference VII
Ranta, A. (1994) Type-Theoretical Grammar. Oxford University
Press.
Sundholm, G. (1986) “Proof theory and meaning”, In: Handbook
of Philosophical Logic, Vol. III. Reidel, Kluwer, pp.471–506.
Tanaka, R. (2014) “A Proof-Theoretic Approach to Generalized
Quantifiers in Dependent Type Semantics”, In the Proceedings
of R. de Haan (ed.): the ESSLLI 2014 Student Session, 26th
European Summer School in Logic, Language and Information.
pp.140–151.
Tanaka, R., K. Mineshima, and D. Bekki. (2015) “Factivity and
Presupposition in Dependent Type Semantics”, In the
Proceedings of TYpe Theory and LExical Semantics (TYTLES),
ESSLLI2015 workshop.
57 / 58
Dependent Types Dynamics in NLS DTS Event Semantics Summary References
Reference VIII
Watanabe, N., E. McCready, and D. Bekki. (2014) “Japanese
Honorification: Compositionality and Expressivity”, In the
Proceedings of S. Kawahara and M. Igarashi (eds.): FAJL 7:
Formal Approaches to Japanese Linguistics, the MIT Working
Papers in Linguistics 73. pp.265–276.
58 / 58

More Related Content

PDF
Dependent Types and Dynamics of Natural Language
PDF
Dependent Types and Dynamics of Natural Language
PDF
From Dependent Types to Natural Language Semantics
PDF
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
PDF
Dependent Types in Natural Language Semantics
PDF
Conventional Implicature via Dependent Type Semantics
PDF
Calculating Projections via Type Checking
PDF
Dependent Types and Dynamics of Natural Language
Dependent Types and Dynamics of Natural Language
From Dependent Types to Natural Language Semantics
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
Dependent Types in Natural Language Semantics
Conventional Implicature via Dependent Type Semantics
Calculating Projections via Type Checking

Similar to Dependent Type Semantics and its Davidsonian extensions (17)

PDF
Dynamics Of Meaning Anaphora Presupposition And The Theory Of Grammar Gennaro...
PDF
Tensor-based Models of Natural Language Semantics
PDF
Argumentative texts and clause types.pdf
PDF
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
PDF
Chomsky hierarchy
PDF
Formal languages
PDF
Alastair Butler - 2015 - Round trips with meaning stopovers
PDF
Point-free semantics of dependent type theories
PDF
Automatic Extraction Of Semantic Roles In Support Verb Constructions
PDF
AUTOMATIC EXTRACTION OF SEMANTIC ROLES IN SUPPORT VERB CONSTRUCTIONS
PDF
Constructive Description Logics 2006
PDF
Constructive Hybrid Logics
PPT
anaphora resolution natural language processing.ppt
PDF
Composing (Im)politeness in Dependent Type Semantics
PPT
Moore_slides.ppt
PPT
Dynamics Of Meaning Anaphora Presupposition And The Theory Of Grammar Gennaro...
Tensor-based Models of Natural Language Semantics
Argumentative texts and clause types.pdf
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
Chomsky hierarchy
Formal languages
Alastair Butler - 2015 - Round trips with meaning stopovers
Point-free semantics of dependent type theories
Automatic Extraction Of Semantic Roles In Support Verb Constructions
AUTOMATIC EXTRACTION OF SEMANTIC ROLES IN SUPPORT VERB CONSTRUCTIONS
Constructive Description Logics 2006
Constructive Hybrid Logics
anaphora resolution natural language processing.ppt
Composing (Im)politeness in Dependent Type Semantics
Moore_slides.ppt
Ad

More from Daisuke BEKKI (9)

PDF
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
PDF
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
PDF
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
PDF
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
PDF
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
PDF
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
PDF
ESSLLI2016 DTS Lecture Day3: Presupposition
PDF
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
PDF
Two types of Japanese scrambling in combinatory categorial grammar
Why parsing is a part of Language Faculty Science (by Daisuke Bekki)
A hybrid approach toward Natural Language Understanding (by Daisuke Bekki)
ESSLLI2016 DTS Lecture Day 5-1: Introduction to day 5
ESSLLI2016 DTS Lecture Day 4-3: Generalized Quantifiers (guest lecture by Rib...
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
ESSLLI2016 DTS Lecture Day3: Presupposition
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
Two types of Japanese scrambling in combinatory categorial grammar
Ad

Recently uploaded (20)

PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PDF
Placing the Near-Earth Object Impact Probability in Context
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
Microbiology with diagram medical studies .pptx
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPT
protein biochemistry.ppt for university classes
PPTX
2. Earth - The Living Planet earth and life
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
Fluid dynamics vivavoce presentation of prakash
PPTX
BIOMOLECULES PPT........................
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
2Systematics of Living Organisms t-.pptx
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
Placing the Near-Earth Object Impact Probability in Context
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Microbiology with diagram medical studies .pptx
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Introduction to Cardiovascular system_structure and functions-1
protein biochemistry.ppt for university classes
2. Earth - The Living Planet earth and life
Phytochemical Investigation of Miliusa longipes.pdf
Fluid dynamics vivavoce presentation of prakash
BIOMOLECULES PPT........................
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Science Quipper for lesson in grade 8 Matatag Curriculum
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx

Dependent Type Semantics and its Davidsonian extensions

  • 1. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Dependent type semantics and its Davidsonian extensions Daisuke Bekki Ochanomizu University, Faculty of Core Science A talk at Laboratoire de linguistique formelle 15 Dec, 2022. 1 / 58
  • 2. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Dependent Type Semantics (DTS) (Bekki 2014; Bekki and Mineshima 2017; Bekki 2021) I A framework of natural language semantics I Unified approach to general inferences and anaphora/presupposition resolution in terms of tpe checking and proof search Main features: 1. Proof-theoretic semantics: From truth-conditions (denotations, models) to verification conditions (proofs, contexts) 2. Anaphora/Presuppositions: A proof-theoretic alternative to Dynamic Semantics (DRT, DPL, etc.) 3. Compositionality: Syntax-semantics interface via categorial grammars (e.g. CCG, TLG, ACG, etc) 4. Computation: Implementation, Applications to Natural Language Processing 2 / 58
  • 3. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Dependent Types 3 / 58
  • 4. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Per Martin-Löf Martin-Löf (1984) “Intuitionistic type theory” 4 / 58
  • 5. Dependent Types Dynamics in NLS DTS Event Semantics Summary References What are Π-types Π-type is a type of fibred functions. Simple function space Fibred function space 5 / 58
  • 6. Dependent Types Dynamics in NLS DTS Event Semantics Summary References What are Σ-types Σ-type is a type of fibred products. Simple product space Fibred product space 6 / 58
  • 7. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Notations DTS notation Standard notation x 6∈ fv(B) x ∈ fv(B) (x : A) → B (Πx : A)B A → B (∀x : A)B (x : A) × B or x : A B (Σx : A)B A ∧ B (∃x : A)B Scope of the variable in Π-types: (x : A) → B Scope of the variable in Σ-types: x : A B 7 / 58
  • 8. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Π-type F/I/E rules A : s1 x : A i . . . . B : s2 (x : A) → B : s2 (ΠF),i where (s1, s2) ∈ (type, type), (type, kind) . A : type x : A i . . . . M : B λx.M : (x : A) → B (ΠI ),i M : (x : A) → B N : A MN : B[N/x] (ΠE) 8 / 58
  • 9. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Σ-type F/I/E rules A : type x : A i . . . . B : type (x : A) × B : type (ΣF),i M : A N : B[M/x] (M, N) : (x : A) × B (ΣI ) M : (x : A) × B π1(M) : A (ΣE) M : (x : A) × B π2(M) : B[π1(M)/x] (ΣE) 9 / 58
  • 10. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Rules of DTS Rules from Martin-Löf Type Theory I Axioms and Structural rules I Π-type (Dependent function type) [F/I/E] I Σ-type (Dependent product type) [F/I/E] I Intensional equality type [F/I/E] I Disjoint union type [F/I/E] I Enumeration type [F/I/E] I Natural number type [F/I/E] New rule in DTS I @ (the ‘asperand’ operator) I Anaphora and presupposition triggers (linguistically speaking) I Open proofs (logically speaking) 10 / 58
  • 11. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Conjunction, Implication, and Negation Definition A B def ≡ (x : A) × B where x / ∈ fv(B). A → B def ≡ (x : A) → B where x / ∈ fv(B). ¬A def ≡ (x : A) → ⊥ 11 / 58
  • 12. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Dynamics in Natural Language Semantics 12 / 58
  • 13. Dependent Types Dynamics in NLS DTS Event Semantics Summary References A theory of anaphora I Anaphora representable by a constant symbol: I Deictic use: (1) (Pointing at John) He was born in Detroit. bornIn( j , d) I Coreference: (2) John loves a girl who hates him . ∃x(girl(x) ∧ love( j , x) ∧ hate(x, j )) I Anaphora representable by a variable I Bound variable anaphora: (3) Every boy loves his father. ∀x (boy(x) → love(x, fatherOf( x ))) 13 / 58
  • 14. Dependent Types Dynamics in NLS DTS Event Semantics Summary References A theory of anaphora I Anaphora not representable by FoL: I E-type anaphora: (4) A man entered into the park. He whistled. I Donkey anaphora: (5) Every farmer who owns a donkey beats it . (6) If a farmer owns a donkey , he beats it . I Anaphora not representable by FoL nor dynamic semantics: I Syllogistic anaphora: (7) Every girl received a present . Some girl opened it . I Disjunctive antecedent: (8) If Mary sees a horse or a pony , she waves to it . 14 / 58
  • 15. Dependent Types Dynamics in NLS DTS Event Semantics Summary References E-type anaphora: Evans (1980) (9) [A man]1 entered. He1 whistled. The first-order SR (10) represents the truth condition of (9), thus is a candidate of the SR of (9). (10) ∃x(man(x) ∧ enter(x) ∧ whistle(x)) But the syntactic structure of the SR (10) does not correspond to that of (9), where consists of two independent sentences. The sentential boundary of (9) prefers the first-order representation (11). (11) ∃x(man(x) ∧ enter(x)) ∧ whistle( x ) However, the truth condition of (11) is different from that of the mini-discourse (9) since the variable x in whistle(x) is not bound by ∃. 15 / 58
  • 16. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Donkey anaphora: Geach (1962) For the donkey sentences (12), a first-order formula (13), whose truth condition is the same as those of (12), is a candidate of its SR. (12) a. Every farmer who owns [a donkey]1 beats it1. b. If [a farmer]1 owns [a donkey]2 , he1 beats it2. (13) ∀x(farmer(x) → ∀y (donkey(y) ∧ own(x, y) → beat(x, y))) But the translation from the sentence (12) to (13) is not straightforward since i) the indefinite noun phrase a donkey is translated into a universal quantifier in (13) instead of an existential quantifier, and ii) the syntactic structure of (13) does not corresponds to that of (12). 16 / 58
  • 17. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Donkey anaphora: Geach (1962) (12) a. Every farmer who owns [a donkey]1 beats it1 . b. If [a farmer]1 owns [a donkey]2, he1 beats it2 . The syntactic parallel of (12) is, rather, the SR (14), in which the indefinite noun phrase is translated into an existential quantification. (14) ∀x(farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y)) → beat(x, y )) However, (14) does not represent the truth condition of (12) correctly since the variable y in beat(x, y) fails to be bound by ∃. Therefore, neither (13) nor (14) qualifies as the SR of (12). 17 / 58
  • 18. Dependent Types Dynamics in NLS DTS Event Semantics Summary References E-type anaphora: Ranta (1994) (9) A man entered. He whistled.        u :    x : entity man(x) enter(x)    whistle( π1(u) )        Note: x : A B is a type for pairs of A and B[x]. 18 / 58
  • 19. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Donkey anaphora: Sundholm (1986) (12a) Every farmer who owns a donkey beats it .        u :        x : entity      farmer(x)    v : y : entity donkey(y) # own(x, π1v)                       → beat(π1u, π1π1π2π2u Note: (x : A) → B is a type for functions from A to B[x]. 19 / 58
  • 20. Dependent Types Dynamics in NLS DTS Event Semantics Summary References From TTG to DTS: Compositionality Q: How could one get to these (dependently-typed) representations from arbitrary sentences? A: By lexicalization. Q: How could we lexicalize context-dependent words like pronouns?        u :    x : entity man(x) enter(x)    whistle( π1(u) )        20 / 58
  • 21. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Dependent Type Semantics (DTS) 21 / 58
  • 22. Dependent Types Dynamics in NLS DTS Event Semantics Summary References From TTG to DTS: Compositionality Q: How could one get to these (dependently-typed) representations from arbitrary sentences? A: By lexicalization. Q: How could we lexicalize context-dependent words like pronouns? A: By using underspecified terms. Q: But how could we retrieve a context for an underspecified term? A: By type checking. 22 / 58
  • 23. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Underspecified terms DTS = DTT + underspecified terms @A Definition (@-rule) A : typej A true @iA : A where j ∈ N (@) I @-rule states that the well-formedness of @A requires: I A is a well-formed type. I the inhabitance of A (namely, A is a presuppositional content) 23 / 58
  • 24. Dependent Types Dynamics in NLS DTS Event Semantics Summary References On parsing We assume that an SR of a sentence is obtained by parsing and semantic composition (assumed by one’s syntactic theory). A sentence ⇓ Parsing ⇓ An underspecified SRs in DTS 24 / 58
  • 25. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Lexical items in CCG-style Surface form Syntactic category Semantic representation every ( T /(T NP)/N T (T /NP)/N λn.λp.λ~ x. u : x : entity n(x) → p(π1u)~ x a, some ( T /(T NP)/N T (T /NP)/N λn.λp.λ~ x.   u : x : entity n(x) p(π1u)~ x   if ( S/S/S SS/S λp.λq. (u : p) → q who/whom ( NN/(SNP ) NN/(S/NP ) λp.λn.λx. nx px farmer N farmer donkey N donkey owns SNP/NP own beats SNP/NP beat he/him ( T /(T NP) nom T (T /NP) acc λp.λ~ x.   u@ x : entity male(x) p(π1u)~ x   it ( T /(T NP) nom T (T /NP) acc λp.λ~ x.   u@ x : entity ¬human(x) p(π1u)~ x   the ( T /(T NP)/N nom T /(T NP)/N acc λn.λp.λ~ x.   u@ x : entity n(x) p(π1u)~ x   25 / 58
  • 26. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Lexical items in CCG-style (anaphoric expressions) PF CCG categories Semantic representations in DTS he NP π1 @ x : entity male(x) ! it NP π1 @ x : entity ¬human(x) ! the NP/N λn.π1 @ x : entity nx ! 26 / 58
  • 27. Dependent Types Dynamics in NLS DTS Event Semantics Summary References E-type anaphora: Parsing A S/(SNP)/N λn.λp.   u : x : entity nx p(π1u)   man N λx.man(x) S/(SNP) λp.   u : x : entity man(x) p(π1u)   entered SNP λx.enter(x) S   u : x : entity man(x) enter(π1u)   27 / 58
  • 28. Dependent Types Dynamics in NLS DTS Event Semantics Summary References E-type anaphora: Parsing He NP π1 @ x : entity male(x) whistled SNP λx.whistle(x) S whistle π1 @ x : entity male(x) ! 28 / 58
  • 29. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Progressive conjunction: Ranta (1994) Definition (Progressive conjunction) M; N def ≡ u : M N where u / ∈ fv(N) (9) [A man]1 entered. He 1 whistled.   x : entity man(x) enter(x)   ; whistle(π1 @ x : entity male(x) ) =        u :   x : entity man(x) enter(x)   whistle(π1 @ x : entity male(x) )        29 / 58
  • 30. Dependent Types Dynamics in NLS DTS Event Semantics Summary References E-type anahora: Type checking . . .   u : x : entity man(x) enter(π1u)   : type whistle : entity → type (CON ) . . . x : entity male(x) : type v :   u : x : entity man(x) enter(π1u)   1 . . . . x : entity male(x) true @ x : entity male(x) : x : entity male(x) (@) π1 @ x : entity male(x) : entity (ΣE) whistle π1 @ x : entity male(x) ! : type (→E)        v :   u : x : entity man(x) enter(π1u)   x : entity !        : type (ΣF),1 30 / 58
  • 31. Dependent Types Dynamics in NLS DTS Event Semantics Summary References E-type anaphora: Proof search v :   u : x : entity man(x) enter(π1u)   1 π1v : x : entity man(x) (ΣE) π1π1v : entity (ΣE) v :   u : x : entity man(x) enter(π1u)   1 π1v : x : entity man(x) (ΣE) m : u : x : entity man(x) → male(π1 m(π1v) : male(π1π1v) (π1π1v, m(π1v)) : x : entity male(x) (ΣE) 31 / 58
  • 32. Dependent Types Dynamics in NLS DTS Event Semantics Summary References E-type anaphora: @-elimination . . . .   u : x : entity man(x) enter(π1u)   : type whistle : entity → type v :   u : x : entity man(x) enter(π1u)   1 . . . . (π1π1v, m(π1v)) : x : entity male(x) π1π1v : entity (ΣE) whistle( π1π1v ) : type (ΠE)     v :   u : x : entity man(x) enter(π1u)   whistle( π1π1v )     : type (ΣF),1 32 / 58
  • 33. Dependent Types Dynamics in NLS DTS Event Semantics Summary References @-elimination rules Definition (@-elimination rules (excerpt)) u w v DA Γ ` A : s Γ ` M : JDAK Γ ` ( @A ) : A (@) }  ~ = M u w w v DA A : s1 x : A0 DB B : s2 (x : A) → B : s2 (ΠF) }   ~ = JDAK A0 : s1 x : A0 JDBK B0 : s2 (x : A0) → B0 : s2 (ΠF) u w w v DA A : s1 x : A0 DM M : B λx.M : (x : A) → B (ΠI ) }   ~ = JDAK A0 : s1 x : A0 JDM K M0 : B0 λx.M0 : (x : A0) → B0 (ΠI ) u w v DM M : (x : A) → B DN N : A MN : B0 (ΠE) }  ~ = JDM K M0 : (x : A0) → B0 JDN K N0 : A0 M0N0 : B00 where B0[N0/x] β B00 (ΠE) 33 / 58
  • 34. Dependent Types Dynamics in NLS DTS Event Semantics Summary References The model of language understanding A sentence . . . A sentence ⇓ ⇓ Parsing . . . Parsing ⇓ ⇓ An underspecified SRs in UDTT . . . An underspecified SRs in UDTT ⇓ ⇓ Discoruse relation (e.g. Progressive conjunction) ⇓ An underspecified discourse representation in UDTT ⇓ Type checking + Proof search in UDTT ⇓ A proof diagram of the well-formedness of an SR in UDTT ⇓ @-elimination ⇓ A proof diagram of the well-formedness of an SR in DTT ⇓ Inference in DTT 34 / 58
  • 35. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Event Semantics 35 / 58
  • 36. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Davidsonian Extension (15) John loves Mary. (16) Classical DTS: love(john, mary) (17) Davidsonian DTS: e : entity love(e, john, mary) (18) Neo-Davidsonian DTS:     e : Entity love(e) Ag(e) =entity john Th(e) =entity mary)     36 / 58
  • 37. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Event Continuation: Champollion (2015), Mineshima et al. (2015) John S/(SNP) λp.p(john) runs SNP λx λk   e : entity run(e, x) k (e)   slowly SNP(SNP) λp.λx.λk.p(x) λe. slowly(e) k(e) SNP λx.λk.     e : entity run(e, x) slowly(e) k(e)     S λk.     e : entity run(e, john) slowly(e) k(e)     U     e : entity run(e, john) slowly(e)     CL 37 / 58
  • 38. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Event Anaphora (19) John ran slowly. Mary saw it.   e : entity run(e, john) slowly(e)   ;    e : entity see(e, mary, π1 @ e : entity event(e)    =          u :   e : entity run(e, john) slowly(e)      e : entity see(e, mary, π1 @ e : entity event(e)             38 / 58
  • 39. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Event Anaphora (20) John ran slowly. Mary saw it.   e : entity run(e, john) slowly(e)   ;    e : entity see(e, mary, π1 @ e : entity event(e)    =       u :   e : entity run(e, john) slowly(e)   e : entity see(e, mary, π1u )       Given that: ` (e : entity) → (x : entity) → run(e, x) → event(e) 39 / 58
  • 40. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Negative Events Higginbotham (1983), Bernard and Champollion (2018): (21) a. John saw Mary not leave. b. ∃e         actual(e)∧ see(e)∧ exp(e) = John∧ ∃e0   th(e) = e0∧ e0 ∈ Neg λe00. leave(e00)∧ ag(e00) = mary           cf. Axiom of Negation (Higginbotham 2000): ∃e ∈ Neg(P ).actual(e) ⇐ ⇐ ∀e0 ∈ P.¬actual(e0 ) 40 / 58
  • 41. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Negative Events in DTS (21a) John saw Mary not leave. Proposal 1: ‘Neg’-event as a proof-term of a negative proposition     e : entity ne : ¬ e0 : entity leave(e0, mary) see(John, e, ne)     I see becomes polymorphic 41 / 58
  • 42. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Negative Events in DTS (21a) John saw Mary not leave. Proposal 2: ‘Neg’-event as a universe       e : entity ne : U dec (ne) =type ¬ e0 : entity leave(e0, mary) see(John, e, ne)       I see becomes monomorphic I sorttype-level equation is used I Some postulate is necessary to imply the factivity 42 / 58
  • 43. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Summary 43 / 58
  • 44. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Compositional Theory of Anaphora I DTS provides a unified analysis for (general) inferences and anaphora resolusion mechanisms (at least) for: I Deictic use and coreference I Bound variable anaphora (BVA) I E-type anaphora I Donkey anaphora I Bridging anaphora I Syllogistic anaphora I Disjunctive antecedents 44 / 58
  • 45. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Compositional Theory of Anaphora I The background theory for DTS is an extention of DTT with underspecified terms and the @-rule . I Lexical items of anaphoric expressions and presupposition triggers are represented by using underspecified terms. I Context retrieval in DTS reduces to type checking . I Anaphora resolution and presupposition binding in DTS reduces to proof search . I @-elimination translates a proof diagram of DTS into a proof diagram of DTT, by which an SR in DTT is obtained with all anaphora resolved. 45 / 58
  • 46. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Natural language semantics via dependent types: Classics I Donkey anaphora: Sundholm (1986) I Translation from DRS to dependent type representations: Ahn and Kolb (1990) I Summation: Fox (1994a,b) I Ranta’s TTG (Relative and Implicational Donkey Sentences, Branching Quantifiers, Intensionality, Tense): Ranta (1994) I Translation from Montague Grammar to dependent type representations: Dávila-Pérez (1995) I Presupposition Binding and Accommodation, Bridging: Krahmer and Piwek (1999), Piwek and Krahmer (2000) 46 / 58
  • 47. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Natural language semantics via dependent types: Recent frameworks I Type Theory with Record (TTR): Cooper (2005) I Modern Type Theory: Luo (1997, 1999, 2010, 2012), Asher and Luo (2012), Chatzikyriakidis (2014) I Semantics with Dependent Types: Grudzinska and Zawadowski (2014; 2017) I Dependent Type Semantics (DTS): Bekki (2014), Bekki and Mineshima (2017) I (Dynamic Categorial Grammar: Martin and Pollard (2014)) 47 / 58
  • 48. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Semantic Analyses by DTS I Generalized Quantifiers : Tanaka (2014) I Honorification : Watanabe et al. (2014) I Conventional Implicature : Bekki and McCready (2015) I Factive Presuppositions : Tanaka et al. (2015)(2017) I Dependent Plural Anaphora : Tanaka+(2017) I Paycheck sentences : Tanaka+(2018) in NLCS2018 I Coercion and Metaphor : Kinoshita+(2018) I Questions : Watanabe+(NLCS’19), Funakura (2022) in LENLS19 I Comparision with DRT : Yana+(2019) in JoLLI 48 / 58
  • 49. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Semantic Analyses by DTS I Development of an automated theorem prover for the fragment of DTS: Daido and Bekki (2020) in LENLS17 I A Proof-theoretic Analysis of Weak Crossover : Bekki (2021) in LENLS18 I The proviso problem from a proof-theoretic perspective: Yana+(2021) in LACL2021 I Integrating Deep Neural Network with Dependent Type Semantics: Bekki+(2021) in LACompLing2021, Bekki+(2022) in NALOMA’22 49 / 58
  • 50. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Thank you! 50 / 58
  • 51. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference I Ahn, R. and H.-P. Kolb. (1990) “Discourse Representation meets Constructive Mathematics”, In: L. Kalman and L. Polos (eds.): Papers from the Second Symposium on Logic and Language. Akademiai Kiado, pp.1–18. Asher, N. and Z. Luo. (2012) “Formalisation of coercions in lexical semantics”, In the Proceedings of Sinn und Bedeutung 17. pp.63–80. Bekki, D. (2014) “Representing Anaphora with Dependent Types”, In the Proceedings of N. Asher and S. V. Soloviev (eds.): Logical Aspects of Computational Linguistics (8th international conference, LACL2014, Toulouse, France, June 2014 Proceedings), LNCS 8535. pp.14–29, Springer, Heiderburg. 51 / 58
  • 52. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference II Bekki, D. and E. McCready. (2015) “CI via DTS”, In: New Frontiers in Artificial Intelligence (JSAI-isAI 2014 Workshops, LENLS, JURISIN, and GABA, Yokohama, Japan, November 23-24, 2014, Revised Selected Papers), Vol. LNAI 9067. Springer, pp.23–36. Bekki, D. and K. Mineshima. (2017) “Context-passing and Underspecification in Dependent Type Semantics”, In: Modern Perspectives in Type Theoretical Semantics, Studies of Linguistics and Philosophy. Springer, pp.11–41. Bernard, T. and L. Champollion. (2018) “Negative events in compositional semantics”, In the Proceedings of SALT 28. pp.512–532. 52 / 58
  • 53. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference III Champollion, L. (2015) “The interaction of compositional semantics and event semantics”, Linguistics and Philosophy 38(1), pp.31–66. Chatzikyriakidis, S. (2014) “Adverbs in a Modern Type Theory”, In: N. Asher and S. V. Soloviev (eds.): Logical Aspect of Computational Linguistics, 8th International Conference, LACL2014, Toulouse, France, June 18-20, 2014 Proceedings. Springer. Cooper, R. (2005) “Records and Record Types in Semantic Theory”, Journal of Logic and Computation 15(2), pp.99–112. Dávila-Pérez, R. (1995) “Semantics and Parsing in Intuitionistic Categorial Grammar”, Thesis, University of Essex. Ph.D. thesis. Evans, G. (1980) “Pronouns”, Linguistic Inquiry 11, pp.337–362. 53 / 58
  • 54. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference IV Fox, C. (1994a) “Discourse Representation, Type Theory and Property Theory”, In the Proceedings of H. Bunt, R. Muskens, and G. Rentier (eds.): the International Workshop on Computational Semantics. pp.71–80. Fox, C. (1994b) “Existence Presuppositions and Category Mistakes”, Acta Linguistica Hungarica 42(3/4), pp.325–339. Geach, P. (1962) Reference and Generality: An Examination of Some Medieval and Modern Theories. Ithaca, New York, Cornell University Press. Higginbotham, J. (1983) “The logic of perceptual reports: An extensional alternative to situation semantics”, The Journal of Philosophy 80(2), pp.100–127. 54 / 58
  • 55. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference V Krahmer, E. and P. Piwek. (1999) “Presupposition Projection as Proof Construction”, In: H. Bunt and R. Muskens (eds.): Computing Meanings: Current Issues in Computational Semantics, Studies in Linguistics Philosophy Series. Dordrecht, Kluwer Academic Publishers. Luo, Z. (1997) “Coercive subtyping in type theory”, In: D. van Dalen and M. Bezem (eds.): CSL 1996. LNCS, vol. 1258. Heidelberg, Springer. Luo, Z. (1999) “Coercive subtyping”, Journal of Logic and Computation 9(1), pp.105–130. Luo, Z. (2010) “Type-theoretical semantics with coercive subtyping”, In the Proceedings of Semantics and Linguistic Theory 20 (SALT 20). 55 / 58
  • 56. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference VI Luo, Z. (2012) “Formal Semantics in Modern Type Theories with Coercive Subtyping”, Linguistics and Philosophy 35(6). Martin, S. and C. J. Pollard. (2014) “A dynamic categorial grammar”, In the Proceedings of Formal Grammar 19, LNCS 8612. Mineshima, K., P. Martı́nez-Gómez, Y. Miyao, and D. Bekki. (2015) “Higher-order logical inference with compositional semantics”, In the Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP2015). pp.2055–2061. Piwek, P. and E. Krahmer. (2000) “Presuppositions in Context: Constructing Bridges”, In: P. Bonzon, M. Cavalcanti, and R. Nossum (eds.): Formal Aspects of Context, Applied Logic Series. Dordrecht, Kluwer Academic Publishers. 56 / 58
  • 57. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference VII Ranta, A. (1994) Type-Theoretical Grammar. Oxford University Press. Sundholm, G. (1986) “Proof theory and meaning”, In: Handbook of Philosophical Logic, Vol. III. Reidel, Kluwer, pp.471–506. Tanaka, R. (2014) “A Proof-Theoretic Approach to Generalized Quantifiers in Dependent Type Semantics”, In the Proceedings of R. de Haan (ed.): the ESSLLI 2014 Student Session, 26th European Summer School in Logic, Language and Information. pp.140–151. Tanaka, R., K. Mineshima, and D. Bekki. (2015) “Factivity and Presupposition in Dependent Type Semantics”, In the Proceedings of TYpe Theory and LExical Semantics (TYTLES), ESSLLI2015 workshop. 57 / 58
  • 58. Dependent Types Dynamics in NLS DTS Event Semantics Summary References Reference VIII Watanabe, N., E. McCready, and D. Bekki. (2014) “Japanese Honorification: Compositionality and Expressivity”, In the Proceedings of S. Kawahara and M. Igarashi (eds.): FAJL 7: Formal Approaches to Japanese Linguistics, the MIT Working Papers in Linguistics 73. pp.265–276. 58 / 58