SlideShare a Scribd company logo
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
From Dependent Types
to Natural Language Semantics
Daisuke Bekki
Ochanomizu University
Faculty of Core Research
https://daisukebekki.github.io/
A plenary talk at Logic Colloquim 2024
25 June (Tue)
1 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Dependent Type Semantics (DTS) (Bekki 2014;
Bekki and Mineshima 2017; Bekki 2021)
I A framework of natural language semantics
I Unified approach to (general) inferences and
anaphora/presupposition resolution in terms of type checking
and proof search
Main features:
1. Proof-theoretic semantics:
From model theory (denotations and models) to proof theory
(proofs and contexts)
2. Anaphora/Presuppositions: A proof-theoretic alternative to
Dynamic Semantics (DRT, DPL, etc.)
3. Compositionality: Syntax-semantics interface via categorial
grammars (e.g. CCG, TLG, ACG, etc)
4. Implementation: Applications to Natural Language
Processing.
https://github.com/DaisukeBekki/lightblue/ 2 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Dependent Types
3 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Per Martin-Löf
Martin-Löf (1984) “Intuitionistic type theory”
4 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
What are Π-types
Π-type is a type of fibred functions.
Simple function space Fibred function space
5 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
What are Σ-types
Σ-type is a type of fibred products.
Simple product space Fibred product space
6 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Notations
DTS notation Standard notation x 6∈ fv(B) x ∈ fv(B)
(x : A) → B (Πx : A)B A → B (∀x : A)B
(x : A) × B
or

x : A
B
 (Σx : A)B A ∧ B (∃x : A)B
Scope of the variable in Π-types: (x : A) → B
Scope of the variable in Σ-types:

x : A
B

7 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Π-type F/I/E rules
A : s1
x : A
i
.
.
.
.
B : s2
(x : A) → B : s2
(ΠF),i
where (s1, s2) ∈



(type, type),
(type, kind),
(kind, kind)



.
A : type
x : A
i
.
.
.
.
M : B
λx.M : (x : A) → B
(ΠI ),i
M : (x : A) → B N : A
MN : B[N/x]
(ΠE)
8 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Σ-type F/I/E rules
A : type
x : A
i
.
.
.
.
B : type
(x : A) × B : type
(ΣF),i
M : A N : B[M/x]
(M, N) : (x : A) × B
(ΣI )
M : (x : A) × B
π1(M) : A
(ΣE)
M : (x : A) × B
π2(M) : B[π1(M)/x]
(ΣE)
9 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Rules of DTS
Rules from Martin-Löf Type Theory
I Axioms and Structural rules
I Π-type (Dependent function type) [F/I/E]
I Σ-type (Dependent product type) [F/I/E]
I Intensional equality type [F/I/E]
I Disjoint union type [F/I/E]
I Enumeration type [F/I/E]
I Natural number type [F/I/E]
New rule in DTS
I @ (the ‘asperand’ operator)
I Anaphora and presupposition triggers
(linguistically speaking)
I Open proofs (logically speaking)
10 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Conjunction, Implication, and Negation
Definition

A
B

def
≡ (x : A) × B where x /
∈ fv(B).
A → B
def
≡ (x : A) → B where x /
∈ fv(B).
¬A
def
≡ (x : A) → ⊥
11 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Anaphora in Natural Language
12 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
A theory of anaphora
I Anaphora representable by a constant symbol:
I Deictic use:
(1) (Pointing at John)
He was born in Detroit.
bornIn( j , d)
I Coreference:
(2) John loves a girl who hates him .
∃x(girl(x) ∧ love( j , x) ∧ hate(x, j ))
I Anaphora representable by a variable
I Bound variable anaphora:
(3) Every boy loves his father.
∀x (boy(x) → love(x, fatherOf( x )))
13 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
A theory of anaphora
I Anaphora not representable by FoL:
I E-type anaphora:
(4) A man entered into the park. He whistled.
I Donkey anaphora:
(5) Every farmer who owns a donkey beats it .
(6) If a farmer owns a donkey , he beats it .
I Anaphora not representable by FoL nor dynamic semantics:
I Syllogistic anaphora:
(7) Every girl received a present . Some girl opened it .
I Disjunctive antecedent:
(8) If Mary sees a horse or a pony , she waves to it .
14 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Geach (1962)
For the donkey sentences (9), a first-order formula (10), whose
truth condition is the same as those of (9), is a candidate of its
semantic representation (SR). (We only discuss its strong reading here. See Tanaka (2021)
for its weak reading.)
(9) a. Every farmer who owns [a donkey]1 beats it1.
b. If [a farmer]1 owns [a donkey]2 , he1 beats it2.
(10) ∀x(farmer(x) → ∀y (donkey(y) ∧ own(x, y) →
beat(x, y)))
But the translation from the sentence (9) to (10) is not
straightforward since i) the indefinite noun phrase a donkey is
translated into a universal quantifier in (10) instead of an
existential quantifier, and ii) the syntactic structure of (10) does
not corresponds to that of (9).
15 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Geach (1962)
(9) a. Every farmer who owns [a donkey]1 beats it1 .
b. If [a farmer]1 owns [a donkey]2, he1 beats it2 .
The syntactic parallel of (9) is, rather, the SR (11), in which the
indefinite noun phrase is translated into an existential
quantification.
(11) ∀x(farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y)) →
beat(x, y ))
However, (11) does not represent the truth condition of (9)
correctly since the variable y in beat(x, y) fails to be bound by ∃.
Therefore, neither (10) nor (11) qualifies as the SR of (9).
16 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Various approaches in discourse semantics
Dynamic Semantics
I Discourse Representation Theory (DRT): Kamp (1981),
Kamp and Reyle (1993)
I Dynamic Predicate Logic (DPL): Groenendijk and Stokhof
(1991)
I Dynamic Plural Predicate Logic (DPPL): van den Berg
(1996), Sudo (2012)
Type-theoretical Semantics
I Analysis of donkey anaphora: Sundholm (1986))
I Type Theoretical Grammar (TTG): Ranta (1994)
I Type Theory with Record (TTR): Cooper (2005)
I Modern Type Theory: Luo (1997, 1999, 2010, 2012), Asher
and Luo (2012), Chatzikyriakidis (2014)
I Dependent Type Semantics (DTS): Bekki (2014), Bekki and
Mineshima (2017)
17 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Sundholm (1986)
(9a) Every farmer who owns a donkey beats it .







u :







x : entity





farmer(x)



v :

y : entity
donkey(y)
#
own(x, π1v)






















→ beat(π1u, π1π1π2π2u )
Note: (x : A) → B is a type for functions from A to B[x].
18 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
From TTG to DTS: Compositionality
Q: How could one get to these (dependently-typed)
representations from arbitrary sentences?
A: By lexicalization.
Q: But, how could we lexicalize context-dependent
words like pronouns?







u :







x : entity





farmer(x)



v :

y : entity
donkey(y)
#
own(x, π1v)






















→
beat(π1u, π1π1π2π2u )
19 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
From TTG to DTS: Compositionality
Q: How could one get to these (dependently-typed)
representations from arbitrary sentences?
A: By lexicalization.
Q: But, how could we lexicalize context-dependent
words like pronouns?
A: By using underspecified types.
Q: How could we retrieve a context for an underspecified
type?
A: By type checking.
20 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Dependent Type Semantics (DTS)
21 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Underspecified types
DTS = DTT + underspecified types
Definition (@-rule)
A : type M : A B[M/x] : type

x@A
B

: type
(@)
I @-rule states that the well-formedness of (x@A) × B
requires:
I A is a well-formed type
I the inhabitance of a proof (let it be M) of A, checking of
which launches a proof search
I B[M/x] is a well-formed type
This means that the truth of A is presupposed.
22 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
A model of natural language understanding via CCG
and DTS
A sentence . . . A sentence
⇓ ⇓
CCG Parsing . . . CCG Parsing
⇓ ⇓
An underspecified SRs in DTS . . . An underspecified SRs in DTS
⇓ ⇓
Discoruse Parsing
⇓
An underspecified discourse SRs in DTS
⇓
Type checking + Proof search
⇓
A proof diagram of the well-formedness of an SRs in DTT
⇓
Inference in DTT
23 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Lexical items in CCG style
Surface form Syntactic category Semantic representation
every
(
T /(T NP)/N
T (T /NP)/N
λn.λp.λ~
x.

u :

x : entity
n(x)

→ p(π1u)~
x
a, some
(
T /(T NP)/N
T (T /NP)/N
λn.λp.λ~
x.

 u :

x : entity
n(x)

p(π1u)~
x


if
(
S/S/S
SS/S
λp.λq. (u : p) → q
who/whom
(
NN/(SNP )
NN/(S/NP )
λp.λn.λx.

nx
px

farmer N farmer
donkey N donkey
owns SNP/NP own
beats SNP/NP beat
he/him
(
T /(T NP) nom
T (T /NP) acc
λp.λ~
x.

 u@

x : entity
male(x)

p(π1u)~
x


it
(
T /(T NP) nom
T (T /NP) acc
λp.λ~
x.

 u@

x : entity
¬human(x)

p(π1u)~
x


the
(
T /(T NP)/N nom
T /(T NP)/N acc
λn.λp.λ~
x.

 u@

x : entity
n(x)

p(π1u)~
x


24 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Syntactic Structure
Every
T /(T NP)/N
farmer
N
who
NN/(SNP)
owns
SNP/NP
a
T (T /NP)/N
donkey
N
T (T /NP)
SNP(SNP/NP)
∀E
SNP

NN

N

T /(T NP)

S/(SNP)
∀E
beat
SNP/NP
it
T (T /NP)
SNP(SNP/NP)
∀E
SNP

S

S̄
CC
25 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Semantic Composition (1/2)
farmer
farmer
who
λp.λn.λx.

n(x)
p(x)

owns
λy.λx.
own(x, y)
a
λn.λp.

 v :

y : entity
n(y)

p(π1v)


donkey
donkey
λp.

 v :

y : entity
donkey(y)

p(π1v)



λx.

 v :

y : entity
donkey(y)

own(x, π1v)



λn.λx.




n(x)
v :

y : entity
donkey(y)

own(x, π1v)





λx.




farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)





26 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Semantic Composition (2/2)
Every
λn.λp.

u :

x : entity
n(x)

→ p(π1u)
farmer who owns a donkey
λx.




farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)




λp.






u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)












→ p(π1u)

beat
λy.λx.
beat(x, y)
it
λp.λx.



w@

z : entity
¬human(z)

p(π1w)x



λx.



w@

z : entity
¬human(z)

beat(x, π1w)










u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)












→



w@

z : entity
¬human(z)

beat(π1u, π1w)




27 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Semantic Felicity Condition
(=Type Checking)
.
.
.
.






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)






: type
.
.
.
.

z : entity
¬human(z)

: type
u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)






1
.
.
.
.
? :

z : entity
¬human(z)

.
.
.
.
(beat(π1u, π1w))[?/w] : type



w@

z : entity
¬human(z)

beat(π1u, π1w)


 : type
(






u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)












→



w@

z : entity
¬human(z)

beat(π1u, π1w)


 : type
(ΠI ),1
28 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Anaphora Resolusion (=Proof
Search)
u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)






1
π2u :




farmer(x)
v :

y : entity
donkey(y)

own(π1u, π1v)




(ΣE)
π2π2u :

 v :

y : entity
donkey(y)

own(π1u, π1v)


(ΣE)
π1π2π2u :

y : entity
donkey(y)
 (ΣE)
π1π1π2π2u : entity
(ΣE)
u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)






1
π2u :




farmer(x)
v :

y : entity
donkey(y)

own(π1u, π1v)




(ΣE)
π2π2u :

 v :

y : entity
donkey(y)

own(π1u, π1v)


(ΣE)
π1π2π2u :

y : entity
donkey(y)
 (ΣE)
d :

u :

x : entity
donkey(x)

→ ¬human(π1u)
(CON )
d(π1π2π2u) : ¬human(π1π1π2π2u)
(ΠE)
(π1π1π2π2u, d(π1π2π2u)) :

z : entity
¬human(z)
 (ΣI )
29 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Donkey anaphora: Semantic Felicity Condition
(=Type Checking) continued
.
.
.
.






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)






: type
u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)






1
.
.
.
.
beat(π1u, π1π1π2π2u) : type






u :






x : entity
farmer(x)
v :

y : entity
donkey(y)

own(x, π1v)












→ beat(π1u, π1π1π2π2u) : type
(beat(π1u, π1w))[ (π1π1π2π2u, d(π1π2π2u)) /w] : type
β beat(π1u, π1π1π2π2u)
(ΠI ),1
30 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Notes on donkey anaphora
I The same analysis applies to the implicational donkey
sentence:
(12) If [a farmer]1 owns [a donkey]2, he1 beats it2.
I This analysis only predicts the strong reading for donkey
sentences. For deriving both the strong readings and the weak
readings, we need to refine the semantic representations for
quantificational expressions: See Tanaka (2021).
I The refined analysis also explains why the anaphoric link to
the parametrized sum individual (Krifka, 1996) is allowed
(Tanaka, 2021).
(13) [Every farmer]1 who owns [a donkey]2 loves its2 tail.
But they1 beat it2.
31 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Presupposition Joint work with Koji Mineshima
32 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
What is Presupposition? — Background content
(14) It is John who broke my iPhone.
Presupposition: Someone broke my iPhone.
I the background content
I its truth is usually taken for granted
Assertion: John was the one who did it.
I the foreground content
I the main point of an utterance
33 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Two puzzules of Presupposition – (i) Projection
(14) It was John who broke my iPhone.
(15) Someone broke my iPhone. ((14) presupposes (15))
(15) projects out of all the embedded contexts in (16a–e).
(16) a. It wasn’t John who broke my iPhone. negation
b. Maybe it was John who broke my iPhone. modal
c. If it was John who broke my iPhone, then he has to fix
it. the antecedent of a conditional
d. Was it John who broke my iPhone? question
e. Suppose that it was John who broke my iPhone.
hypothetical assumption
34 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
The Case of Entailment
(17) John is an American pianist.
(18) John is American. ((17) entails (18))
(18) does not survive in the contexts (19a–e).
(19) a. John is not an American pianist. negation
b. Maybe John is an American pianist. modal
c. If John is an American pianist, he is skillful.
the antecedent of a conditional
d. Is John an American pianist? question
e. Suppose that John is an American pianist.
hypothetical assumption
35 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
The Case of Entailment
(17) John is an American pianist.
american(john) ∧ pianist(john)
(19) a. John is not an American pianist.
¬(american(j) ∧ pianist(j))
b. Maybe John is an American pianist.
3(american(j) ∧ pianist(j))
c. If John is an American pianist, he is skillful.
american(j) ∧ pianist(j) → skillful(j)
Standard semantics correctly predicts these patterns:
I (17) ` american(john)
I (19a) 6` american(john)
I (19b) 6` american(john)
I (19c) 6` american(john)
36 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
The Case of Presupposition
(14) It was John who broke my iPhone. SR1
(16) a. It wasn’t John who broke my iPhone. ¬SR1
b. Maybe it was John who broke my iPhone. 3SR1
c. If it was John who broke my iPhone, he has to fix it.
SR1 → · · ·
What SR accounts for the following inference patterns?
I SR1 ∃x(broke(x, my iphone))
I ¬SR1 ∃x(broke(x, my iphone))
I 3SR1 ∃x(broke(x, my iphone))
I SR1 →A ∃x(broke(x, my iphone))
Q: Can “ ” be defined as a standard consequence relation ”`”?
A: No. If that were the case, then ∃x(broke(x, my iphone)) was
a tautology (under the classical setting).
37 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Two puzzules of Presupposition – (ii) Filteration
(20) presupposes that someone broke the window, but the
conditional in (21) does not inherit this presupposition.
(20) It was John who broke the window.
⇐
Someone broke the window
(21) If the window was broken, it was John who broke it.
6
⇐
Someone broke the window
Similarly for (22) and (23).
(22) The king of France is wise.
⇐
France has a king.
(23) If France has a king, the king of France is wise.
6
⇐
France has a king.
A presupposition is filtered when it occurs in certain contexts.
38 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Presupposition triggers
(24) a. The elevator in this building is clean. Description
b. There is an elevator in this building.
(25) a. John’s sister is happy. Possessive
b. John has a sister.
(26) a. Bill regrets that he lied to Mary. Factive
b. Bill lied to Mary.
(27) a. John has stopped beating his wife. Aspectual
b. John has beaten his wife.
(28) a. Harry managed to find the book. Implicative
b. Finding the book required some effort.
39 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Presupposition triggers
(29) a. Sam broke the window again today. Iterative
b. Sam broke the window before.
(30) a. It was Sam who broke the window. Cleft
b. Someone broke the window.
(31) a. What John broke was his typewriter. Pseudo-cleft
b. John broke something.
(32) a. [Pat]F is leaving, too. (Focus on Pat) Additive
b. Someone other than Pat is leaving.
For classical examples of presupposition triggers, see Levinson
(1983), Soames (1989), Geurts (1999), and Beaver (2001), among
others.
40 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
“Presupposition Is Anaphora”
hypothesis
41 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
“Presupposition Is Anaphora” hypothesis
There are striking parallels between anaphoric expressions and
presupposition triggers. (van der Sandt, 1992; Geurts, 1999)
Presupposition filtering:
(33) a. John has children and John’s children are wise.
b. If John has children, John’s children are wise.
(34) a. The window was broken and it was John who broke it.
b. If the window was broken, it was John who broke it.
Compare (33) and (34) with the paradigm examples of anaphora
resolution.
Anaphora resolution:
(35) a. John owns a donkey and he beats it.
b. If John owns a donkey, he beats it.
42 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
DTS on Projection
I The projection inferences of presupposition can be naturally
accounted for using the framework of DTS.
I Note that negation is defined to be an implication of the form
¬A ≡ A → ⊥.the formation rule for negation can be
derived as on the right:
I According to the formation rule (¬F ) for negation, the
proposition A and its negation ¬A have the same
presupposition.
Example:
It is not the case that the king of France is bald.
SR ¬



u@

x : entity
king(x, fr)

bold(π1u)



43 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Projection: Syntax
It is not
the case that
S/S
the
S/(SNP)/N
king
N/PPof
of
PPof /NP
France
NP
PPof

N

S/(SNP)

is
SNP/(SNP)
bald
SNP
SNP

S

S

44 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Projection: Semantic Composition
It is not
the case that
λp.¬p
the
λn.λp.



u@

x : entity
n(x)

p(π1u)



king
λz.λx.
kingOf(x, z)
of
id
France
fr
fr

λx.kingOf(x, fr)

λp.



u@

x : entity
kingOf(x, fr)

p(π1u)



 is
id
bald
bald
bald




u@

x : entity
kingOf(x, fr)

bald(π1u)




¬



u@

x : entity
kingOf(x, fr)

bald(π1u)




45 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Projection: Type checking
.
.
.
.

x : entity
kingOf(x, fr)

? :

x : entity
kingOf(x, fr)

¬bald(π1u)[ ? /u] : type



u@

x : entity
kingOf(x, fr)

¬bald(π1u)


 : type
(@)
⊥ : type
({}F)
¬



u@

x : entity
kingOf(x, fr)

¬bald(π1u)


 : type
(ΠF)
I In order for the sentence “The king of France is bald” to be
well-formed, the context Γ must be such that the following
type inhabits a proof (namely, there exists a king of France).
Γ `? :

x : entity
kingOf(x, fr)

46 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
DTS on Projection
I The same inference is triggered for the antecedent of a
conditional sentence like (36):
(36) If the king of France is wise, people will be happy.
.
.
.
.



u :

x : entity
kingOf(x, fr)

wise(π1u)


 : type
.
.
.
.
happy(people) : type



u :

x : entity
kingOf(x, fr)

wise(π1u)


 → happy(people) : type
(ΠF)
47 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
DTS on Filtering
I The present account can explain the filtering inference
without further stipulation.
I Take a look at the case of a conditional sentence:
(37) If France has a king, the king of France is wise.
SR

u :

x : entity
kingOf(x, fr)

→



v@

x : entity
kingOf(x, fr)

wise(π1v)



48 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Filtering: Type checking
.
.
.
.

x : entity
kingOf(x, fr)

: type
.
.
.
.

x : entity
kingOf(x, fr)

: type
u :

x : entity
kingOf(x, fr)
1
.
.
.
.
? :

x : entity
kingOf(x, fr)

.
.
.
.
wise(π1v)[ ? /v]



v@

x : entity
kingOf(x, fr)

wise(π1v)



(@)

u :

x : entity
kingOf(x, fr)

→



v@

x : entity
kingOf(x, fr)

wise(π1v)


 : type
(ΠF),1
49 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
DTS on Filtering
.
.
.
.

x : entity
kingOf(x, fr)

: type
wise : entity → type
(CON )
u :

x : entity
kingOf(x, fr)
1
π1u : entity
(ΣE)
wise(π1u) : type
(ΠE)

u :

x : entity
kingOf(x, fr)

→ wise(π1u) : type
(ΠF),1
I Type checking algorithm returns a fully-specified semantic
representation.
I Presupposition filtering is performed via exactly the same
process as anaphora resolution.
50 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Summary and History
51 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
A Unified, Compositional Theory of Projective
Meaning
I DTS provides a unified analysis for (general) inferences and
anaphora resolusion mechanisms (at least) for:
I Deictic use and coreference
I Bound variable anaphora (BVA)
I E-type anaphora
I Donkey anaphora
I Bridging anaphora
I Syllogistic anaphora
I Disjunctive antecedents
52 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
A Unified, Compositional Theory of Projective
Meaning
I The background theory for DTS is an extention of DTT with
underspecified types and the @-rule .
I Lexical items of anaphoric expressions and presupposition
triggers are represented by using underspecified types.
I Context retrieval in DTS reduces to type checking .
I Anaphora resolution and presupposition binding in DTS
reduces to proof search .
I Type checker translates a proof diagram of DTS into a proof
diagram of DTT, by which an SR in DTT is obtained with all
anaphora resolved.
53 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Natural language semantics via dependent types:
Early works
I Donkey anaphora: Sundholm (1986)
I Translation from DRS to dependent type representations: Ahn
and Kolb (1990)
I Summation: Fox (1994a,b)
I Ranta’s TTG (Relative and Implicational Donkey Sentences,
Branching Quantifiers, Intensionality, Tense): Ranta (1994)
I Translation from Montague Grammar to dependent type
representations: Dávila-Pérez (1995)
I Presupposition Binding and Accommodation, Bridging:
Krahmer and Piwek (1999), Piwek and Krahmer (2000)
54 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Natural language semantics via dependent types:
The second generation
I Type Theory with Record (TTR): Cooper (2005)
I Modern Type Theory: Luo (1997, 1999, 2010, 2012), Asher
and Luo (2012), Chatzikyriakidis (2014)
I Semantics with Dependent Types: Grudzinska and
Zawadowski (2014; 2017)
I Dynamic Categorial Grammar: Martin and Pollard (2014)
I Dependent Type Semantics (DTS): Bekki (2014), Bekki
and Mineshima (2017)
55 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Semantic Analyses by DTS
I Generalized Quantifiers: Tanaka (2014)
I Honorification: Watanabe et al. (2014)
I Conventional Implicature: Bekki and McCready (2015),
Matsuoka et al. (2023)
I Factive Presuppositions: Tanaka et al. (2015)
I Dependent Plural Anaphora: Tanaka et al. (2017)
I Paycheck sentences: Tanaka et al. (2018)
I Coercion and Metaphor: Kinoshita et al. (2017, 2018)
I Questions: Watanabe et al. (2019), Funakura (2022)
I Comparision with DRT: Yana et al. (2019)
I The proviso problem: Yana et al. (2021)
I Weak Crossover: Bekki (2023)
56 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Computational Aspects of DTS
I Type Checker for (the fragment of) DTS: Bekki and Sato
(2015)
I Development of an automated theorem prover (for the
fragment of) DTS: Daido and Bekki (2020)
I Integrating Deep Neural Network with DTS: Bekki et al.
(2023, 2022)
57 / 96
Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary
Thank you!
58 / 96
Type System Type Check/Inference Algorithm References
Appendix I: Type System in DTS
59 / 96
Type System Type Check/Inference Algorithm References
Axioms and Structural Rules
x : A
(VAR)
c : A
(CON )
where (c : A) ∈ σ.
type : kind
(typeF)
M : A N : B
M : A
(WK)
M : A
M : B
(CONV )
where A =β B.
60 / 96
Type System Type Check/Inference Algorithm References
Π-type F/I/E rules
A : s1
x : A
i
.
.
.
.
B : s2
(x : A) → B : s2
(ΠF),i
where (s1, s2) ∈



(type, type),
(type, kind),
(kind, kind)



.
A : type
x : A
i
.
.
.
.
M : B
λx.M : (x : A) → B
(ΠI ),i
M : (x : A) → B N : A
MN : B[N/x]
(ΠE)
61 / 96
Type System Type Check/Inference Algorithm References
Σ-type F/I/E rules
A : type
x : A
i
.
.
.
.
B : type
(x : A) × B : type
(ΣF),i
M : A N : B[M/x]
(M, N) : (x : A) × B
(ΣI )
M : (x : A) × B
π1(M) : A
(ΣE)
M : (x : A) × B
π2(M) : B[π1(M)/x]
(ΣE)
62 / 96
Type System Type Check/Inference Algorithm References
Disjoint Union Type F/I/E rules
A : type B : type
A + B : type
(+F)
M : A
ι1(M) : A + B
(+I )
N : B
ι2(N) : A + B
(+I )
M : A + B P : (A + B) → type N1 : (x : A) → P (ι1(x)) N2 : (x : B) → P (ι2(x))
unpackP
M (N1, N2) : P (M)
(+E),i
63 / 96
Type System Type Check/Inference Algorithm References
Natural Number Type F/I/E rules
N : type
(NF)
0 : N
(NI )
n : N
s(n) : N
(NI )
n : N P : N → type e : P (0) f : (k : N) → P (k) → P (s(k))
natrecP
n (e, f) : P (n)
(NE)
64 / 96
Type System Type Check/Inference Algorithm References
Enumeration Type F/I/E rules
{a1, . . . , an} : type
({}F)
ai : {a1, . . . , an}
({}I )
M : {a1, . . . , an} P : {a1, . . . , an} → type N1 : P (a1) . . . Nn : P (an)
caseP
M (N1, . . . , Nn) : P (M)
({}E)
65 / 96
Type System Type Check/Inference Algorithm References
Intensional Equality Type F/I/E rules
A : type M : A N : A
M =A N : type
(=F)
M : A
reflA(M) : M =A M
(=I )
E : M =A N P : (x : A) → (y : A) → (x =A y) → type R : (x : A) → P xx(reflA(x))
idpeelP
E (R) : P MNE
(=E)
66 / 96
Type System Type Check/Inference Algorithm References
@-rule
A : type M : A B[M/x] : type

x@A
B

: type
(@)
67 / 96
Type System Type Check/Inference Algorithm References
Appendix II: Type Check/Inference
Algorithm
68 / 96
Type System Type Check/Inference Algorithm References
Inferable terms (1/2)
The collection of inferable terms (notation M↑ ) and the
collection of checkable terms (notation M↓) are simultaneously
defined by the following BNF notations, where v, v0 are values.
M↑ ::= x variable
| c constant symbol
| type the type of types
| (x : M↓) → M↓ dependent functional type
| M↑ M↓ functional application
| (x : M↓) × M↓ dependent sum type
| πi(M↑ ) projections
| M↓ + M↓ disjoint union types
| unpack
M↓
M↑
(M↓, M↓) unpack
69 / 96
Type System Type Check/Inference Algorithm References
Inferable terms (2/2)
| ⊥ bottom type
|  top type
| () unit
| M↓ =M↓ M↓ Intensional Equality types
| reflM↓ (M↓) reflexive
| idpeel
M↓
M↑
(M↓) idpeel
| N natural number types
| 0 zero
| s(M↓) successor
| natrec
M↓
M↑
(M↓, M↓) mathematical induction
| M↓ : M↓ annotated term
|

x@M↓
M↓

underspecified type
70 / 96
Type System Type Check/Inference Algorithm References
Checkable terms
M↓ ::= M↑ inferable terms
| λx.M↓ lambda abstraction
| (M↓, M↓) pair
| ιi(M↓) injections
71 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Type inference of a UDTT is a transformation of a UDTT
judgment to a set of DTT proof diagrams, recursively defined by
the following set of rules.
Definition (Inferable Terms: Structural Rules)
JΓ, x : A, ∆ ` x : ?K =
(
x : A0
.
.
.
.
A0 : type
∈ JΓ ` A : typeK
)
JΓ ` c : ?K =

c : A
(CON ) σ ` c : A

JΓ ` type : ?K =

Γ ` type : kind
(typeF)

72 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Π-types)
JΓ ` (x : A) → B : ?K =









Γ
DA
A0 : type
Γ, x : A0
DB
B0 : type
(x : A0) → B0 : type
(ΠF)
DA ∈ JΓ ` A : typeK
DB ∈ JΓ, x : A0 ` B : typeK









JΓ ` λx.M : (x : A) → BK =









Γ
DA
A0 : type
Γ, x : A0
DM
M0 : B0
λx.M0 : (x : A0) → B0
(ΠI )
DA ∈ JΓ ` A : typeK
DM ∈ JΓ, x : A0 ` M : BK









JΓ ` MN : ?K =













Γ
DM
M0 : (x : A) → B
Γ
DN
N0 : A
M0N0 : B[N0/x]
(ΠE)
M0N0 : B0
(CONV )
DM ∈ JΓ ` M : ?K
DN ∈ JΓ ` N : AK
B[N0/x] β B0













73 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Σ-types)
s
Γ `

x : A
B

: ?
{
=











Γ
DA
A0 : type
Γ, x : A0
DB
B0 : type

x : A0
B0

: type
(ΣF)
DA ∈ JΓ ` A : typeK
DB ∈ JΓ, x : A0 ` B : typeK











s
Γ ` (M, N) :

x : A
B
{
=









Γ
DM
M0 : A0
Γ
DN
N0 : B0
(M0, N0) :

x : A0
B0
 (ΣI )
DM ∈ JΓ ` M : AK
B[M0/x] β B0
DN ∈ JΓ ` N : B0K









JΓ ` π1(M) : ?K =













Γ
DM
M0 :

x : A
B

π1(M0) : A
(ΣE)
DM ∈ JΓ ` M : ?K













JΓ ` π2(M) : ?K =

















Γ
DM
M0 :

x : A
B

π2(M0) : B[π1M0/x]
(ΣE)
π2(M0) : B0
(CONV )
DM ∈ JΓ ` M : ?K
B[π1M0/x] β B0

















74 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Disjoint Union types)
JΓ ` A + B : ?K =







Γ
DA
A0 : type
Γ
DB
B0 : type
A0 + B0 : type
(+F)
DA ∈ JΓ ` A : typeK
DB ∈ JΓ ` B : typeK







JΓ ` ι1(M) : A + BK =







Γ
DM
M0 : A0
ι1(M0) : A0 + B
(+I )
DM ∈ JΓ ` M : AK







JΓ ` ι2(N) : A + BK =







Γ
DN
N0 : B0
ι2(N0) : A + B0
(+I )
DN ∈ JΓ ` N : BK







q
Γ ` unpackP
L (M, N) : ?
y
=













Γ
DL
L0 : A + B
Γ
DP
P 0 : (A + B) → type
Γ
DM
M0 : (x : A) → P 0(ι1(x))
Γ
DN
N0 : (x : B) → P 0(ι2(x))
unpackP
L0 (M0, N0) : P 0(L0)
(+E),i
unpackP B
L0 (M0, N0) : PL
(CONV )
DL ∈ JΓ ` L : ?K
DP ∈ JΓ ` P : (A + B) → typeK
P 0(L0) β PL
P 0(ι1(x)) β PM
P 0(ι2(x)) β PN
DM ∈ JΓ ` M : (x : A) → PM K
DN ∈ JΓ ` N : (x : B) → PN K



















75 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Enumeration types)
JΓ ` {a1, . . . , an} : ?K =

{a1, . . . , an} : type
({}F)

JΓ ` ai : ?K =

ai : {a1, . . . , an}
({}I )

q
Γ ` caseP
M (N1, . . . , Nn) : ?
y
=













Γ
DM
M : {a1, . . . , an}
Γ
DP
P : {a1, . . . , an} → type
Γ
DP1
N1 : P1
N1 : P (a1)
(CONV )
. . .
Γ
DPn
Nn : Pn
Nn : P (an)
(CONV )
caseP
M (N1, . . . , Nn) : P (M)
({}E)
caseP
M (N1, . . . , Nn) : PM
(CONV )
DM ∈ JΓ ` M : ?K
DP ∈ JΓ ` P : {a1, . . . , an} → typeK
P (a1) β P1
DP1 ∈ JΓ ` N1 : P1K
. . .
P (an) β Pn
DPn ∈ JΓ ` Nn : PnK
P (M) β PM

















76 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Intensional Equality types)
JΓ ` M =A N : ?K =







Γ
DA
A0 : type
Γ
DM
M0 : A0
Γ
DN
N0 : A0
M0 =A0 N0 : type
(=F)
DA ∈ JΓ ` A : typeK
DM ∈ JΓ ` M : A0K
DN ∈ JΓ ` N : A0K







JΓ ` reflA(M) : ?K =







Γ
DA
A0 : type
Γ
DM
M0 : A0
reflA0 (M0) : M0 =A0 M0
(=I )
DA ∈ JΓ ` A : typeK
DM ∈ JΓ ` M : A0K







q
Γ ` idpeelP
E (R) : ?
y
=









Γ
DE
E0 : M =A N
Γ
DP
P 0 : (x : A) → (y : A) → (x =A y) → type
Γ
DR
R0 : (x : A) → P 0xx(reflA(x))
idpeelP 0
E0 (R0) : P 0MNE0
(=E)
idpeelP 0
E0 (R0) : P 00
(CONV )
DE ∈ JΓ ` E : ?K
DP ∈ JΓ ` P : (x : A) → (y : A) → (x =A y) → typeK
DR ∈ JΓ ` R : (x : A) → P 0xx(reflA(x))K
P MNE β P 00







77 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Natural Number types)
JΓ ` N : ?K =

N : type
(NF)

JΓ ` 0 : ?K =

0 : N
(NI )

JΓ ` s(n) : ?K =







Γ
Dn
n : N
s(n) : N
(NI )
Dn ∈ JΓ ` n : NK







q
Γ ` natrecP
n (e, f) : ?
y
=













Γ
Dn
n0 : N P : N → type e : P (0) f : (k : N) → P (k) → P (s(k))
natrecP
n (e, f) : P (n)
(NE)
natrecP
n (e, f) : Pn
(CONV )
Dn ∈ JΓ ` n : NK
P (n) β Pn

78 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Underspecified types)
s
Γ `

x@A
B

: ?
{
=





















Γ
DB
B00 : type
.
.
.
.
A0 : type
∈ JΓ ` A : typeK
.
.
.
.
M : A0
∈ JΓ ` ? : A0K
B[M/x] β B0
DB ∈ JΓ ` B0 : typeK





















79 / 96
Type System Type Check/Inference Algorithm References
Type Checking/Inference Algorithm
Definition (Checkable Terms)
JΓ ` M : AK =



Γ
DM
M : A0
DM ∈ JΓ ` M : ?K
A =β A0



where M inferable.
80 / 96
Type System Type Check/Inference Algorithm References
β-reduction Rules
M β λx.v v[N/x] β v0
MN β v0
(β)
M β (v1, v2)
πiM β vi
(β)
x β x
(VAR=)
c β c
(CON =)
type β type
(type=)
kind β kind
(kind=)
81 / 96
Type System Type Check/Inference Algorithm References
β-reduction Rules
M β v N β v0
(x : M) → N β (x : v) → v0
(Π =)
M β v
λx.M β λx.v
(λ=)
M β v N β v0

x : M
N

β

x : v
v0
 (Σ=) M β v N β v0
(M, N) β (v, v0)
(PAIR=)
π
() β ()
(()=)
 β 
(=)
⊥ β ⊥
(⊥=)
82 / 96
Type System Type Check/Inference Algorithm References
Reference I
Ahn, R. and H.-P. Kolb. (1990) “Discourse Representation meets
Constructive Mathematics”, In: L. Kalman and L. Polos (eds.):
Papers from the Second Symposium on Logic and Language.
Akademiai Kiado.
Asher, N. and Z. Luo. (2012) “Formalisation of coercions in lexical
semantics”, In the Proceedings of Sinn und Bedeutung 17.
pp.63–80.
Beaver, D. I. (2001) Presupposition and Assertion in Dynamic
Semantics, Studies in Logic, Language and Information. CSLI
Publications  FoLLI.
83 / 96
Type System Type Check/Inference Algorithm References
Reference II
Bekki, D. (2014) “Representing Anaphora with Dependent Types”,
In the Proceedings of N. Asher and S. V. Soloviev (eds.):
Logical Aspects of Computational Linguistics (8th international
conference, LACL2014, Toulouse, France, June 2014
Proceedings), LNCS 8535. pp.14–29, Springer, Heiderburg.
Bekki, D. (2023) “A Proof-theoretic Analysis of Weak Crossover”,
In: New Frontiers in Artificial Intelligence (JSAI-isAI 2021
Workshops, JURISIN, LENLS18, SCIDOCA, Kansei-AI, AI-BIZ,
Yokohama, Japan, November 13-15, 2021, Revised Selected
Papers), LNAI 13856. Springer, pp.228–241.
84 / 96
Type System Type Check/Inference Algorithm References
Reference III
Bekki, D. and E. McCready. (2015) “CI via DTS”, In: New
Frontiers in Artificial Intelligence (JSAI-isAI 2014 Workshops,
LENLS, JURISIN, and GABA, Yokohama, Japan, November
23-24, 2014, Revised Selected Papers), Vol. LNAI 9067.
Springer.
Bekki, D. and K. Mineshima. (2017) “Context-Passing and
Underspecification in Dependent Type Semantics”, In: S.
Chatzikyriakidis and Z. Luo (eds.): Modern Perspectives in
Type-Theoretical Semantics, Studies of Linguistics and
Philosophy. Springer, pp.11–41.
Bekki, D. and M. Sato. (2015) “Calculating Projections via Type
Checking”, In the Proceedings of TYpe Theory and LExical
Semantics (TYTLES), ESSLLI2015 workshop.
85 / 96
Type System Type Check/Inference Algorithm References
Reference IV
Bekki, D., R. Tanaka, and Y. Takahashi. (2022) “Learning
Knowledge with Neural DTS”, In the Proceedings of the 3rd
Natural Logic Meets Machine Learning (NALOMA III).
pp.17–25, Association of Computational Linguistics.
Bekki, D., R. Tanaka, and Y. Takahashi. (2023) “Integrating Deep
Neural Network with Dependent Type Semantics”, In: R.
Loukanova, P. L. Lumsdaine, and R. Muskens (eds.): Logic and
Algorithms in Computational Linguistics 2021
(LACompLing2021), Studies in Computational Intelligence 1081.
Springer.
86 / 96
Type System Type Check/Inference Algorithm References
Reference V
Chatzikyriakidis, S. (2014) “Adverbs in a Modern Type Theory”,
In: N. Asher and S. V. Soloviev (eds.): Logical Aspect of
Computational Linguistics, 8th International Conference,
LACL2014, Toulouse, France, June 18-20, 2014 Proceedings.
Springer.
Cooper, R. (2005) “Records and Record Types in Semantic
Theory”, Journal of Logic and Computation 15(2), pp.99–112.
Daido, H. and D. Bekki. (2020) “Development of an automated
theorem prover for the fragment of DTS”, In the Proceedings of
the 17th International Workshop on Logic and Engineering of
Natural Language Semantics (LENLS17).
Dávila-Pérez, R. (1995) “Semantics and Parsing in Intuitionistic
Categorial Grammar”, Thesis, University of Essex. Ph.D. thesis.
87 / 96
Type System Type Check/Inference Algorithm References
Reference VI
Fox, C. (1994a) “Discourse Representation, Type Theory and
Property Theory”, In the Proceedings of H. Bunt, R. Muskens,
and G. Rentier (eds.): the International Workshop on
Computational Semantics. pp.71–80.
Fox, C. (1994b) “Existence Presuppositions and Category
Mistakes”, Acta Linguistica Hungarica 42(3/4), pp.325–339.
Funakura, H. (2022) “Answers, Exhaustivity, and Presupposition of
wh-questions in Dependent Type Semantics”, In the Proceedings
of Logic and Engineering of Natural Language Semantics 20
(LENLS20). pp.72–76.
Geach, P. (1962) Reference and Generality: An Examination of
Some Medieval and Modern Theories. Ithaca, New York, Cornell
University Press.
Geurts, B. (1999) Presuppositions and pronouns. Elsevier, Oxford.
88 / 96
Type System Type Check/Inference Algorithm References
Reference VII
Groenendijk, J. and M. Stokhof. (1991) “Dynamic Predicate
Logic”, Linguistics and Philosophy 14, pp.39–100.
Kamp, H. (1981) “A Theory of Truth and Semantic
Representation”, In: J. Groenendijk, T. M. Janssen, and M.
Stokhof (eds.): Formal Methods in the Study of Language.
Amsterdam, Mathematical Centre Tract 135.
Kamp, H. and U. Reyle. (1993) From Discourse to Logic. Kluwer
Academic Publishers.
Kinoshita, E., K. Mineshima, and D. Bekki. (2017) “An Analysis of
Selectional Restrictions with Dependent Type Semantics”, In: S.
Kurahashi, Y. Ohta, S. Arai, K. Satoh, and D. Bekki (eds.):
New Frontiers in Artificial Intelligence. JSAI-isAI 2016, Lecture
Notes in Computer Science, vol 10247. Springer, pp.19–32.
89 / 96
Type System Type Check/Inference Algorithm References
Reference VIII
Kinoshita, E., K. Mineshima, and D. Bekki. (2018) “Coercion as
Proof Search in Dependent Type Semantics”, In: C.
Fabricius-Hansen, B. Behrens, A. Pitz, and H. Petter Helland
(eds.): Possessives in L2 and translation: basic principles and
empirical findings, Oslo Studies in Language 10, No 2. pp.1–20.
Krahmer, E. and P. Piwek. (1999) “Presupposition Projection as
Proof Construction”, In: H. Bunt and R. Muskens (eds.):
Computing Meanings: Current Issues in Computational
Semantics, Studies in Linguistics Philosophy Series. Dordrecht,
Kluwer Academic Publishers.
Krifka, M. (1996) “Parametrized Sum Individuals for Plural
Anaphora”, Linguistics and Philosophy 19, pp.555–598.
Levinson, S. (1983) Pragmatics. Cambridge, Cambridge University
Press.
90 / 96
Type System Type Check/Inference Algorithm References
Reference IX
Luo, Z. (1997) “Coercive subtyping in type theory”, In: D. van
Dalen and M. Bezem (eds.): CSL 1996. LNCS, vol. 1258.
Heidelberg, Springer.
Luo, Z. (1999) “Coercive subtyping”, Journal of Logic and
Computation 9(1), pp.105–130.
Luo, Z. (2010) “Type-theoretical semantics with coercive
subtyping”, In the Proceedings of Semantics and Linguistic
Theory 20 (SALT 20).
Luo, Z. (2012) “Formal Semantics in Modern Type Theories with
Coercive Subtyping”, Linguistics and Philosophy 35(6).
Martin, S. and C. J. Pollard. (2014) “A dynamic categorial
grammar”, In the Proceedings of Formal Grammar 19, LNCS
8612.
91 / 96
Type System Type Check/Inference Algorithm References
Reference X
Matsuoka, D., D. Bekki, and H. Yanaka. (2023) “Appositive
Projection as Implicit Context Extension in Dependent Type
Semantics”, In the Proceedings of the 20th International
Workshop on Logic and Engineering of Natural Language
Semantics (LENLS20). pp.82–87.
Piwek, P. and E. Krahmer. (2000) “Presuppositions in Context:
Constructing Bridges”, In: P. Bonzon, M. Cavalcanti, and R.
Nossum (eds.): Formal Aspects of Context, Applied Logic
Series. Dordrecht, Kluwer Academic Publishers.
Ranta, A. (1994) Type-Theoretical Grammar. Oxford University
Press.
Soames, S. (1989) “Presupposition”, In: D. Gabbay and F.
Guenthner (eds.): Handbook of Philosophical Logic, Vol. 4.
Dordrecht, Reidel, pp.553–616.
92 / 96
Type System Type Check/Inference Algorithm References
Reference XI
Sudo, Y. (2012) “On the Semantics of Phi Features on Pronouns”,
Thesis, MIT. Doctoral dissertation.
Sundholm, G. (1986) “Proof theory and meaning”, In: D. Gabbay
and F. Guenthner (eds.): Handbook of Philosophical Logic, Vol.
III. Reidel, Kluwer, pp.471–506.
Tanaka, R. (2014) “A Proof-Theoretic Approach to Generalized
Quantifiers in Dependent Type Semantics”, In the Proceedings
of R. de Haan (ed.): the ESSLLI 2014 Student Session, 26th
European Summer School in Logic, Language and Information.
pp.140–151.
Tanaka, R. (2021) “Natural Language Quantification and
Dependent Types”, Thesis, Ochanomizu University. Doctoral
Dissertation.
93 / 96
Type System Type Check/Inference Algorithm References
Reference XII
Tanaka, R., K. Mineshima, and D. Bekki. (2015) “Factivity and
Presupposition in Dependent Type Semantics”, In the
Proceedings of TYpe Theory and LExical Semantics (TYTLES),
ESSLLI2015 workshop.
Tanaka, R., K. Mineshima, and D. Bekki. (2017) “On the
Interpretation of Dependent Plural Anaphora in a
Dependently-Typed Setting”, In: S. Kurahashi, Y. Ohta, S. Arai,
K. Satoh, and D. Bekki (eds.): New Frontiers in Artificial
Intelligence. JSAI-isAI 2016, Lecture Notes in Computer Science,
vol 10247. Springer, pp.123–137.
Tanaka, R., K. Mineshima, and D. Bekki. (2018) “Paychecks,
presupposition, and dependent types”, In the Proceedings of the
Fifth Workshop on Natural Language and Computer Science
(NLCS2018), Preprint no.215. Oxford University.
94 / 96
Type System Type Check/Inference Algorithm References
Reference XIII
van den Berg, M. (1996) “Some aspects of the internal structure
of discourse – the dynamics of nominal anaphora –”, Thesis,
University of Amsterdam.
van der Sandt, R. (1992) “Presupposition projection as anaphora
resolution”, Journal of Semantics 9, pp.333–377.
Watanabe, K., K. Mineshima, and D. Bekki. (2019) “Questions in
Dependent Type Semantics”, In the Proceedings of Proceedings
of the Sixth Workshop on Natural Language and Computer
Science (NLCS’19). pp.23–33.
Watanabe, N., E. McCready, and D. Bekki. (2014) “Japanese
Honorification: Compositionality and Expressivity”, In the
Proceedings of S. Kawahara and M. Igarashi (eds.): FAJL 7:
Formal Approaches to Japanese Linguistics, the MIT Working
Papers in Linguistics 73. pp.265–276.
95 / 96
Type System Type Check/Inference Algorithm References
Reference XIV
Yana, Y., D. Bekki, and K. Mineshima. (2019) “Variable Handling
and Compositionality: Comparing DRT and DTS”, Journal of
Logic, Language and Information 28(2), pp.261–285.
Yana, Y., K. Mineshima, and D. Bekki. (2021) “The proviso
problem from a proof-theoretic perspective”, In the Proceedings
of Logical Aspects of Computational Linguistics (LACL) 2021.
pp.159–176.
96 / 96

More Related Content

PDF
Dependent Types and Dynamics of Natural Language
PDF
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
PDF
Dependent Types in Natural Language Semantics
PDF
Dependent Types and Dynamics of Natural Language
PDF
Dependent Type Semantics and its Davidsonian extensions
PDF
Calculating Projections via Type Checking
PDF
Conventional Implicature via Dependent Type Semantics
PDF
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn
Dependent Types and Dynamics of Natural Language
ESSLLI2016 DTS Lecture Day 2: Dependent Type Semantics (DTS)
Dependent Types in Natural Language Semantics
Dependent Types and Dynamics of Natural Language
Dependent Type Semantics and its Davidsonian extensions
Calculating Projections via Type Checking
Conventional Implicature via Dependent Type Semantics
ESSLLI2016 DTS Lecture Day 5-2: Proof-theoretic Turn

Similar to From Dependent Types to Natural Language Semantics (12)

PDF
Dynamics Of Meaning Anaphora Presupposition And The Theory Of Grammar Gennaro...
PDF
Composing (Im)politeness in Dependent Type Semantics
PDF
ESSLLI2016 DTS Lecture Day3: Presupposition
PDF
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
PDF
Point-free semantics of dependent type theories
PDF
Tensor-based Models of Natural Language Semantics
PDF
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
PDF
PDF
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
PDF
Thesis about discourse
PPT
Aya sentence relation and truth
PPT
anaphora resolution natural language processing.ppt
Dynamics Of Meaning Anaphora Presupposition And The Theory Of Grammar Gennaro...
Composing (Im)politeness in Dependent Type Semantics
ESSLLI2016 DTS Lecture Day3: Presupposition
ESSLLI2016 DTS Lecture Day 1: From natural deduction to dependent type theory
Point-free semantics of dependent type theories
Tensor-based Models of Natural Language Semantics
ESSLLI2016 DTS Lecture Day 4-2: More Dependent Types
ESSLLI2016 DTS Lecture Day 4-1: Common Noun
Thesis about discourse
Aya sentence relation and truth
anaphora resolution natural language processing.ppt
Ad

Recently uploaded (20)

PPTX
Application of enzymes in medicine (2).pptx
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
BIOMOLECULES PPT........................
PDF
The scientific heritage No 166 (166) (2025)
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
Microbiology with diagram medical studies .pptx
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
Pharmacology of Autonomic nervous system
PPT
protein biochemistry.ppt for university classes
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
Overview of calcium in human muscles.pptx
PPTX
C1 cut-Methane and it's Derivatives.pptx
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Application of enzymes in medicine (2).pptx
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
BIOMOLECULES PPT........................
The scientific heritage No 166 (166) (2025)
. Radiology Case Scenariosssssssssssssss
Microbiology with diagram medical studies .pptx
neck nodes and dissection types and lymph nodes levels
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
Placing the Near-Earth Object Impact Probability in Context
Pharmacology of Autonomic nervous system
protein biochemistry.ppt for university classes
2Systematics of Living Organisms t-.pptx
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
Biophysics 2.pdffffffffffffffffffffffffff
Overview of calcium in human muscles.pptx
C1 cut-Methane and it's Derivatives.pptx
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Ad

From Dependent Types to Natural Language Semantics

  • 1. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary From Dependent Types to Natural Language Semantics Daisuke Bekki Ochanomizu University Faculty of Core Research https://daisukebekki.github.io/ A plenary talk at Logic Colloquim 2024 25 June (Tue) 1 / 96
  • 2. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Dependent Type Semantics (DTS) (Bekki 2014; Bekki and Mineshima 2017; Bekki 2021) I A framework of natural language semantics I Unified approach to (general) inferences and anaphora/presupposition resolution in terms of type checking and proof search Main features: 1. Proof-theoretic semantics: From model theory (denotations and models) to proof theory (proofs and contexts) 2. Anaphora/Presuppositions: A proof-theoretic alternative to Dynamic Semantics (DRT, DPL, etc.) 3. Compositionality: Syntax-semantics interface via categorial grammars (e.g. CCG, TLG, ACG, etc) 4. Implementation: Applications to Natural Language Processing. https://github.com/DaisukeBekki/lightblue/ 2 / 96
  • 3. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Dependent Types 3 / 96
  • 4. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Per Martin-Löf Martin-Löf (1984) “Intuitionistic type theory” 4 / 96
  • 5. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary What are Π-types Π-type is a type of fibred functions. Simple function space Fibred function space 5 / 96
  • 6. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary What are Σ-types Σ-type is a type of fibred products. Simple product space Fibred product space 6 / 96
  • 7. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Notations DTS notation Standard notation x 6∈ fv(B) x ∈ fv(B) (x : A) → B (Πx : A)B A → B (∀x : A)B (x : A) × B or x : A B (Σx : A)B A ∧ B (∃x : A)B Scope of the variable in Π-types: (x : A) → B Scope of the variable in Σ-types: x : A B 7 / 96
  • 8. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Π-type F/I/E rules A : s1 x : A i . . . . B : s2 (x : A) → B : s2 (ΠF),i where (s1, s2) ∈    (type, type), (type, kind), (kind, kind)    . A : type x : A i . . . . M : B λx.M : (x : A) → B (ΠI ),i M : (x : A) → B N : A MN : B[N/x] (ΠE) 8 / 96
  • 9. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Σ-type F/I/E rules A : type x : A i . . . . B : type (x : A) × B : type (ΣF),i M : A N : B[M/x] (M, N) : (x : A) × B (ΣI ) M : (x : A) × B π1(M) : A (ΣE) M : (x : A) × B π2(M) : B[π1(M)/x] (ΣE) 9 / 96
  • 10. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Rules of DTS Rules from Martin-Löf Type Theory I Axioms and Structural rules I Π-type (Dependent function type) [F/I/E] I Σ-type (Dependent product type) [F/I/E] I Intensional equality type [F/I/E] I Disjoint union type [F/I/E] I Enumeration type [F/I/E] I Natural number type [F/I/E] New rule in DTS I @ (the ‘asperand’ operator) I Anaphora and presupposition triggers (linguistically speaking) I Open proofs (logically speaking) 10 / 96
  • 11. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Conjunction, Implication, and Negation Definition A B def ≡ (x : A) × B where x / ∈ fv(B). A → B def ≡ (x : A) → B where x / ∈ fv(B). ¬A def ≡ (x : A) → ⊥ 11 / 96
  • 12. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Anaphora in Natural Language 12 / 96
  • 13. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary A theory of anaphora I Anaphora representable by a constant symbol: I Deictic use: (1) (Pointing at John) He was born in Detroit. bornIn( j , d) I Coreference: (2) John loves a girl who hates him . ∃x(girl(x) ∧ love( j , x) ∧ hate(x, j )) I Anaphora representable by a variable I Bound variable anaphora: (3) Every boy loves his father. ∀x (boy(x) → love(x, fatherOf( x ))) 13 / 96
  • 14. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary A theory of anaphora I Anaphora not representable by FoL: I E-type anaphora: (4) A man entered into the park. He whistled. I Donkey anaphora: (5) Every farmer who owns a donkey beats it . (6) If a farmer owns a donkey , he beats it . I Anaphora not representable by FoL nor dynamic semantics: I Syllogistic anaphora: (7) Every girl received a present . Some girl opened it . I Disjunctive antecedent: (8) If Mary sees a horse or a pony , she waves to it . 14 / 96
  • 15. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Geach (1962) For the donkey sentences (9), a first-order formula (10), whose truth condition is the same as those of (9), is a candidate of its semantic representation (SR). (We only discuss its strong reading here. See Tanaka (2021) for its weak reading.) (9) a. Every farmer who owns [a donkey]1 beats it1. b. If [a farmer]1 owns [a donkey]2 , he1 beats it2. (10) ∀x(farmer(x) → ∀y (donkey(y) ∧ own(x, y) → beat(x, y))) But the translation from the sentence (9) to (10) is not straightforward since i) the indefinite noun phrase a donkey is translated into a universal quantifier in (10) instead of an existential quantifier, and ii) the syntactic structure of (10) does not corresponds to that of (9). 15 / 96
  • 16. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Geach (1962) (9) a. Every farmer who owns [a donkey]1 beats it1 . b. If [a farmer]1 owns [a donkey]2, he1 beats it2 . The syntactic parallel of (9) is, rather, the SR (11), in which the indefinite noun phrase is translated into an existential quantification. (11) ∀x(farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y)) → beat(x, y )) However, (11) does not represent the truth condition of (9) correctly since the variable y in beat(x, y) fails to be bound by ∃. Therefore, neither (10) nor (11) qualifies as the SR of (9). 16 / 96
  • 17. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Various approaches in discourse semantics Dynamic Semantics I Discourse Representation Theory (DRT): Kamp (1981), Kamp and Reyle (1993) I Dynamic Predicate Logic (DPL): Groenendijk and Stokhof (1991) I Dynamic Plural Predicate Logic (DPPL): van den Berg (1996), Sudo (2012) Type-theoretical Semantics I Analysis of donkey anaphora: Sundholm (1986)) I Type Theoretical Grammar (TTG): Ranta (1994) I Type Theory with Record (TTR): Cooper (2005) I Modern Type Theory: Luo (1997, 1999, 2010, 2012), Asher and Luo (2012), Chatzikyriakidis (2014) I Dependent Type Semantics (DTS): Bekki (2014), Bekki and Mineshima (2017) 17 / 96
  • 18. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Sundholm (1986) (9a) Every farmer who owns a donkey beats it .        u :        x : entity      farmer(x)    v : y : entity donkey(y) # own(x, π1v)                       → beat(π1u, π1π1π2π2u ) Note: (x : A) → B is a type for functions from A to B[x]. 18 / 96
  • 19. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary From TTG to DTS: Compositionality Q: How could one get to these (dependently-typed) representations from arbitrary sentences? A: By lexicalization. Q: But, how could we lexicalize context-dependent words like pronouns?        u :        x : entity      farmer(x)    v : y : entity donkey(y) # own(x, π1v)                       → beat(π1u, π1π1π2π2u ) 19 / 96
  • 20. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary From TTG to DTS: Compositionality Q: How could one get to these (dependently-typed) representations from arbitrary sentences? A: By lexicalization. Q: But, how could we lexicalize context-dependent words like pronouns? A: By using underspecified types. Q: How could we retrieve a context for an underspecified type? A: By type checking. 20 / 96
  • 21. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Dependent Type Semantics (DTS) 21 / 96
  • 22. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Underspecified types DTS = DTT + underspecified types Definition (@-rule) A : type M : A B[M/x] : type x@A B : type (@) I @-rule states that the well-formedness of (x@A) × B requires: I A is a well-formed type I the inhabitance of a proof (let it be M) of A, checking of which launches a proof search I B[M/x] is a well-formed type This means that the truth of A is presupposed. 22 / 96
  • 23. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary A model of natural language understanding via CCG and DTS A sentence . . . A sentence ⇓ ⇓ CCG Parsing . . . CCG Parsing ⇓ ⇓ An underspecified SRs in DTS . . . An underspecified SRs in DTS ⇓ ⇓ Discoruse Parsing ⇓ An underspecified discourse SRs in DTS ⇓ Type checking + Proof search ⇓ A proof diagram of the well-formedness of an SRs in DTT ⇓ Inference in DTT 23 / 96
  • 24. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Lexical items in CCG style Surface form Syntactic category Semantic representation every ( T /(T NP)/N T (T /NP)/N λn.λp.λ~ x. u : x : entity n(x) → p(π1u)~ x a, some ( T /(T NP)/N T (T /NP)/N λn.λp.λ~ x.   u : x : entity n(x) p(π1u)~ x   if ( S/S/S SS/S λp.λq. (u : p) → q who/whom ( NN/(SNP ) NN/(S/NP ) λp.λn.λx. nx px farmer N farmer donkey N donkey owns SNP/NP own beats SNP/NP beat he/him ( T /(T NP) nom T (T /NP) acc λp.λ~ x.   u@ x : entity male(x) p(π1u)~ x   it ( T /(T NP) nom T (T /NP) acc λp.λ~ x.   u@ x : entity ¬human(x) p(π1u)~ x   the ( T /(T NP)/N nom T /(T NP)/N acc λn.λp.λ~ x.   u@ x : entity n(x) p(π1u)~ x   24 / 96
  • 25. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Syntactic Structure Every T /(T NP)/N farmer N who NN/(SNP) owns SNP/NP a T (T /NP)/N donkey N T (T /NP) SNP(SNP/NP) ∀E SNP NN N T /(T NP) S/(SNP) ∀E beat SNP/NP it T (T /NP) SNP(SNP/NP) ∀E SNP S S̄ CC 25 / 96
  • 26. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Semantic Composition (1/2) farmer farmer who λp.λn.λx. n(x) p(x) owns λy.λx. own(x, y) a λn.λp.   v : y : entity n(y) p(π1v)   donkey donkey λp.   v : y : entity donkey(y) p(π1v)   λx.   v : y : entity donkey(y) own(x, π1v)   λn.λx.     n(x) v : y : entity donkey(y) own(x, π1v)     λx.     farmer(x) v : y : entity donkey(y) own(x, π1v)     26 / 96
  • 27. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Semantic Composition (2/2) Every λn.λp. u : x : entity n(x) → p(π1u) farmer who owns a donkey λx.     farmer(x) v : y : entity donkey(y) own(x, π1v)     λp.       u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)             → p(π1u) beat λy.λx. beat(x, y) it λp.λx.    w@ z : entity ¬human(z) p(π1w)x    λx.    w@ z : entity ¬human(z) beat(x, π1w)          u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)             →    w@ z : entity ¬human(z) beat(π1u, π1w)    27 / 96
  • 28. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Semantic Felicity Condition (=Type Checking) . . . .       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)       : type . . . . z : entity ¬human(z) : type u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)       1 . . . . ? : z : entity ¬human(z) . . . . (beat(π1u, π1w))[?/w] : type    w@ z : entity ¬human(z) beat(π1u, π1w)    : type (       u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)             →    w@ z : entity ¬human(z) beat(π1u, π1w)    : type (ΠI ),1 28 / 96
  • 29. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Anaphora Resolusion (=Proof Search) u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)       1 π2u :     farmer(x) v : y : entity donkey(y) own(π1u, π1v)     (ΣE) π2π2u :   v : y : entity donkey(y) own(π1u, π1v)   (ΣE) π1π2π2u : y : entity donkey(y) (ΣE) π1π1π2π2u : entity (ΣE) u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)       1 π2u :     farmer(x) v : y : entity donkey(y) own(π1u, π1v)     (ΣE) π2π2u :   v : y : entity donkey(y) own(π1u, π1v)   (ΣE) π1π2π2u : y : entity donkey(y) (ΣE) d : u : x : entity donkey(x) → ¬human(π1u) (CON ) d(π1π2π2u) : ¬human(π1π1π2π2u) (ΠE) (π1π1π2π2u, d(π1π2π2u)) : z : entity ¬human(z) (ΣI ) 29 / 96
  • 30. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Donkey anaphora: Semantic Felicity Condition (=Type Checking) continued . . . .       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)       : type u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)       1 . . . . beat(π1u, π1π1π2π2u) : type       u :       x : entity farmer(x) v : y : entity donkey(y) own(x, π1v)             → beat(π1u, π1π1π2π2u) : type (beat(π1u, π1w))[ (π1π1π2π2u, d(π1π2π2u)) /w] : type β beat(π1u, π1π1π2π2u) (ΠI ),1 30 / 96
  • 31. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Notes on donkey anaphora I The same analysis applies to the implicational donkey sentence: (12) If [a farmer]1 owns [a donkey]2, he1 beats it2. I This analysis only predicts the strong reading for donkey sentences. For deriving both the strong readings and the weak readings, we need to refine the semantic representations for quantificational expressions: See Tanaka (2021). I The refined analysis also explains why the anaphoric link to the parametrized sum individual (Krifka, 1996) is allowed (Tanaka, 2021). (13) [Every farmer]1 who owns [a donkey]2 loves its2 tail. But they1 beat it2. 31 / 96
  • 32. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Presupposition Joint work with Koji Mineshima 32 / 96
  • 33. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary What is Presupposition? — Background content (14) It is John who broke my iPhone. Presupposition: Someone broke my iPhone. I the background content I its truth is usually taken for granted Assertion: John was the one who did it. I the foreground content I the main point of an utterance 33 / 96
  • 34. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Two puzzules of Presupposition – (i) Projection (14) It was John who broke my iPhone. (15) Someone broke my iPhone. ((14) presupposes (15)) (15) projects out of all the embedded contexts in (16a–e). (16) a. It wasn’t John who broke my iPhone. negation b. Maybe it was John who broke my iPhone. modal c. If it was John who broke my iPhone, then he has to fix it. the antecedent of a conditional d. Was it John who broke my iPhone? question e. Suppose that it was John who broke my iPhone. hypothetical assumption 34 / 96
  • 35. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary The Case of Entailment (17) John is an American pianist. (18) John is American. ((17) entails (18)) (18) does not survive in the contexts (19a–e). (19) a. John is not an American pianist. negation b. Maybe John is an American pianist. modal c. If John is an American pianist, he is skillful. the antecedent of a conditional d. Is John an American pianist? question e. Suppose that John is an American pianist. hypothetical assumption 35 / 96
  • 36. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary The Case of Entailment (17) John is an American pianist. american(john) ∧ pianist(john) (19) a. John is not an American pianist. ¬(american(j) ∧ pianist(j)) b. Maybe John is an American pianist. 3(american(j) ∧ pianist(j)) c. If John is an American pianist, he is skillful. american(j) ∧ pianist(j) → skillful(j) Standard semantics correctly predicts these patterns: I (17) ` american(john) I (19a) 6` american(john) I (19b) 6` american(john) I (19c) 6` american(john) 36 / 96
  • 37. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary The Case of Presupposition (14) It was John who broke my iPhone. SR1 (16) a. It wasn’t John who broke my iPhone. ¬SR1 b. Maybe it was John who broke my iPhone. 3SR1 c. If it was John who broke my iPhone, he has to fix it. SR1 → · · · What SR accounts for the following inference patterns? I SR1 ∃x(broke(x, my iphone)) I ¬SR1 ∃x(broke(x, my iphone)) I 3SR1 ∃x(broke(x, my iphone)) I SR1 →A ∃x(broke(x, my iphone)) Q: Can “ ” be defined as a standard consequence relation ”`”? A: No. If that were the case, then ∃x(broke(x, my iphone)) was a tautology (under the classical setting). 37 / 96
  • 38. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Two puzzules of Presupposition – (ii) Filteration (20) presupposes that someone broke the window, but the conditional in (21) does not inherit this presupposition. (20) It was John who broke the window. ⇐ Someone broke the window (21) If the window was broken, it was John who broke it. 6 ⇐ Someone broke the window Similarly for (22) and (23). (22) The king of France is wise. ⇐ France has a king. (23) If France has a king, the king of France is wise. 6 ⇐ France has a king. A presupposition is filtered when it occurs in certain contexts. 38 / 96
  • 39. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Presupposition triggers (24) a. The elevator in this building is clean. Description b. There is an elevator in this building. (25) a. John’s sister is happy. Possessive b. John has a sister. (26) a. Bill regrets that he lied to Mary. Factive b. Bill lied to Mary. (27) a. John has stopped beating his wife. Aspectual b. John has beaten his wife. (28) a. Harry managed to find the book. Implicative b. Finding the book required some effort. 39 / 96
  • 40. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Presupposition triggers (29) a. Sam broke the window again today. Iterative b. Sam broke the window before. (30) a. It was Sam who broke the window. Cleft b. Someone broke the window. (31) a. What John broke was his typewriter. Pseudo-cleft b. John broke something. (32) a. [Pat]F is leaving, too. (Focus on Pat) Additive b. Someone other than Pat is leaving. For classical examples of presupposition triggers, see Levinson (1983), Soames (1989), Geurts (1999), and Beaver (2001), among others. 40 / 96
  • 41. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary “Presupposition Is Anaphora” hypothesis 41 / 96
  • 42. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary “Presupposition Is Anaphora” hypothesis There are striking parallels between anaphoric expressions and presupposition triggers. (van der Sandt, 1992; Geurts, 1999) Presupposition filtering: (33) a. John has children and John’s children are wise. b. If John has children, John’s children are wise. (34) a. The window was broken and it was John who broke it. b. If the window was broken, it was John who broke it. Compare (33) and (34) with the paradigm examples of anaphora resolution. Anaphora resolution: (35) a. John owns a donkey and he beats it. b. If John owns a donkey, he beats it. 42 / 96
  • 43. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary DTS on Projection I The projection inferences of presupposition can be naturally accounted for using the framework of DTS. I Note that negation is defined to be an implication of the form ¬A ≡ A → ⊥.the formation rule for negation can be derived as on the right: I According to the formation rule (¬F ) for negation, the proposition A and its negation ¬A have the same presupposition. Example: It is not the case that the king of France is bald. SR ¬    u@ x : entity king(x, fr) bold(π1u)    43 / 96
  • 44. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Projection: Syntax It is not the case that S/S the S/(SNP)/N king N/PPof of PPof /NP France NP PPof N S/(SNP) is SNP/(SNP) bald SNP SNP S S 44 / 96
  • 45. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Projection: Semantic Composition It is not the case that λp.¬p the λn.λp.    u@ x : entity n(x) p(π1u)    king λz.λx. kingOf(x, z) of id France fr fr λx.kingOf(x, fr) λp.    u@ x : entity kingOf(x, fr) p(π1u)    is id bald bald bald    u@ x : entity kingOf(x, fr) bald(π1u)    ¬    u@ x : entity kingOf(x, fr) bald(π1u)    45 / 96
  • 46. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Projection: Type checking . . . . x : entity kingOf(x, fr) ? : x : entity kingOf(x, fr) ¬bald(π1u)[ ? /u] : type    u@ x : entity kingOf(x, fr) ¬bald(π1u)    : type (@) ⊥ : type ({}F) ¬    u@ x : entity kingOf(x, fr) ¬bald(π1u)    : type (ΠF) I In order for the sentence “The king of France is bald” to be well-formed, the context Γ must be such that the following type inhabits a proof (namely, there exists a king of France). Γ `? : x : entity kingOf(x, fr) 46 / 96
  • 47. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary DTS on Projection I The same inference is triggered for the antecedent of a conditional sentence like (36): (36) If the king of France is wise, people will be happy. . . . .    u : x : entity kingOf(x, fr) wise(π1u)    : type . . . . happy(people) : type    u : x : entity kingOf(x, fr) wise(π1u)    → happy(people) : type (ΠF) 47 / 96
  • 48. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary DTS on Filtering I The present account can explain the filtering inference without further stipulation. I Take a look at the case of a conditional sentence: (37) If France has a king, the king of France is wise. SR u : x : entity kingOf(x, fr) →    v@ x : entity kingOf(x, fr) wise(π1v)    48 / 96
  • 49. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Filtering: Type checking . . . . x : entity kingOf(x, fr) : type . . . . x : entity kingOf(x, fr) : type u : x : entity kingOf(x, fr) 1 . . . . ? : x : entity kingOf(x, fr) . . . . wise(π1v)[ ? /v]    v@ x : entity kingOf(x, fr) wise(π1v)    (@) u : x : entity kingOf(x, fr) →    v@ x : entity kingOf(x, fr) wise(π1v)    : type (ΠF),1 49 / 96
  • 50. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary DTS on Filtering . . . . x : entity kingOf(x, fr) : type wise : entity → type (CON ) u : x : entity kingOf(x, fr) 1 π1u : entity (ΣE) wise(π1u) : type (ΠE) u : x : entity kingOf(x, fr) → wise(π1u) : type (ΠF),1 I Type checking algorithm returns a fully-specified semantic representation. I Presupposition filtering is performed via exactly the same process as anaphora resolution. 50 / 96
  • 51. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Summary and History 51 / 96
  • 52. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary A Unified, Compositional Theory of Projective Meaning I DTS provides a unified analysis for (general) inferences and anaphora resolusion mechanisms (at least) for: I Deictic use and coreference I Bound variable anaphora (BVA) I E-type anaphora I Donkey anaphora I Bridging anaphora I Syllogistic anaphora I Disjunctive antecedents 52 / 96
  • 53. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary A Unified, Compositional Theory of Projective Meaning I The background theory for DTS is an extention of DTT with underspecified types and the @-rule . I Lexical items of anaphoric expressions and presupposition triggers are represented by using underspecified types. I Context retrieval in DTS reduces to type checking . I Anaphora resolution and presupposition binding in DTS reduces to proof search . I Type checker translates a proof diagram of DTS into a proof diagram of DTT, by which an SR in DTT is obtained with all anaphora resolved. 53 / 96
  • 54. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Natural language semantics via dependent types: Early works I Donkey anaphora: Sundholm (1986) I Translation from DRS to dependent type representations: Ahn and Kolb (1990) I Summation: Fox (1994a,b) I Ranta’s TTG (Relative and Implicational Donkey Sentences, Branching Quantifiers, Intensionality, Tense): Ranta (1994) I Translation from Montague Grammar to dependent type representations: Dávila-Pérez (1995) I Presupposition Binding and Accommodation, Bridging: Krahmer and Piwek (1999), Piwek and Krahmer (2000) 54 / 96
  • 55. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Natural language semantics via dependent types: The second generation I Type Theory with Record (TTR): Cooper (2005) I Modern Type Theory: Luo (1997, 1999, 2010, 2012), Asher and Luo (2012), Chatzikyriakidis (2014) I Semantics with Dependent Types: Grudzinska and Zawadowski (2014; 2017) I Dynamic Categorial Grammar: Martin and Pollard (2014) I Dependent Type Semantics (DTS): Bekki (2014), Bekki and Mineshima (2017) 55 / 96
  • 56. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Semantic Analyses by DTS I Generalized Quantifiers: Tanaka (2014) I Honorification: Watanabe et al. (2014) I Conventional Implicature: Bekki and McCready (2015), Matsuoka et al. (2023) I Factive Presuppositions: Tanaka et al. (2015) I Dependent Plural Anaphora: Tanaka et al. (2017) I Paycheck sentences: Tanaka et al. (2018) I Coercion and Metaphor: Kinoshita et al. (2017, 2018) I Questions: Watanabe et al. (2019), Funakura (2022) I Comparision with DRT: Yana et al. (2019) I The proviso problem: Yana et al. (2021) I Weak Crossover: Bekki (2023) 56 / 96
  • 57. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Computational Aspects of DTS I Type Checker for (the fragment of) DTS: Bekki and Sato (2015) I Development of an automated theorem prover (for the fragment of) DTS: Daido and Bekki (2020) I Integrating Deep Neural Network with DTS: Bekki et al. (2023, 2022) 57 / 96
  • 58. Dependent Types Anaphora DTS on Anaphora Presupposition DTS on Presupp. Summary Thank you! 58 / 96
  • 59. Type System Type Check/Inference Algorithm References Appendix I: Type System in DTS 59 / 96
  • 60. Type System Type Check/Inference Algorithm References Axioms and Structural Rules x : A (VAR) c : A (CON ) where (c : A) ∈ σ. type : kind (typeF) M : A N : B M : A (WK) M : A M : B (CONV ) where A =β B. 60 / 96
  • 61. Type System Type Check/Inference Algorithm References Π-type F/I/E rules A : s1 x : A i . . . . B : s2 (x : A) → B : s2 (ΠF),i where (s1, s2) ∈    (type, type), (type, kind), (kind, kind)    . A : type x : A i . . . . M : B λx.M : (x : A) → B (ΠI ),i M : (x : A) → B N : A MN : B[N/x] (ΠE) 61 / 96
  • 62. Type System Type Check/Inference Algorithm References Σ-type F/I/E rules A : type x : A i . . . . B : type (x : A) × B : type (ΣF),i M : A N : B[M/x] (M, N) : (x : A) × B (ΣI ) M : (x : A) × B π1(M) : A (ΣE) M : (x : A) × B π2(M) : B[π1(M)/x] (ΣE) 62 / 96
  • 63. Type System Type Check/Inference Algorithm References Disjoint Union Type F/I/E rules A : type B : type A + B : type (+F) M : A ι1(M) : A + B (+I ) N : B ι2(N) : A + B (+I ) M : A + B P : (A + B) → type N1 : (x : A) → P (ι1(x)) N2 : (x : B) → P (ι2(x)) unpackP M (N1, N2) : P (M) (+E),i 63 / 96
  • 64. Type System Type Check/Inference Algorithm References Natural Number Type F/I/E rules N : type (NF) 0 : N (NI ) n : N s(n) : N (NI ) n : N P : N → type e : P (0) f : (k : N) → P (k) → P (s(k)) natrecP n (e, f) : P (n) (NE) 64 / 96
  • 65. Type System Type Check/Inference Algorithm References Enumeration Type F/I/E rules {a1, . . . , an} : type ({}F) ai : {a1, . . . , an} ({}I ) M : {a1, . . . , an} P : {a1, . . . , an} → type N1 : P (a1) . . . Nn : P (an) caseP M (N1, . . . , Nn) : P (M) ({}E) 65 / 96
  • 66. Type System Type Check/Inference Algorithm References Intensional Equality Type F/I/E rules A : type M : A N : A M =A N : type (=F) M : A reflA(M) : M =A M (=I ) E : M =A N P : (x : A) → (y : A) → (x =A y) → type R : (x : A) → P xx(reflA(x)) idpeelP E (R) : P MNE (=E) 66 / 96
  • 67. Type System Type Check/Inference Algorithm References @-rule A : type M : A B[M/x] : type x@A B : type (@) 67 / 96
  • 68. Type System Type Check/Inference Algorithm References Appendix II: Type Check/Inference Algorithm 68 / 96
  • 69. Type System Type Check/Inference Algorithm References Inferable terms (1/2) The collection of inferable terms (notation M↑ ) and the collection of checkable terms (notation M↓) are simultaneously defined by the following BNF notations, where v, v0 are values. M↑ ::= x variable | c constant symbol | type the type of types | (x : M↓) → M↓ dependent functional type | M↑ M↓ functional application | (x : M↓) × M↓ dependent sum type | πi(M↑ ) projections | M↓ + M↓ disjoint union types | unpack M↓ M↑ (M↓, M↓) unpack 69 / 96
  • 70. Type System Type Check/Inference Algorithm References Inferable terms (2/2) | ⊥ bottom type | top type | () unit | M↓ =M↓ M↓ Intensional Equality types | reflM↓ (M↓) reflexive | idpeel M↓ M↑ (M↓) idpeel | N natural number types | 0 zero | s(M↓) successor | natrec M↓ M↑ (M↓, M↓) mathematical induction | M↓ : M↓ annotated term | x@M↓ M↓ underspecified type 70 / 96
  • 71. Type System Type Check/Inference Algorithm References Checkable terms M↓ ::= M↑ inferable terms | λx.M↓ lambda abstraction | (M↓, M↓) pair | ιi(M↓) injections 71 / 96
  • 72. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Type inference of a UDTT is a transformation of a UDTT judgment to a set of DTT proof diagrams, recursively defined by the following set of rules. Definition (Inferable Terms: Structural Rules) JΓ, x : A, ∆ ` x : ?K = ( x : A0 . . . . A0 : type ∈ JΓ ` A : typeK ) JΓ ` c : ?K = c : A (CON ) σ ` c : A JΓ ` type : ?K = Γ ` type : kind (typeF) 72 / 96
  • 73. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Π-types) JΓ ` (x : A) → B : ?K =          Γ DA A0 : type Γ, x : A0 DB B0 : type (x : A0) → B0 : type (ΠF) DA ∈ JΓ ` A : typeK DB ∈ JΓ, x : A0 ` B : typeK          JΓ ` λx.M : (x : A) → BK =          Γ DA A0 : type Γ, x : A0 DM M0 : B0 λx.M0 : (x : A0) → B0 (ΠI ) DA ∈ JΓ ` A : typeK DM ∈ JΓ, x : A0 ` M : BK          JΓ ` MN : ?K =              Γ DM M0 : (x : A) → B Γ DN N0 : A M0N0 : B[N0/x] (ΠE) M0N0 : B0 (CONV ) DM ∈ JΓ ` M : ?K DN ∈ JΓ ` N : AK B[N0/x] β B0              73 / 96
  • 74. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Σ-types) s Γ ` x : A B : ? { =            Γ DA A0 : type Γ, x : A0 DB B0 : type x : A0 B0 : type (ΣF) DA ∈ JΓ ` A : typeK DB ∈ JΓ, x : A0 ` B : typeK            s Γ ` (M, N) : x : A B { =          Γ DM M0 : A0 Γ DN N0 : B0 (M0, N0) : x : A0 B0 (ΣI ) DM ∈ JΓ ` M : AK B[M0/x] β B0 DN ∈ JΓ ` N : B0K          JΓ ` π1(M) : ?K =              Γ DM M0 : x : A B π1(M0) : A (ΣE) DM ∈ JΓ ` M : ?K              JΓ ` π2(M) : ?K =                  Γ DM M0 : x : A B π2(M0) : B[π1M0/x] (ΣE) π2(M0) : B0 (CONV ) DM ∈ JΓ ` M : ?K B[π1M0/x] β B0                  74 / 96
  • 75. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Disjoint Union types) JΓ ` A + B : ?K =        Γ DA A0 : type Γ DB B0 : type A0 + B0 : type (+F) DA ∈ JΓ ` A : typeK DB ∈ JΓ ` B : typeK        JΓ ` ι1(M) : A + BK =        Γ DM M0 : A0 ι1(M0) : A0 + B (+I ) DM ∈ JΓ ` M : AK        JΓ ` ι2(N) : A + BK =        Γ DN N0 : B0 ι2(N0) : A + B0 (+I ) DN ∈ JΓ ` N : BK        q Γ ` unpackP L (M, N) : ? y =              Γ DL L0 : A + B Γ DP P 0 : (A + B) → type Γ DM M0 : (x : A) → P 0(ι1(x)) Γ DN N0 : (x : B) → P 0(ι2(x)) unpackP L0 (M0, N0) : P 0(L0) (+E),i unpackP B L0 (M0, N0) : PL (CONV ) DL ∈ JΓ ` L : ?K DP ∈ JΓ ` P : (A + B) → typeK P 0(L0) β PL P 0(ι1(x)) β PM P 0(ι2(x)) β PN DM ∈ JΓ ` M : (x : A) → PM K DN ∈ JΓ ` N : (x : B) → PN K                    75 / 96
  • 76. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Enumeration types) JΓ ` {a1, . . . , an} : ?K = {a1, . . . , an} : type ({}F) JΓ ` ai : ?K = ai : {a1, . . . , an} ({}I ) q Γ ` caseP M (N1, . . . , Nn) : ? y =              Γ DM M : {a1, . . . , an} Γ DP P : {a1, . . . , an} → type Γ DP1 N1 : P1 N1 : P (a1) (CONV ) . . . Γ DPn Nn : Pn Nn : P (an) (CONV ) caseP M (N1, . . . , Nn) : P (M) ({}E) caseP M (N1, . . . , Nn) : PM (CONV ) DM ∈ JΓ ` M : ?K DP ∈ JΓ ` P : {a1, . . . , an} → typeK P (a1) β P1 DP1 ∈ JΓ ` N1 : P1K . . . P (an) β Pn DPn ∈ JΓ ` Nn : PnK P (M) β PM                  76 / 96
  • 77. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Intensional Equality types) JΓ ` M =A N : ?K =        Γ DA A0 : type Γ DM M0 : A0 Γ DN N0 : A0 M0 =A0 N0 : type (=F) DA ∈ JΓ ` A : typeK DM ∈ JΓ ` M : A0K DN ∈ JΓ ` N : A0K        JΓ ` reflA(M) : ?K =        Γ DA A0 : type Γ DM M0 : A0 reflA0 (M0) : M0 =A0 M0 (=I ) DA ∈ JΓ ` A : typeK DM ∈ JΓ ` M : A0K        q Γ ` idpeelP E (R) : ? y =          Γ DE E0 : M =A N Γ DP P 0 : (x : A) → (y : A) → (x =A y) → type Γ DR R0 : (x : A) → P 0xx(reflA(x)) idpeelP 0 E0 (R0) : P 0MNE0 (=E) idpeelP 0 E0 (R0) : P 00 (CONV ) DE ∈ JΓ ` E : ?K DP ∈ JΓ ` P : (x : A) → (y : A) → (x =A y) → typeK DR ∈ JΓ ` R : (x : A) → P 0xx(reflA(x))K P MNE β P 00        77 / 96
  • 78. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Natural Number types) JΓ ` N : ?K = N : type (NF) JΓ ` 0 : ?K = 0 : N (NI ) JΓ ` s(n) : ?K =        Γ Dn n : N s(n) : N (NI ) Dn ∈ JΓ ` n : NK        q Γ ` natrecP n (e, f) : ? y =              Γ Dn n0 : N P : N → type e : P (0) f : (k : N) → P (k) → P (s(k)) natrecP n (e, f) : P (n) (NE) natrecP n (e, f) : Pn (CONV ) Dn ∈ JΓ ` n : NK P (n) β Pn 78 / 96
  • 79. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Underspecified types) s Γ ` x@A B : ? { =                      Γ DB B00 : type . . . . A0 : type ∈ JΓ ` A : typeK . . . . M : A0 ∈ JΓ ` ? : A0K B[M/x] β B0 DB ∈ JΓ ` B0 : typeK                      79 / 96
  • 80. Type System Type Check/Inference Algorithm References Type Checking/Inference Algorithm Definition (Checkable Terms) JΓ ` M : AK =    Γ DM M : A0 DM ∈ JΓ ` M : ?K A =β A0    where M inferable. 80 / 96
  • 81. Type System Type Check/Inference Algorithm References β-reduction Rules M β λx.v v[N/x] β v0 MN β v0 (β) M β (v1, v2) πiM β vi (β) x β x (VAR=) c β c (CON =) type β type (type=) kind β kind (kind=) 81 / 96
  • 82. Type System Type Check/Inference Algorithm References β-reduction Rules M β v N β v0 (x : M) → N β (x : v) → v0 (Π =) M β v λx.M β λx.v (λ=) M β v N β v0 x : M N β x : v v0 (Σ=) M β v N β v0 (M, N) β (v, v0) (PAIR=) π () β () (()=) β (=) ⊥ β ⊥ (⊥=) 82 / 96
  • 83. Type System Type Check/Inference Algorithm References Reference I Ahn, R. and H.-P. Kolb. (1990) “Discourse Representation meets Constructive Mathematics”, In: L. Kalman and L. Polos (eds.): Papers from the Second Symposium on Logic and Language. Akademiai Kiado. Asher, N. and Z. Luo. (2012) “Formalisation of coercions in lexical semantics”, In the Proceedings of Sinn und Bedeutung 17. pp.63–80. Beaver, D. I. (2001) Presupposition and Assertion in Dynamic Semantics, Studies in Logic, Language and Information. CSLI Publications FoLLI. 83 / 96
  • 84. Type System Type Check/Inference Algorithm References Reference II Bekki, D. (2014) “Representing Anaphora with Dependent Types”, In the Proceedings of N. Asher and S. V. Soloviev (eds.): Logical Aspects of Computational Linguistics (8th international conference, LACL2014, Toulouse, France, June 2014 Proceedings), LNCS 8535. pp.14–29, Springer, Heiderburg. Bekki, D. (2023) “A Proof-theoretic Analysis of Weak Crossover”, In: New Frontiers in Artificial Intelligence (JSAI-isAI 2021 Workshops, JURISIN, LENLS18, SCIDOCA, Kansei-AI, AI-BIZ, Yokohama, Japan, November 13-15, 2021, Revised Selected Papers), LNAI 13856. Springer, pp.228–241. 84 / 96
  • 85. Type System Type Check/Inference Algorithm References Reference III Bekki, D. and E. McCready. (2015) “CI via DTS”, In: New Frontiers in Artificial Intelligence (JSAI-isAI 2014 Workshops, LENLS, JURISIN, and GABA, Yokohama, Japan, November 23-24, 2014, Revised Selected Papers), Vol. LNAI 9067. Springer. Bekki, D. and K. Mineshima. (2017) “Context-Passing and Underspecification in Dependent Type Semantics”, In: S. Chatzikyriakidis and Z. Luo (eds.): Modern Perspectives in Type-Theoretical Semantics, Studies of Linguistics and Philosophy. Springer, pp.11–41. Bekki, D. and M. Sato. (2015) “Calculating Projections via Type Checking”, In the Proceedings of TYpe Theory and LExical Semantics (TYTLES), ESSLLI2015 workshop. 85 / 96
  • 86. Type System Type Check/Inference Algorithm References Reference IV Bekki, D., R. Tanaka, and Y. Takahashi. (2022) “Learning Knowledge with Neural DTS”, In the Proceedings of the 3rd Natural Logic Meets Machine Learning (NALOMA III). pp.17–25, Association of Computational Linguistics. Bekki, D., R. Tanaka, and Y. Takahashi. (2023) “Integrating Deep Neural Network with Dependent Type Semantics”, In: R. Loukanova, P. L. Lumsdaine, and R. Muskens (eds.): Logic and Algorithms in Computational Linguistics 2021 (LACompLing2021), Studies in Computational Intelligence 1081. Springer. 86 / 96
  • 87. Type System Type Check/Inference Algorithm References Reference V Chatzikyriakidis, S. (2014) “Adverbs in a Modern Type Theory”, In: N. Asher and S. V. Soloviev (eds.): Logical Aspect of Computational Linguistics, 8th International Conference, LACL2014, Toulouse, France, June 18-20, 2014 Proceedings. Springer. Cooper, R. (2005) “Records and Record Types in Semantic Theory”, Journal of Logic and Computation 15(2), pp.99–112. Daido, H. and D. Bekki. (2020) “Development of an automated theorem prover for the fragment of DTS”, In the Proceedings of the 17th International Workshop on Logic and Engineering of Natural Language Semantics (LENLS17). Dávila-Pérez, R. (1995) “Semantics and Parsing in Intuitionistic Categorial Grammar”, Thesis, University of Essex. Ph.D. thesis. 87 / 96
  • 88. Type System Type Check/Inference Algorithm References Reference VI Fox, C. (1994a) “Discourse Representation, Type Theory and Property Theory”, In the Proceedings of H. Bunt, R. Muskens, and G. Rentier (eds.): the International Workshop on Computational Semantics. pp.71–80. Fox, C. (1994b) “Existence Presuppositions and Category Mistakes”, Acta Linguistica Hungarica 42(3/4), pp.325–339. Funakura, H. (2022) “Answers, Exhaustivity, and Presupposition of wh-questions in Dependent Type Semantics”, In the Proceedings of Logic and Engineering of Natural Language Semantics 20 (LENLS20). pp.72–76. Geach, P. (1962) Reference and Generality: An Examination of Some Medieval and Modern Theories. Ithaca, New York, Cornell University Press. Geurts, B. (1999) Presuppositions and pronouns. Elsevier, Oxford. 88 / 96
  • 89. Type System Type Check/Inference Algorithm References Reference VII Groenendijk, J. and M. Stokhof. (1991) “Dynamic Predicate Logic”, Linguistics and Philosophy 14, pp.39–100. Kamp, H. (1981) “A Theory of Truth and Semantic Representation”, In: J. Groenendijk, T. M. Janssen, and M. Stokhof (eds.): Formal Methods in the Study of Language. Amsterdam, Mathematical Centre Tract 135. Kamp, H. and U. Reyle. (1993) From Discourse to Logic. Kluwer Academic Publishers. Kinoshita, E., K. Mineshima, and D. Bekki. (2017) “An Analysis of Selectional Restrictions with Dependent Type Semantics”, In: S. Kurahashi, Y. Ohta, S. Arai, K. Satoh, and D. Bekki (eds.): New Frontiers in Artificial Intelligence. JSAI-isAI 2016, Lecture Notes in Computer Science, vol 10247. Springer, pp.19–32. 89 / 96
  • 90. Type System Type Check/Inference Algorithm References Reference VIII Kinoshita, E., K. Mineshima, and D. Bekki. (2018) “Coercion as Proof Search in Dependent Type Semantics”, In: C. Fabricius-Hansen, B. Behrens, A. Pitz, and H. Petter Helland (eds.): Possessives in L2 and translation: basic principles and empirical findings, Oslo Studies in Language 10, No 2. pp.1–20. Krahmer, E. and P. Piwek. (1999) “Presupposition Projection as Proof Construction”, In: H. Bunt and R. Muskens (eds.): Computing Meanings: Current Issues in Computational Semantics, Studies in Linguistics Philosophy Series. Dordrecht, Kluwer Academic Publishers. Krifka, M. (1996) “Parametrized Sum Individuals for Plural Anaphora”, Linguistics and Philosophy 19, pp.555–598. Levinson, S. (1983) Pragmatics. Cambridge, Cambridge University Press. 90 / 96
  • 91. Type System Type Check/Inference Algorithm References Reference IX Luo, Z. (1997) “Coercive subtyping in type theory”, In: D. van Dalen and M. Bezem (eds.): CSL 1996. LNCS, vol. 1258. Heidelberg, Springer. Luo, Z. (1999) “Coercive subtyping”, Journal of Logic and Computation 9(1), pp.105–130. Luo, Z. (2010) “Type-theoretical semantics with coercive subtyping”, In the Proceedings of Semantics and Linguistic Theory 20 (SALT 20). Luo, Z. (2012) “Formal Semantics in Modern Type Theories with Coercive Subtyping”, Linguistics and Philosophy 35(6). Martin, S. and C. J. Pollard. (2014) “A dynamic categorial grammar”, In the Proceedings of Formal Grammar 19, LNCS 8612. 91 / 96
  • 92. Type System Type Check/Inference Algorithm References Reference X Matsuoka, D., D. Bekki, and H. Yanaka. (2023) “Appositive Projection as Implicit Context Extension in Dependent Type Semantics”, In the Proceedings of the 20th International Workshop on Logic and Engineering of Natural Language Semantics (LENLS20). pp.82–87. Piwek, P. and E. Krahmer. (2000) “Presuppositions in Context: Constructing Bridges”, In: P. Bonzon, M. Cavalcanti, and R. Nossum (eds.): Formal Aspects of Context, Applied Logic Series. Dordrecht, Kluwer Academic Publishers. Ranta, A. (1994) Type-Theoretical Grammar. Oxford University Press. Soames, S. (1989) “Presupposition”, In: D. Gabbay and F. Guenthner (eds.): Handbook of Philosophical Logic, Vol. 4. Dordrecht, Reidel, pp.553–616. 92 / 96
  • 93. Type System Type Check/Inference Algorithm References Reference XI Sudo, Y. (2012) “On the Semantics of Phi Features on Pronouns”, Thesis, MIT. Doctoral dissertation. Sundholm, G. (1986) “Proof theory and meaning”, In: D. Gabbay and F. Guenthner (eds.): Handbook of Philosophical Logic, Vol. III. Reidel, Kluwer, pp.471–506. Tanaka, R. (2014) “A Proof-Theoretic Approach to Generalized Quantifiers in Dependent Type Semantics”, In the Proceedings of R. de Haan (ed.): the ESSLLI 2014 Student Session, 26th European Summer School in Logic, Language and Information. pp.140–151. Tanaka, R. (2021) “Natural Language Quantification and Dependent Types”, Thesis, Ochanomizu University. Doctoral Dissertation. 93 / 96
  • 94. Type System Type Check/Inference Algorithm References Reference XII Tanaka, R., K. Mineshima, and D. Bekki. (2015) “Factivity and Presupposition in Dependent Type Semantics”, In the Proceedings of TYpe Theory and LExical Semantics (TYTLES), ESSLLI2015 workshop. Tanaka, R., K. Mineshima, and D. Bekki. (2017) “On the Interpretation of Dependent Plural Anaphora in a Dependently-Typed Setting”, In: S. Kurahashi, Y. Ohta, S. Arai, K. Satoh, and D. Bekki (eds.): New Frontiers in Artificial Intelligence. JSAI-isAI 2016, Lecture Notes in Computer Science, vol 10247. Springer, pp.123–137. Tanaka, R., K. Mineshima, and D. Bekki. (2018) “Paychecks, presupposition, and dependent types”, In the Proceedings of the Fifth Workshop on Natural Language and Computer Science (NLCS2018), Preprint no.215. Oxford University. 94 / 96
  • 95. Type System Type Check/Inference Algorithm References Reference XIII van den Berg, M. (1996) “Some aspects of the internal structure of discourse – the dynamics of nominal anaphora –”, Thesis, University of Amsterdam. van der Sandt, R. (1992) “Presupposition projection as anaphora resolution”, Journal of Semantics 9, pp.333–377. Watanabe, K., K. Mineshima, and D. Bekki. (2019) “Questions in Dependent Type Semantics”, In the Proceedings of Proceedings of the Sixth Workshop on Natural Language and Computer Science (NLCS’19). pp.23–33. Watanabe, N., E. McCready, and D. Bekki. (2014) “Japanese Honorification: Compositionality and Expressivity”, In the Proceedings of S. Kawahara and M. Igarashi (eds.): FAJL 7: Formal Approaches to Japanese Linguistics, the MIT Working Papers in Linguistics 73. pp.265–276. 95 / 96
  • 96. Type System Type Check/Inference Algorithm References Reference XIV Yana, Y., D. Bekki, and K. Mineshima. (2019) “Variable Handling and Compositionality: Comparing DRT and DTS”, Journal of Logic, Language and Information 28(2), pp.261–285. Yana, Y., K. Mineshima, and D. Bekki. (2021) “The proviso problem from a proof-theoretic perspective”, In the Proceedings of Logical Aspects of Computational Linguistics (LACL) 2021. pp.159–176. 96 / 96