SlideShare a Scribd company logo


DES

 Description: Feistel, S-box
 Exhaustive Search, DC and LC
 Modes of Operation



AES

 Description: SPN, Branch number
 Security and Efficiency
 Modes of Operation



Other Ciphers

 Linear layer
 Confusion layer

1
DES
(Data Encryption Standard)

http://en.wikipedia.org/wiki/Data_Encryption_Standard

2


Confusion:
The ciphertext statistics should depend on the plaintext
statistics in a manner too complicated to be exploited by
the enemy cryptanalyst



Diffusion:
Each digit of the plaintext should influence many digits of
the ciphertext, and/or
Each digit of the secret key should influence many digits
of the the ciphertext.



Block cipher:
◦ A repetition of confusion(Substitution) and
diffusion(Permutation)
◦ Iteration: Weak  Strong
Claude Shannon
3
4


Definition:

Let Bn denote the set of bit strings of length n.
A block cipher is an encryption algorithm E such that EK is a
permutation of Bn for each key K



Characteristics
◦
◦
◦
◦
◦
◦

Based on Shannon’s Theorem(1949)
Same P => Same C
{|P| = |C|} ≥ 64 bit, |P| ≠ |K| ≥ 56 bit
Memoryless configuration
Operate as stream cipher depending on mode
Shortcut cryptanalysis (DC, LC etc) in 90’s

* DC: Differential Cryptanalysis, LC: Linear Cryptanalysis

5










Provide a high level of security
Completely specify and easy to understand
Security must depend on hidden key, not algorithm
Available to all users
Adaptable for use in diverse applications
Economically implementable in electronic device
Efficient to use
Able to be validated
Exportable
* Federal Register, May 15, 1973

6
Based on Lucifer (1972)
 Developed by IBM and intervened by NSA
 Adopted Federal Standard by NIST, revised
every 5 years (~’98),
 64bit block cipher, 56bit key
 16 Round, Nonlinearity : S-box
 Cryptanalysis like DC, LC, etc. after 1992


* DC:Differential Cryptanalysis, LC : Linear Cryptanalysis

7




If we apply its operation 2 times, it returns to the
original value, e.g., f(f(x)) = x.
Type of f-1(x) = f(x)

x1

x2

x1

(d)

(c)

(b)

(a)

x2

x1

x2

⊕
y1

y2

y1

y2

y1=x1⊕ x2

x1

⊕
y2 = x2

x2
g

y1=x1⊕ g(x2) y2 = x2
or x1⊕ g(x2,k)

8
K
P

64

PC-1

56

IP
R0(32)
PC-2

L0(32)

Rot

Rot

f
16 Round
PC-2
R16

L16

FP
64

Round function

Key Scheduling

C

9
* Decryption is done by executing
round key in the reverse order.
10
FP= IP-1

IP
58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

2
4
6
8
1
3
5
7

40
39
38
37
36
35
34
33

8 48 16 56 24 64 32
7 47 15 55 23 63 31
6 46 14 54 22 62 30
5 45 13 53 21 61 29
4 44 12 52 20 60 28
3 43 11 51 19 59 27
2 42 10 50 18 58 26
1 41 9 49 17 57 25

cf.) The 58th bit of x is the first bit of
IP(x)

IP & FP have no cryptanalytic significance.
11
12
13





8 S-boxes (6 -> 4 bits)
each row : permutation of 0-15
4 rows : choose by MSB & LSB of input
some known design criteria
◦
◦
◦
◦
◦
◦

not linear (affine)
Any one bit of the inputs changes at least two output bits
S(x) and S(x ⊕ 001100) differs at least 2bits
S(x) ≠ S(x ⊕ 11ef00) for any ef={00.01.10.11}
Resistance against DC etc.
The actual design principles have never been revealed (U.S.
classified information)

14


Input values mapping order

L R
0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 1
1 0
1 1

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S1(1 0111 0)=11=(1011)2

15


S1-box
14

4 13 1

2 15 11 8

0 15 7 4 14
4 1 14 8 13
15 12 8 2 4


3 10

6 12 5 9 0 7

2 13 1 10 6 12 11 9 5 3 8
6 2 11 15 12 9 7 3 10 5 0
9 1 7 5 11 3 14 10 0 6 13

S2-box

15 1 8 14 6 11 3 4 9 7 2 13 12 0
3 13 4 7 15 2 8 14 12 0 1 10 6 9
0 14 7 11 10 4 13 1 5 8 12 6 9 3
13 8 10 1 3 15 4 2 11 6 7 12 0 5

5 10
11 5
2 15
14 9

e.g.) S2(010010)= ?
16


S3-box

10 0 9
13 7 0
13 6 4
1 10 13



14
9
9
0

6 3
3 4
8 15
6 9

15 5
6 10
3 0
8 7

1 13 12 7 11 4 2 8
2 8 5 14 12 11 15 1
11 1 2 12 5 10 14 7
4 15 14 3 11 5 2 12

S4-box
7
13
10
3

13
8
6
15

14
11
9
0

3 0
5 6
0 12
6 10

6 9
15 0
11 7
1 13

10
3
13
8

1
4
15
9

2
7
1
4

8 5 11 12 4 15
2 12 1 10 14 9
3 14 5 2 8 4
5 11 12 7 2 14

S4-box is most linear than others.!!!
17
 Short

key size : 112 -> 56 bits by NSA
 Classified design criteria
 Revision of standard every 5 yrs after
1977 by NIST
 No more standard

18
(P,C) dependency with fixed Key : after 5 round
 (K,C) dependency with fixed plaintext : after 5
round
 Avalanche effect
 Cyclic Test : Random function
 Algebraic structure : Not a group


i.e., E(K1, E(K2,P)) ≠ E(K3,P)

19


Complementary Prop.

If C= E(K,P), C = E(K, P)



Weak Key : 4 keys
E(K, E(K,P))=P



Semi-weak Keys : 12 keys (6 pairs)

E(K1, E(K2,P))=P


Key Exhaustive Search : 255

20


RSA Data Security Inc’s protest against US’s
export control(‘97)
◦ $10,000(‘97) award
◦ Key search machine by Internet Loveland’s Rocker
Verser
◦ 60.1 Billion/1 day key search, succeeded in 18
quadrillion operations and 96 days
25% of Total 72 quadrillion (1q=1015 =0.1 kyung)
90MHz, 16MB Memory Pentium(700 Million/sec)

◦ http://www.rsa.com/des/

21


Distributed.Net + EFF
◦ 100,000 PC on Network
◦ 56hr



EFF(Electronic Frontier
Foundation)
◦ http://www.eff.org/DEScrac
ker
◦ Specific tools
◦ 22hr 15min
◦ 250,000$

P. Kocher
22
Cost-Optimized Parallel Code Breaker Machine
by Univ. of Bochum, Germany and Kiel
 Commercially available 120 FPGA’s of type
XILINX Spartan3-1000 run in parallel
 10,000$ of ¼ of EFF project


23


FEAL, GOST, IDEA, LOKI, SKIPJACK, MISTY,
SEED



TEA (Tiny Encryption Algorithm) for RFID/USN,
XTEA, XXTEA



ARIA, Serpent, Baseking, BATON, BEAR&LION,
C2, Camellia, CAST-128,256,
CIPHERUNICORN,CMEA, Cobra, Coconut98,
Crypton, DEAL, E2, FROG, G-DES, Hasty Pudding
Cipher, Hierocrypt,MUITL2, New Data Seal,
SAFER-64,128, SHACAL, Square, Xenon, etc….

24
Algorithm

Year

Country

Pt/Ct

Key

Round

DES

1977

USA

64

56

16

FEAL

1987

Japan

64

64

4,8,16,32

GOST

1989

Russia

64

256

32

IDEA

1990

Swiss

64

128

8

LOKI

1991

Australia

64

64

16

SKIPJACK

1990

USA

64

80

32

MISTY

1996

Japan

64

128

>8

SEED

1998

Korea

128

128

16

25
AES (Rijndael)
Joan Daemen and Vincent Rijmen, “The Design of
Rijndael, AES – The Advanced Encryption Standard”,
Springer, 2002, ISBN 3-540-42580-2
FIPS Pub 197, Advanced Encryption Standard (AES),
December 04, 2001
Rijndael : variable, AES : fixed
Vincent
26
 Block

cipher

◦ 128-bit blocks
◦ 128/192/256-bit keys

 Worldwide-royalty

free
 More secure than Triple DES
 More efficient than Triple DES

27
◦ Jan. 2, 1997 : Announcement of intent to develop AES and
request for comments
◦ Sep. 12, 1997 : Formal call for candidate algorithms
◦ Aug. 20-22, 1998 : First AES Candidate Conference and
beginning of Round 1 evaluation (15 algorithms), Rome, Italy
◦ Mar. 22-23, 1999 : Second AES Candidate Conference, NY,
USA
◦ Sep. 2000 : Final AES selection (Rijndael !)

Jan. 1997
Call for
algorithms

Aug. 1998
AES1
15 algorithms

Mar. 1999
AES2
5 algorithms selected

Apr. 2000
AES3
Announce winner
in Sep, 2000

28


15 algorithms are proposed at AES1 conference

29


After AES2 conference, NIST selected the following 5
algorithms as the round 2 candidate algorithm.
Cipher

Submitter

Structure

Nonlinear
Component

MARS

IBM

Feistel structure

Sbox
DD-Rotation

RC6

RSA Lab.

Feistel structure

Rotation

Rijndael

Daemen, Rijmen

SPN structure

Sbox

Serpent

Anderson, Biham,
Knudsen

SPN structure

Sbox

Twofish

Schneier et. al

Feistel structure

Sbox
30
Rijndael
10 (128)
12 (192)
14 (256)

Serpent(32)

Twofish(16)

SPN

SPN

Feistel

Mem.
Bytes

Ops

Amp. Boomerang

265

270

2229

16M, 5C
16M, 5C

Diff. M-i-M
Amp. Boomerang

250
269

2197
273

2247
2197

Stat. Disting.

2118

2112

2122

12
15 (256)

Stat. Disting.
Stat. Disting.

294
2119

242
2138

2119
2215

6

Feistel

Texts

Truncated Diff.

232

7*232

272

7
8 (256)
9 (256)

Truncated Diff.
Truncated Diff.
Related Key

2128~ 2119
2128~ 2119
277

261
2101
NA

2120
2204
2224

8 (192,256)

RC6(20)

Feistel

Type of Attack

14

MARS
16 Core (C)
16 Mixing (M)

Rounds (Key
size)
11C

Alg. (Round) Structure

Amp. Boomerang

2113

2119

2179

6 (256)
6
7 (256)
8 (192,256)
9 (256)

Meet-in-Middle
Differential
Differential
Boomerang
Amp. Boomerang

512
271
241
2122
2110

2246
275
2126
2133
2212

2247
2103
2248
2163
2252

6 (256)

Impossible Diff.

NA

NA

2256

31
Proposed by Joan Daemen, Vincent Rijmen(Belgium)
Design choices
– Square type
– Three distinct invertible uniform transformations(Layers)
Linear mixing layer : guarantee high diffusion
Non-linear layer : parallel application of S-boxes
Key addition layer : XOR the round key to the intermediate state

– Initial key addition, final key addition

Representation of state and key
–
–
–
–

Rectangular array of bytes with 4 rows (square type)
Nb : number of column of the state (4~8)
Nk : number of column of the cipher key (4~8)
Nb is independent from Nk

32
State (Nb=6)

Key (Nk=4)

Number of rounds (Nr)
33







Block size: 128
Key size: 128/192/256 bit

44 byte
array

Component Functions
Bit-wise key addition
◦ ByteSubstitution(BS): S-box
◦ ShiftRow(SR): CircularShift Byte-wise substitution(BS)
◦ MixColumn(MC):
Shift-Low(SR)
Linear(Branch number: 5)
Mix-Column(MC)
◦ AddRoundKey(ARK):
Bit-wise key addition
Omit MC in the last round.
BS, SR, ARK

Input

Input whitening

Round
transformation

Output
transformation

Output

34


Substitution-Permutation Network (SPN)
◦ (Invertible) Nonlinear Layer: Confusion
◦ (Invertible) Linear Layer: Diffusion



Branch Number
◦
◦
◦
◦
◦

Measure Diffusion Power of Linear Layer
Let F be a linear transformation on n words.
W(a): the number of nonzero words in a.
λ(F) = mina≠0 {W(a) + W(F(a))}
Rijndael: branch number =5

35


K-secure

◦ No shortcut attacks key-recover attack faster than keyexhaustive search
◦ No symmetry property such as complementary in DES
◦ No non-negligible classes of weak key as in IDEA
◦ No Related-key attacks


Hermetic

◦ No weakness found for the majority of block ciphers with
same block and key length



Rijndael is k-secure and hermetic

36
Mode of Operations

37
ECB (Electronic CodeBook) mode
C

P

n

n

K

K

E

IF Ci = Cj,
DK(Ci) = DK(Cj)

D

n

n
C

P

i) Encryption

ii) Decryption

38


CBC (Cipher Block Chaining)
P1

P2

Pl

IV
K

E

K

E

K

E

C1

IV

C2
C2

Ci = EK(Pi  Ci-1)

Cl

C1
K

IV : Initialization Vector

Cl

K

D

P1

K

D

P2

Pi = DK(Ci)  Ci-1
- 2 block Error Prog.
- self-sync
- If |Pl|  |P|,
Padding req’d

D

Pl
39
m-bit OFB (Output FeedBack)
IV

IV
Ci = Pi  O(EK)
Pi = Ci  O(EK)

K

E

Pi

m-bit

Ci
I) Encryption

m-bit

E

K

Ci

- No Error Prog.
- Req’d external sync
- Stream cipher
Pi - EK or DK

II) Decryption

40
m-bit CFB (Cipher FeedBack)
IV

K

IV

E

Pi

Ci
I) Encryption

m-bit

m-bit

Ci = Pi  EK(Ci-1)
Pi = Ci  EK(Ci-1)
E

K

- Error prog. till an error
disappears in the buffer
- self-sync
- EK or DK

Pi

Ci
II) Decryption

41


Counter mode
ctr

K

E

K

E

K

E

Pm-1

P2

P1

ctr+m-1

ctr+1

C2

Cm-1

ctr+1

C

Ci = Pi  EK(Ti)
Pi = Ci  EK(Ti)
Ti = ctr+i -1 mod 2m
|P|, |ctr|= m,
Parallel computation

ctr+m-1

1

ctr

K

E

K

E

C2

C1
P1

K

E

Cm-1
P2

Pm-1
42
CCM mode (Counter with CBC-MAC mode)
 Ctr + CBC
 Authenticated encryption by producing a MAC as
a part of the encryption process


43


Use of mode

◦ ECB : key management, useless for file encryption
◦ CBC : File encryption, useful for MAC
◦ m-bit CFB : self-sync, impossible to use channel with
low BER
◦ m-bit OFB : external-sync. m= 1, 8 or n
◦ Ctr : secret ctr, parallel computation
◦ CCM : authenticated encryption
◦ Performance Degradation/ Cost Tradeoff

44
Differential Cryptanalysis

45


Introduction
◦
◦
◦
◦
◦

Biham and Shamir : CR90, CR92
Efficient than Key Exhaustive Search
Chosen Plaintext Attack
O(Breaking DES16) ~ 247

Utilize the probabilistic distribution between input XOR and
output XOR values Iteratively
◦ Stimulate to announce hidden criteria of DES [Cop92]
◦ Apply to other DES-like Ciphers
* E.Biham, A. Shamir,”Differential Cryptanalysis of the Data Encryption Standard”, SpringerVerlag, 1993

46
Discard linear components(IP, FP)
 Properties of XOR (X’ = X ⊕ X* )


◦ {E,P,IP} : (P(X))’=P(X) ⊕ P(X*)=P(X’)
◦ XOR : (X ⊕ Y)’=(X ⊕ Y) ⊕ (X* ⊕ Y*)=X’ ⊕ Y’
◦ Mixing key : (X ⊕ K)’=(X ⊕ K) ⊕ (X* ⊕ K)=X’

◦ Differences(=xor) are linear in linear operation and in
particular the result is key independent.

47
X

X*

X’

Si-box

XDT



Si-box

Y’

Y

Y*

X’ = {0,1,…63}, Y’= {0,1,…15}
 For a given S-box, pre-compute the number of count of X’ and


Y’ in a table
* % of entry in DES S-boxes : 75 ~ 80%
48
49


2-round characteristic in S1 box (0Cx --> Ex
with 14/64)
(00 80 82 00 60 00 00 00x)
 A’=00808200x

=P(E0000000x)



B’=0x

F

F

a’=60000000x

b’=0x

p=14/64

p=1

(60 00 00 00 00 00 00 00x)
0110 0C=001100 E=1110
50
(1) Choose suitable Plaintext (Pt) XOR.
(2) Get 2 Pts for a chosen Pt and obtain the
corresponding Ct by encryption
(3) From Pt XOR and pair of Ct, get the expected
output XOR for the S-boxes of final round.
(4) Count the maximum potential key at the final round
using the estimated key
(5) Right key is a subkey of having large number of
pairs of expected output XOR

51
Self-concatenating probability
 Best iterative char. of DES


(19 60 00 00 00 00 00 00x)




A’=0x

B’=0x

F

F

a’=0x

b’=19 60 00 00x
E(b)=03 32 2C
00 00 00 00 00x

p1=1

p2 =14 x 8 x 10 / 643
= 1/234

(00 00 00 00 19 60 00 00x)

52
Linear Cryptanalysis

53


Introduction
◦ Matsui : EC931, CR942
◦ Known Plaintext Attack
◦ O(Breaking DES16) ~ 243
 12 HP W/S, 50-day operation

◦ Utilize the probabilistic distribution between input
linear sum and output linear sum values Iteratively
◦ Duality to DC : XOR branch vs.three-forked branch
◦ Apply to other DES-like cryptosytems
1. M.Matsui,”Linear Cryptanalysis Method for DES Cipher”, Proc. Of Eurocrypt’93,LNCS765, pp.386-397
2. M.Matsui,”The First Experimental Cryptanalysis of the Data Encryption Standard”, Proc. Of Crypto’94,LNCS839, pp.1-11 .

54
LC

DC
X i-1



Y i

X i

Fi

Ki

Xi

X i-1 Yi

Y i


Xi

Y i

Y i-1
Y i

Fi

X i

Ki

Yi-1Xi

XOR branch after f-ft. i.e.,
DC goes downstream through f-ft.
Xi = Xi-2  Yi-1 (3  i  n)
with {i=1}n pi

3-forked branch before f-ft. i.e.,
LC goes upstream through f-ft.
 Yi =  Yi-2   Xi-1 (3  i  n)
with 2n-1{i=1}n |pi -1/2|

Xi : Xi’s Differential value

 Xi-1 : Xi-1’s Masking value

55
(Goal) : Find linear approximation
P[i1,i2,…,ia] ⊕ C[j1,j2,…,jb]=K[k1,k2,…,kc]
with significant prob. p (≠ ½)
where A[i,j,…,k]=A[i] ⊕ A[j] ⊕ … ⊕ A[k]

(Algorithm)MLE(Maximum Likelihood Estimation)
(Step 1) For given P and C, compute X=P[i1,i2,…,ia] ⊕ C[j1,j2,…,jb],
let N = # of Pt given,
(Step 2) if |X=0| > N/2 K[k1,k2,…,Kc]=0 else 1.
if |X=0| < N/2 K[k1,k2,…,kc]=1 else 0.

56


For a S-box Sa,(a=1,2,…,8) of DES

NSa(α,β)= #{x | 0 ≤ x < 64, parity(x•α) = parity(S(x)•β)}
1≤ α ≤ 63 , 1 ≤ β ≤15, • : dot product (bitwise AND)


Ex) NS5(16,15) =12
◦ The 5-th input bit at S5-box is equal to the linear sum of 4 output
bits with probability 12/64.
◦ X[15] ⊕ F(X,K)[7,18,24,29]=K[22] with 0.19
◦ X[15] ⊕ F(X,K)[7,18,24,29]=K[22] ⊕ 1 with 1-0.19=0.81
(Note) least significant at the right and index 0 at the least significant bit (Little endian)

57
58
P

PH

PL
[22]



[7,18,24,29]

[15]

F1

K1 X2[7,18,24,29] PH[7,18,24,29] 
PL[15] = K1[22] ---------- (1)

X1

p1=12/64
K2



F2

X2
[22]


CH

[7,18,24,29]

F3
C

[15]

K3 X2[7,18,24,29] CH[7,18,24,29] 
X3

CL[15] = K3[22] ---------- (2)

p3=12/64

CL

(1)  (2) => X2[7,18,24,29] CH[7,18,24,29] CL[15]  X2[7,18,24,29]
PH[7,18,24,29] PL[15] = K1[22]  K3[22] holding prob. = (p1 * p3 ) + (1 - p1) *(1-p3)
* Discard IP and FP like DC

59


If independent prob. value, Xi ‘s ( 1≤ i ≤ n )
have prob pi to value 0, (1-pi) to value 1,
p
= {prob(X1⊕ X2⊕ … ⊕Xn ) = 0} is
p = 2n-1Πi=1n(pi - 1/2) +1/2.



The number of known pt req’d for LC with
success prob. 97.7% is |p - 1/2|-2

60
 Key

size expansion

◦ Double Encryption
ek:E2(K2,E1(K1,P)), dk:D1(K1,D2(K2,C))
Meet-in-the-middle attack
No effectiveness

◦ Triple Encryption
ek:E(K1,D(K2,E(K1,P))), dk:D(K1,E(K2,D(K1,C)))
ek:E(K1,D(K2,E(K3,P))), dk:D(K3,E(K2,D(K1,C)))
112 or 168 bits

61
Side Channel Attack

62


Traditional Cryptographic Model vs. Side Channel
Power Consumption / Timing / EM Emissions / Acoustic

Attacker
C=E(P,Ke)
P

E()
Ke
Key

P=D(C,Kd)
C
Insecure
channel

D()

D

Kd

Secure channel

Radiation / Temperature / Power Supply / Clock Rate, etc.

63
☆

J. DAEMEN AND V. RIJMEN. The Design of Rijndael.AES - The Advanced
Encryption Standard. Springer, 2002.

배성호

1

★

M. E. HELLMAN. A cryptanalytic time-memory trade-off. IEEE Transactions
of Information Theory, 26 (1980), 401-406.

임준현

2

☆

E. BIHAM AND A. SHAMIR. Differential cryptanalysis of the full 16-round
DES. LNCS 740 (1993), 494-502. (CRYPTO '92)

장래영

3

☆

M. BELLARE AND P. ROGAWAY. Optimal asymmetric encryption. Lecture Notes
in Computer Science, 950 (1995), 92-111. (EUROCRYPT '94)

조준희

4

황대성

5

남궁호

6

장래영

7

☆
★

☆

S. GOLDWASSER AND S. MICALI. Probabilistic encryption. Journal of
Computer and Systems Science, 28 (1984), 270-299.
J. H. Moore. Protocol failures in cryptosystems. In Contemporary
Cryptology, The Science of Information Integrity, pages 541-558. IEEE
Press, 1992.
M. BELLARE, J. KILIAN AND P. ROGAWAY. The security of the cipher block
chaining message authentication code. Journal of Computer and System
Sciences, 61 (2000), 362-399.

★

W. DIFFIE AND M. E. HELLMAN. New directions in cryptography. IEEE
Transactions on Information Theory, 22 (1976), 644-654.

조준희

8

★

M. MATSUI. Linear cryptanalysis method for DES cipher. LNCS 765 (1994),
386-397. (EUROCRYPT '93)

배성호

9

☆

M. BELLARE AND P. ROGAWAY. Random oracles are practical: a paradigm for
designing efficient protocols. In First ACM Conference on Computer and
Communications Security, pages 62-73. ACM Press, 1993.

김영삼

PT #1

10

PT#2

64
☆

☆
☆
★
☆
☆☆
☆☆
★
☆☆
★

N. T. COURTOIS AND J. PIEPRZYK. Cryptanalysis of block ciphers with
overdefined systems of equations. LNCS 2501 (2002), 267-287. (ASIACRYPT
2002)
S. C. POHLIG AND M. E. HELLMAN. An improved algorithm for computing
logarithms ove GF(p) and its cryptographic significance. IEEE
Transations on Information Theory, 24 (1978), 106-110.
M. J. WIENER. Cryptanalysis of short RSA secret exponents. IEEE
Transations on Inforamtion Theory, 36 (1990), 553-558.
T. ELGAMAL. Apublic key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31 (1985),
469-472.
D. CHAUM AND H. VAN ANTWERPEN. Undeniable signature. LNCS 435 (1990),
212-216. (CRYPTO '89)
P. BEAUCHEMIN AND G. BRASSARD, C. CREPEAU, C. GOUTIER and C. POMERANCE.
The generation of random numbers that are probably prime. Journal of
Cryptology, 1 (1988), 53-64.
M. BELLARE AND P. ROGAWAY. The exact security of digital signatures: how
to sign with RSA and Rabin. LNCS, 1070(1996), 399-416. (EUROCRYPT '96)
A. FIAT AND A. SHAMIR. How to prove yourself: practical solutions to
identification and signature problems. LNCS 263 (1987), 186-194. (CRYPTO
'86)
M. BELLARE. Practice-oriented provable-security. In Lectures on Data
Security, pages 1-15. Springer, 1999.
A. FIAT AND M. NAOR. Broadcast encryption. LNCS 773 (1994), 480-491.
(CRYPTO '93)

조준희

11

황대성

12

남궁호

13

장래영

14

신지강

15

남궁호

16

임준현

17

김영삼

18

신지강

19

황대성

20

PT#3

PT#4

65
☆

M. BURMESTER AND Y. DESMEDT. A secure and efficient conference key
distribution system. LNCS 250 (1994), 275-286 (EUROCRYPT '94)

김영삼

21

★

U. FEIGE, A. FIAT AND A. SHAMIR. Zero-knolwedge proofs of identity.
Journal of Cyrptology, 1 (1988), 77-94

신지강

22

☆

C. P. SHNORR. Efficient signature generation by smart cards. Journal of
Cryptology, 4 (1991), 161-174.

임준현

23

☆

D. E. DENNING AND G. M. SACCO. Timestamps in key distribution protocols.
Communications of the ACM 24 (1981), 533-536.

배성호

24

PT#5

★ : 필수 , ☆: 난이도 1, ☆☆: 난이도 2( 가산점 )

66

More Related Content

PDF
Next generation block ciphers
PDF
Software Security
PDF
Kalyna block cipher presentation in English
PPT
Ch03 block-cipher-and-data-encryption-standard
PDF
symmetric key encryption algorithms
PDF
Computer Security Lecture 4: Block Ciphers and the Data Encryption Standard
PDF
CRYPTOGRAPHY AND NETWORK SECURITY
PPT
Jaimin chp-8 - network security-new -use this - 2011 batch
Next generation block ciphers
Software Security
Kalyna block cipher presentation in English
Ch03 block-cipher-and-data-encryption-standard
symmetric key encryption algorithms
Computer Security Lecture 4: Block Ciphers and the Data Encryption Standard
CRYPTOGRAPHY AND NETWORK SECURITY
Jaimin chp-8 - network security-new -use this - 2011 batch

What's hot (20)

PPT
Stream ciphers presentation
PDF
Chapter 3-block-cipher-des1
PPT
Ch03 Ch06 Des And Others
PPTX
Secured algorithm for gsm encryption & decryption
PPTX
Symmetric encryption
PPT
cryptography and network security chap 3
PDF
Block Ciphers Modes of Operation
PDF
A Tutorial on Linear and Differential Cryptanalysis by Howard M. Heys
PPTX
ASIC Implementation of Triple Data Encryption Algorithm (3DES)
PPT
PPTX
Cryptography
PPTX
PDF
Как мы охотимся на гонки (data races) или «найди багу до того, как она нашла ...
PDF
DES Simplified
PDF
Network security R.Rathna Deepa 2nd M.sc.,Computer Science
PDF
CNIT 141: 4. Block Ciphers
PDF
2. Stream Ciphers
PPT
Chapter 3: Block Ciphers and the Data Encryption Standard
PDF
Block Ciphers and the Data Encryption Standard
Stream ciphers presentation
Chapter 3-block-cipher-des1
Ch03 Ch06 Des And Others
Secured algorithm for gsm encryption & decryption
Symmetric encryption
cryptography and network security chap 3
Block Ciphers Modes of Operation
A Tutorial on Linear and Differential Cryptanalysis by Howard M. Heys
ASIC Implementation of Triple Data Encryption Algorithm (3DES)
Cryptography
Как мы охотимся на гонки (data races) или «найди багу до того, как она нашла ...
DES Simplified
Network security R.Rathna Deepa 2nd M.sc.,Computer Science
CNIT 141: 4. Block Ciphers
2. Stream Ciphers
Chapter 3: Block Ciphers and the Data Encryption Standard
Block Ciphers and the Data Encryption Standard
Ad

Similar to DES Block Cipher Hao Qi (20)

PPTX
Lecture 05 - 04 Nov 21.pptx
PPTX
Cryptographic algorithms
PPTX
Cryptographic algorithms
PDF
CS6701 CRYPTOGRAPHY AND NETWORK SECURITY
PPTX
Overview on Cryptography and Network Security
PPT
Cryptography and Network Security William Stallings Lawrie Brown
PPTX
data encryption standard under the subtopic cryptography and network security
PDF
chap3.pdf
PDF
Computer security module 2
PPT
DATA ENCRYPTION STANDARD (DES) / lucifer
PPT
ch03 network security in computer sys.ppt
PPTX
Module 1-Block Ciphers and the Data Encryption Standard.pptx
PPTX
Block Cipher.cryptography_miu_year5.pptx
PPT
PPT
ch03.pptvxcvxcvxcvxcvxcvxcvcxvdsgedgeeee
PPT
Network Security Lec4
PPTX
PPT
Chiffremtn asymetriqye AES Introduction.ppt
PPT
DES.ppt
Lecture 05 - 04 Nov 21.pptx
Cryptographic algorithms
Cryptographic algorithms
CS6701 CRYPTOGRAPHY AND NETWORK SECURITY
Overview on Cryptography and Network Security
Cryptography and Network Security William Stallings Lawrie Brown
data encryption standard under the subtopic cryptography and network security
chap3.pdf
Computer security module 2
DATA ENCRYPTION STANDARD (DES) / lucifer
ch03 network security in computer sys.ppt
Module 1-Block Ciphers and the Data Encryption Standard.pptx
Block Cipher.cryptography_miu_year5.pptx
ch03.pptvxcvxcvxcvxcvxcvxcvcxvdsgedgeeee
Network Security Lec4
Chiffremtn asymetriqye AES Introduction.ppt
DES.ppt
Ad

More from Information Security Awareness Group (20)

PDF
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
PPTX
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
PDF
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
PPT
IBM Security Strategy Intelligence,
PDF
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
PDF
Big data analysis concepts and references by Cloud Security Alliance
PDF
Big data analysis concepts and references
PPT
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
PPT
Introduction to distributed security concepts and public key infrastructure m...
PDF
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
PDF
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
PDF
THE OPEN SCIENCE GRID Ruth Pordes
PPT
Open Science Grid security-atlas-t2 Bob Cowles
PPT
Security Open Science Grid Doug Olson
PPTX
Open Science Group Security Kevin Hill
PDF
Xrootd proxies Andrew Hanushevsky
PPT
Privilege Project Vikram Andem
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
IBM Security Strategy Intelligence,
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Big data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
Introduction to distributed security concepts and public key infrastructure m...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
THE OPEN SCIENCE GRID Ruth Pordes
Open Science Grid security-atlas-t2 Bob Cowles
Security Open Science Grid Doug Olson
Open Science Group Security Kevin Hill
Xrootd proxies Andrew Hanushevsky
Privilege Project Vikram Andem

Recently uploaded (20)

PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
KodekX | Application Modernization Development
PDF
Machine learning based COVID-19 study performance prediction
PDF
Empathic Computing: Creating Shared Understanding
PPTX
Big Data Technologies - Introduction.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
cuic standard and advanced reporting.pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
Spectroscopy.pptx food analysis technology
PDF
Approach and Philosophy of On baking technology
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Advanced methodologies resolving dimensionality complications for autism neur...
Spectral efficient network and resource selection model in 5G networks
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
NewMind AI Weekly Chronicles - August'25 Week I
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
KodekX | Application Modernization Development
Machine learning based COVID-19 study performance prediction
Empathic Computing: Creating Shared Understanding
Big Data Technologies - Introduction.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
cuic standard and advanced reporting.pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Mobile App Security Testing_ A Comprehensive Guide.pdf
Spectroscopy.pptx food analysis technology
Approach and Philosophy of On baking technology
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton

DES Block Cipher Hao Qi

  • 1.  DES  Description: Feistel, S-box  Exhaustive Search, DC and LC  Modes of Operation  AES  Description: SPN, Branch number  Security and Efficiency  Modes of Operation  Other Ciphers  Linear layer  Confusion layer 1
  • 3.  Confusion: The ciphertext statistics should depend on the plaintext statistics in a manner too complicated to be exploited by the enemy cryptanalyst  Diffusion: Each digit of the plaintext should influence many digits of the ciphertext, and/or Each digit of the secret key should influence many digits of the the ciphertext.  Block cipher: ◦ A repetition of confusion(Substitution) and diffusion(Permutation) ◦ Iteration: Weak  Strong Claude Shannon 3
  • 4. 4
  • 5.  Definition: Let Bn denote the set of bit strings of length n. A block cipher is an encryption algorithm E such that EK is a permutation of Bn for each key K  Characteristics ◦ ◦ ◦ ◦ ◦ ◦ Based on Shannon’s Theorem(1949) Same P => Same C {|P| = |C|} ≥ 64 bit, |P| ≠ |K| ≥ 56 bit Memoryless configuration Operate as stream cipher depending on mode Shortcut cryptanalysis (DC, LC etc) in 90’s * DC: Differential Cryptanalysis, LC: Linear Cryptanalysis 5
  • 6.          Provide a high level of security Completely specify and easy to understand Security must depend on hidden key, not algorithm Available to all users Adaptable for use in diverse applications Economically implementable in electronic device Efficient to use Able to be validated Exportable * Federal Register, May 15, 1973 6
  • 7. Based on Lucifer (1972)  Developed by IBM and intervened by NSA  Adopted Federal Standard by NIST, revised every 5 years (~’98),  64bit block cipher, 56bit key  16 Round, Nonlinearity : S-box  Cryptanalysis like DC, LC, etc. after 1992  * DC:Differential Cryptanalysis, LC : Linear Cryptanalysis 7
  • 8.   If we apply its operation 2 times, it returns to the original value, e.g., f(f(x)) = x. Type of f-1(x) = f(x) x1 x2 x1 (d) (c) (b) (a) x2 x1 x2 ⊕ y1 y2 y1 y2 y1=x1⊕ x2 x1 ⊕ y2 = x2 x2 g y1=x1⊕ g(x2) y2 = x2 or x1⊕ g(x2,k) 8
  • 10. * Decryption is done by executing round key in the reverse order. 10
  • 11. FP= IP-1 IP 58 50 42 34 26 18 10 60 52 44 36 28 20 12 62 54 46 38 30 22 14 64 56 48 40 32 24 16 57 49 41 33 25 17 9 59 51 43 35 27 19 11 61 53 45 37 29 21 13 63 55 47 39 31 23 15 2 4 6 8 1 3 5 7 40 39 38 37 36 35 34 33 8 48 16 56 24 64 32 7 47 15 55 23 63 31 6 46 14 54 22 62 30 5 45 13 53 21 61 29 4 44 12 52 20 60 28 3 43 11 51 19 59 27 2 42 10 50 18 58 26 1 41 9 49 17 57 25 cf.) The 58th bit of x is the first bit of IP(x) IP & FP have no cryptanalytic significance. 11
  • 12. 12
  • 13. 13
  • 14.     8 S-boxes (6 -> 4 bits) each row : permutation of 0-15 4 rows : choose by MSB & LSB of input some known design criteria ◦ ◦ ◦ ◦ ◦ ◦ not linear (affine) Any one bit of the inputs changes at least two output bits S(x) and S(x ⊕ 001100) differs at least 2bits S(x) ≠ S(x ⊕ 11ef00) for any ef={00.01.10.11} Resistance against DC etc. The actual design principles have never been revealed (U.S. classified information) 14
  • 15.  Input values mapping order L R 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 1 1 0 1 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 S1(1 0111 0)=11=(1011)2 15
  • 16.  S1-box 14 4 13 1 2 15 11 8 0 15 7 4 14 4 1 14 8 13 15 12 8 2 4  3 10 6 12 5 9 0 7 2 13 1 10 6 12 11 9 5 3 8 6 2 11 15 12 9 7 3 10 5 0 9 1 7 5 11 3 14 10 0 6 13 S2-box 15 1 8 14 6 11 3 4 9 7 2 13 12 0 3 13 4 7 15 2 8 14 12 0 1 10 6 9 0 14 7 11 10 4 13 1 5 8 12 6 9 3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 5 10 11 5 2 15 14 9 e.g.) S2(010010)= ? 16
  • 17.  S3-box 10 0 9 13 7 0 13 6 4 1 10 13  14 9 9 0 6 3 3 4 8 15 6 9 15 5 6 10 3 0 8 7 1 13 12 7 11 4 2 8 2 8 5 14 12 11 15 1 11 1 2 12 5 10 14 7 4 15 14 3 11 5 2 12 S4-box 7 13 10 3 13 8 6 15 14 11 9 0 3 0 5 6 0 12 6 10 6 9 15 0 11 7 1 13 10 3 13 8 1 4 15 9 2 7 1 4 8 5 11 12 4 15 2 12 1 10 14 9 3 14 5 2 8 4 5 11 12 7 2 14 S4-box is most linear than others.!!! 17
  • 18.  Short key size : 112 -> 56 bits by NSA  Classified design criteria  Revision of standard every 5 yrs after 1977 by NIST  No more standard 18
  • 19. (P,C) dependency with fixed Key : after 5 round  (K,C) dependency with fixed plaintext : after 5 round  Avalanche effect  Cyclic Test : Random function  Algebraic structure : Not a group  i.e., E(K1, E(K2,P)) ≠ E(K3,P) 19
  • 20.  Complementary Prop. If C= E(K,P), C = E(K, P)  Weak Key : 4 keys E(K, E(K,P))=P  Semi-weak Keys : 12 keys (6 pairs) E(K1, E(K2,P))=P  Key Exhaustive Search : 255 20
  • 21.  RSA Data Security Inc’s protest against US’s export control(‘97) ◦ $10,000(‘97) award ◦ Key search machine by Internet Loveland’s Rocker Verser ◦ 60.1 Billion/1 day key search, succeeded in 18 quadrillion operations and 96 days 25% of Total 72 quadrillion (1q=1015 =0.1 kyung) 90MHz, 16MB Memory Pentium(700 Million/sec) ◦ http://www.rsa.com/des/ 21
  • 22.  Distributed.Net + EFF ◦ 100,000 PC on Network ◦ 56hr  EFF(Electronic Frontier Foundation) ◦ http://www.eff.org/DEScrac ker ◦ Specific tools ◦ 22hr 15min ◦ 250,000$ P. Kocher 22
  • 23. Cost-Optimized Parallel Code Breaker Machine by Univ. of Bochum, Germany and Kiel  Commercially available 120 FPGA’s of type XILINX Spartan3-1000 run in parallel  10,000$ of ¼ of EFF project  23
  • 24.  FEAL, GOST, IDEA, LOKI, SKIPJACK, MISTY, SEED  TEA (Tiny Encryption Algorithm) for RFID/USN, XTEA, XXTEA  ARIA, Serpent, Baseking, BATON, BEAR&LION, C2, Camellia, CAST-128,256, CIPHERUNICORN,CMEA, Cobra, Coconut98, Crypton, DEAL, E2, FROG, G-DES, Hasty Pudding Cipher, Hierocrypt,MUITL2, New Data Seal, SAFER-64,128, SHACAL, Square, Xenon, etc…. 24
  • 26. AES (Rijndael) Joan Daemen and Vincent Rijmen, “The Design of Rijndael, AES – The Advanced Encryption Standard”, Springer, 2002, ISBN 3-540-42580-2 FIPS Pub 197, Advanced Encryption Standard (AES), December 04, 2001 Rijndael : variable, AES : fixed Vincent 26
  • 27.  Block cipher ◦ 128-bit blocks ◦ 128/192/256-bit keys  Worldwide-royalty free  More secure than Triple DES  More efficient than Triple DES 27
  • 28. ◦ Jan. 2, 1997 : Announcement of intent to develop AES and request for comments ◦ Sep. 12, 1997 : Formal call for candidate algorithms ◦ Aug. 20-22, 1998 : First AES Candidate Conference and beginning of Round 1 evaluation (15 algorithms), Rome, Italy ◦ Mar. 22-23, 1999 : Second AES Candidate Conference, NY, USA ◦ Sep. 2000 : Final AES selection (Rijndael !) Jan. 1997 Call for algorithms Aug. 1998 AES1 15 algorithms Mar. 1999 AES2 5 algorithms selected Apr. 2000 AES3 Announce winner in Sep, 2000 28
  • 29.  15 algorithms are proposed at AES1 conference 29
  • 30.  After AES2 conference, NIST selected the following 5 algorithms as the round 2 candidate algorithm. Cipher Submitter Structure Nonlinear Component MARS IBM Feistel structure Sbox DD-Rotation RC6 RSA Lab. Feistel structure Rotation Rijndael Daemen, Rijmen SPN structure Sbox Serpent Anderson, Biham, Knudsen SPN structure Sbox Twofish Schneier et. al Feistel structure Sbox 30
  • 31. Rijndael 10 (128) 12 (192) 14 (256) Serpent(32) Twofish(16) SPN SPN Feistel Mem. Bytes Ops Amp. Boomerang 265 270 2229 16M, 5C 16M, 5C Diff. M-i-M Amp. Boomerang 250 269 2197 273 2247 2197 Stat. Disting. 2118 2112 2122 12 15 (256) Stat. Disting. Stat. Disting. 294 2119 242 2138 2119 2215 6 Feistel Texts Truncated Diff. 232 7*232 272 7 8 (256) 9 (256) Truncated Diff. Truncated Diff. Related Key 2128~ 2119 2128~ 2119 277 261 2101 NA 2120 2204 2224 8 (192,256) RC6(20) Feistel Type of Attack 14 MARS 16 Core (C) 16 Mixing (M) Rounds (Key size) 11C Alg. (Round) Structure Amp. Boomerang 2113 2119 2179 6 (256) 6 7 (256) 8 (192,256) 9 (256) Meet-in-Middle Differential Differential Boomerang Amp. Boomerang 512 271 241 2122 2110 2246 275 2126 2133 2212 2247 2103 2248 2163 2252 6 (256) Impossible Diff. NA NA 2256 31
  • 32. Proposed by Joan Daemen, Vincent Rijmen(Belgium) Design choices – Square type – Three distinct invertible uniform transformations(Layers) Linear mixing layer : guarantee high diffusion Non-linear layer : parallel application of S-boxes Key addition layer : XOR the round key to the intermediate state – Initial key addition, final key addition Representation of state and key – – – – Rectangular array of bytes with 4 rows (square type) Nb : number of column of the state (4~8) Nk : number of column of the cipher key (4~8) Nb is independent from Nk 32
  • 33. State (Nb=6) Key (Nk=4) Number of rounds (Nr) 33
  • 34.     Block size: 128 Key size: 128/192/256 bit 44 byte array Component Functions Bit-wise key addition ◦ ByteSubstitution(BS): S-box ◦ ShiftRow(SR): CircularShift Byte-wise substitution(BS) ◦ MixColumn(MC): Shift-Low(SR) Linear(Branch number: 5) Mix-Column(MC) ◦ AddRoundKey(ARK): Bit-wise key addition Omit MC in the last round. BS, SR, ARK Input Input whitening Round transformation Output transformation Output 34
  • 35.  Substitution-Permutation Network (SPN) ◦ (Invertible) Nonlinear Layer: Confusion ◦ (Invertible) Linear Layer: Diffusion  Branch Number ◦ ◦ ◦ ◦ ◦ Measure Diffusion Power of Linear Layer Let F be a linear transformation on n words. W(a): the number of nonzero words in a. λ(F) = mina≠0 {W(a) + W(F(a))} Rijndael: branch number =5 35
  • 36.  K-secure ◦ No shortcut attacks key-recover attack faster than keyexhaustive search ◦ No symmetry property such as complementary in DES ◦ No non-negligible classes of weak key as in IDEA ◦ No Related-key attacks  Hermetic ◦ No weakness found for the majority of block ciphers with same block and key length  Rijndael is k-secure and hermetic 36
  • 38. ECB (Electronic CodeBook) mode C P n n K K E IF Ci = Cj, DK(Ci) = DK(Cj) D n n C P i) Encryption ii) Decryption 38
  • 39.  CBC (Cipher Block Chaining) P1 P2 Pl IV K E K E K E C1 IV C2 C2 Ci = EK(Pi  Ci-1) Cl C1 K IV : Initialization Vector Cl K D P1 K D P2 Pi = DK(Ci)  Ci-1 - 2 block Error Prog. - self-sync - If |Pl|  |P|, Padding req’d D Pl 39
  • 40. m-bit OFB (Output FeedBack) IV IV Ci = Pi  O(EK) Pi = Ci  O(EK) K E Pi m-bit Ci I) Encryption m-bit E K Ci - No Error Prog. - Req’d external sync - Stream cipher Pi - EK or DK II) Decryption 40
  • 41. m-bit CFB (Cipher FeedBack) IV K IV E Pi Ci I) Encryption m-bit m-bit Ci = Pi  EK(Ci-1) Pi = Ci  EK(Ci-1) E K - Error prog. till an error disappears in the buffer - self-sync - EK or DK Pi Ci II) Decryption 41
  • 42.  Counter mode ctr K E K E K E Pm-1 P2 P1 ctr+m-1 ctr+1 C2 Cm-1 ctr+1 C Ci = Pi  EK(Ti) Pi = Ci  EK(Ti) Ti = ctr+i -1 mod 2m |P|, |ctr|= m, Parallel computation ctr+m-1 1 ctr K E K E C2 C1 P1 K E Cm-1 P2 Pm-1 42
  • 43. CCM mode (Counter with CBC-MAC mode)  Ctr + CBC  Authenticated encryption by producing a MAC as a part of the encryption process  43
  • 44.  Use of mode ◦ ECB : key management, useless for file encryption ◦ CBC : File encryption, useful for MAC ◦ m-bit CFB : self-sync, impossible to use channel with low BER ◦ m-bit OFB : external-sync. m= 1, 8 or n ◦ Ctr : secret ctr, parallel computation ◦ CCM : authenticated encryption ◦ Performance Degradation/ Cost Tradeoff 44
  • 46.  Introduction ◦ ◦ ◦ ◦ ◦ Biham and Shamir : CR90, CR92 Efficient than Key Exhaustive Search Chosen Plaintext Attack O(Breaking DES16) ~ 247 Utilize the probabilistic distribution between input XOR and output XOR values Iteratively ◦ Stimulate to announce hidden criteria of DES [Cop92] ◦ Apply to other DES-like Ciphers * E.Biham, A. Shamir,”Differential Cryptanalysis of the Data Encryption Standard”, SpringerVerlag, 1993 46
  • 47. Discard linear components(IP, FP)  Properties of XOR (X’ = X ⊕ X* )  ◦ {E,P,IP} : (P(X))’=P(X) ⊕ P(X*)=P(X’) ◦ XOR : (X ⊕ Y)’=(X ⊕ Y) ⊕ (X* ⊕ Y*)=X’ ⊕ Y’ ◦ Mixing key : (X ⊕ K)’=(X ⊕ K) ⊕ (X* ⊕ K)=X’ ◦ Differences(=xor) are linear in linear operation and in particular the result is key independent. 47
  • 48. X X*  X’ Si-box XDT  Si-box Y’ Y Y* X’ = {0,1,…63}, Y’= {0,1,…15}  For a given S-box, pre-compute the number of count of X’ and  Y’ in a table * % of entry in DES S-boxes : 75 ~ 80% 48
  • 49. 49
  • 50.  2-round characteristic in S1 box (0Cx --> Ex with 14/64) (00 80 82 00 60 00 00 00x)  A’=00808200x =P(E0000000x)  B’=0x F F a’=60000000x b’=0x p=14/64 p=1 (60 00 00 00 00 00 00 00x) 0110 0C=001100 E=1110 50
  • 51. (1) Choose suitable Plaintext (Pt) XOR. (2) Get 2 Pts for a chosen Pt and obtain the corresponding Ct by encryption (3) From Pt XOR and pair of Ct, get the expected output XOR for the S-boxes of final round. (4) Count the maximum potential key at the final round using the estimated key (5) Right key is a subkey of having large number of pairs of expected output XOR 51
  • 52. Self-concatenating probability  Best iterative char. of DES  (19 60 00 00 00 00 00 00x)   A’=0x B’=0x F F a’=0x b’=19 60 00 00x E(b)=03 32 2C 00 00 00 00 00x p1=1 p2 =14 x 8 x 10 / 643 = 1/234 (00 00 00 00 19 60 00 00x) 52
  • 54.  Introduction ◦ Matsui : EC931, CR942 ◦ Known Plaintext Attack ◦ O(Breaking DES16) ~ 243  12 HP W/S, 50-day operation ◦ Utilize the probabilistic distribution between input linear sum and output linear sum values Iteratively ◦ Duality to DC : XOR branch vs.three-forked branch ◦ Apply to other DES-like cryptosytems 1. M.Matsui,”Linear Cryptanalysis Method for DES Cipher”, Proc. Of Eurocrypt’93,LNCS765, pp.386-397 2. M.Matsui,”The First Experimental Cryptanalysis of the Data Encryption Standard”, Proc. Of Crypto’94,LNCS839, pp.1-11 . 54
  • 55. LC DC X i-1  Y i X i Fi Ki Xi X i-1 Yi Y i  Xi Y i Y i-1 Y i Fi X i Ki Yi-1Xi XOR branch after f-ft. i.e., DC goes downstream through f-ft. Xi = Xi-2  Yi-1 (3  i  n) with {i=1}n pi 3-forked branch before f-ft. i.e., LC goes upstream through f-ft.  Yi =  Yi-2   Xi-1 (3  i  n) with 2n-1{i=1}n |pi -1/2| Xi : Xi’s Differential value  Xi-1 : Xi-1’s Masking value 55
  • 56. (Goal) : Find linear approximation P[i1,i2,…,ia] ⊕ C[j1,j2,…,jb]=K[k1,k2,…,kc] with significant prob. p (≠ ½) where A[i,j,…,k]=A[i] ⊕ A[j] ⊕ … ⊕ A[k] (Algorithm)MLE(Maximum Likelihood Estimation) (Step 1) For given P and C, compute X=P[i1,i2,…,ia] ⊕ C[j1,j2,…,jb], let N = # of Pt given, (Step 2) if |X=0| > N/2 K[k1,k2,…,Kc]=0 else 1. if |X=0| < N/2 K[k1,k2,…,kc]=1 else 0. 56
  • 57.  For a S-box Sa,(a=1,2,…,8) of DES NSa(α,β)= #{x | 0 ≤ x < 64, parity(x•α) = parity(S(x)•β)} 1≤ α ≤ 63 , 1 ≤ β ≤15, • : dot product (bitwise AND)  Ex) NS5(16,15) =12 ◦ The 5-th input bit at S5-box is equal to the linear sum of 4 output bits with probability 12/64. ◦ X[15] ⊕ F(X,K)[7,18,24,29]=K[22] with 0.19 ◦ X[15] ⊕ F(X,K)[7,18,24,29]=K[22] ⊕ 1 with 1-0.19=0.81 (Note) least significant at the right and index 0 at the least significant bit (Little endian) 57
  • 58. 58
  • 59. P PH PL [22]  [7,18,24,29] [15] F1 K1 X2[7,18,24,29] PH[7,18,24,29]  PL[15] = K1[22] ---------- (1) X1 p1=12/64 K2  F2 X2 [22]  CH [7,18,24,29] F3 C [15] K3 X2[7,18,24,29] CH[7,18,24,29]  X3 CL[15] = K3[22] ---------- (2) p3=12/64 CL (1)  (2) => X2[7,18,24,29] CH[7,18,24,29] CL[15]  X2[7,18,24,29] PH[7,18,24,29] PL[15] = K1[22]  K3[22] holding prob. = (p1 * p3 ) + (1 - p1) *(1-p3) * Discard IP and FP like DC 59
  • 60.  If independent prob. value, Xi ‘s ( 1≤ i ≤ n ) have prob pi to value 0, (1-pi) to value 1, p = {prob(X1⊕ X2⊕ … ⊕Xn ) = 0} is p = 2n-1Πi=1n(pi - 1/2) +1/2.  The number of known pt req’d for LC with success prob. 97.7% is |p - 1/2|-2 60
  • 61.  Key size expansion ◦ Double Encryption ek:E2(K2,E1(K1,P)), dk:D1(K1,D2(K2,C)) Meet-in-the-middle attack No effectiveness ◦ Triple Encryption ek:E(K1,D(K2,E(K1,P))), dk:D(K1,E(K2,D(K1,C))) ek:E(K1,D(K2,E(K3,P))), dk:D(K3,E(K2,D(K1,C))) 112 or 168 bits 61
  • 63.  Traditional Cryptographic Model vs. Side Channel Power Consumption / Timing / EM Emissions / Acoustic Attacker C=E(P,Ke) P E() Ke Key P=D(C,Kd) C Insecure channel D() D Kd Secure channel Radiation / Temperature / Power Supply / Clock Rate, etc. 63
  • 64. ☆ J. DAEMEN AND V. RIJMEN. The Design of Rijndael.AES - The Advanced Encryption Standard. Springer, 2002. 배성호 1 ★ M. E. HELLMAN. A cryptanalytic time-memory trade-off. IEEE Transactions of Information Theory, 26 (1980), 401-406. 임준현 2 ☆ E. BIHAM AND A. SHAMIR. Differential cryptanalysis of the full 16-round DES. LNCS 740 (1993), 494-502. (CRYPTO '92) 장래영 3 ☆ M. BELLARE AND P. ROGAWAY. Optimal asymmetric encryption. Lecture Notes in Computer Science, 950 (1995), 92-111. (EUROCRYPT '94) 조준희 4 황대성 5 남궁호 6 장래영 7 ☆ ★ ☆ S. GOLDWASSER AND S. MICALI. Probabilistic encryption. Journal of Computer and Systems Science, 28 (1984), 270-299. J. H. Moore. Protocol failures in cryptosystems. In Contemporary Cryptology, The Science of Information Integrity, pages 541-558. IEEE Press, 1992. M. BELLARE, J. KILIAN AND P. ROGAWAY. The security of the cipher block chaining message authentication code. Journal of Computer and System Sciences, 61 (2000), 362-399. ★ W. DIFFIE AND M. E. HELLMAN. New directions in cryptography. IEEE Transactions on Information Theory, 22 (1976), 644-654. 조준희 8 ★ M. MATSUI. Linear cryptanalysis method for DES cipher. LNCS 765 (1994), 386-397. (EUROCRYPT '93) 배성호 9 ☆ M. BELLARE AND P. ROGAWAY. Random oracles are practical: a paradigm for designing efficient protocols. In First ACM Conference on Computer and Communications Security, pages 62-73. ACM Press, 1993. 김영삼 PT #1 10 PT#2 64
  • 65. ☆ ☆ ☆ ★ ☆ ☆☆ ☆☆ ★ ☆☆ ★ N. T. COURTOIS AND J. PIEPRZYK. Cryptanalysis of block ciphers with overdefined systems of equations. LNCS 2501 (2002), 267-287. (ASIACRYPT 2002) S. C. POHLIG AND M. E. HELLMAN. An improved algorithm for computing logarithms ove GF(p) and its cryptographic significance. IEEE Transations on Information Theory, 24 (1978), 106-110. M. J. WIENER. Cryptanalysis of short RSA secret exponents. IEEE Transations on Inforamtion Theory, 36 (1990), 553-558. T. ELGAMAL. Apublic key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31 (1985), 469-472. D. CHAUM AND H. VAN ANTWERPEN. Undeniable signature. LNCS 435 (1990), 212-216. (CRYPTO '89) P. BEAUCHEMIN AND G. BRASSARD, C. CREPEAU, C. GOUTIER and C. POMERANCE. The generation of random numbers that are probably prime. Journal of Cryptology, 1 (1988), 53-64. M. BELLARE AND P. ROGAWAY. The exact security of digital signatures: how to sign with RSA and Rabin. LNCS, 1070(1996), 399-416. (EUROCRYPT '96) A. FIAT AND A. SHAMIR. How to prove yourself: practical solutions to identification and signature problems. LNCS 263 (1987), 186-194. (CRYPTO '86) M. BELLARE. Practice-oriented provable-security. In Lectures on Data Security, pages 1-15. Springer, 1999. A. FIAT AND M. NAOR. Broadcast encryption. LNCS 773 (1994), 480-491. (CRYPTO '93) 조준희 11 황대성 12 남궁호 13 장래영 14 신지강 15 남궁호 16 임준현 17 김영삼 18 신지강 19 황대성 20 PT#3 PT#4 65
  • 66. ☆ M. BURMESTER AND Y. DESMEDT. A secure and efficient conference key distribution system. LNCS 250 (1994), 275-286 (EUROCRYPT '94) 김영삼 21 ★ U. FEIGE, A. FIAT AND A. SHAMIR. Zero-knolwedge proofs of identity. Journal of Cyrptology, 1 (1988), 77-94 신지강 22 ☆ C. P. SHNORR. Efficient signature generation by smart cards. Journal of Cryptology, 4 (1991), 161-174. 임준현 23 ☆ D. E. DENNING AND G. M. SACCO. Timestamps in key distribution protocols. Communications of the ACM 24 (1981), 533-536. 배성호 24 PT#5 ★ : 필수 , ☆: 난이도 1, ☆☆: 난이도 2( 가산점 ) 66