SlideShare a Scribd company logo
Tutorial - Design and
Implementation of Clinical
Databases with openEHR
Pablo Pazos Gutiérrez, Koray Atalag, Luis Marco-
Ruiz, Erik Sundvall, Sérgio Miranda Freire
2
Foundations
• Modern Clinical Databases need to ...
– handle many types of information,
– lost of different data structures,
– be flexible and generic,
– consistent, standardized, future-proof (evolution)
• CDBs are difficult to design!
– design is 10% about storing data, 90% about querying, retieve and using data
• To achieve a good design we need to have:
– deep knowledge of clinical record structures
– apply good practices, standards and support generic requirements
– knowledge about different technologies / solutions
3
Agenda
• Clinical Information Requirements
• Clinical Information Organization
• Database Technologies & Features
• openEHR
– goals, information model, knowledge model, data store &
query, versioning & audit
• openEHR Data Storage Techniques
– Relational + ORM
– Hybrid
• Data Querying
Clinical Information Requirements
Storing & Accessing Data
5
Minimal Information Set (ISO 18308)
• Related to storage: from the user point of view
– Patient history
– Physical examination
– Psychological, social, environmental, family and self care information
– Allergies and other therapeutic precautions
– Preventative and wellness measures such as vaccinations and lifestyle interventions
– Diagnostic tests and therapeutic interventions such as medications and procedures
– Clinical observations, interpretations, decisions and clinical reasoning
– Requests/Orders for further investigations, treatments or discharge
– Problems, diagnoses, issues, conditions, preferences and expectations
– Healthcare plans, health and functional status, and health summaries
– Disclosures and consents
– Suppliers, model and manufacturer of devices (e.g. implants or prostheses)
• Internally we want more generic information elements
– especially on our database designs
6
Several ways of accessing clinical data
• Related to clinical data querying for clinical usage (patient level):
– Chronological (e.g. to sort medical consultations)
– Problem-Oriented (access data by condition or disease)
• Health records are associated to a health problem
• Each problem evolves until it is solved/inactivated if it is not chronic
– By medical specialty (e.g. cardiology)
– By department, sector, unit or service (e.g. emergency, ICU, ...)
– Episode
• One or many contacts / visits on different dates
• May include hospitalizations
• Associated with a health problem (e.g. asthma attack)
– Access to individual documents or data points
• e.g. all the blood pressure measures for a patient
• There is also Public Health and Epidemiology (population level)
– we had a tutorial about that yesterday: “Enabling Clinical Data Reuse with
openEHR Data Warehouse Environments”
7
Infrastructure Requirements
• Related to user experience and quality
– Be aware of the CAP theorem!
• Scalability (grow maintaining service level)
• High availability (% operational time)
• Transactionality (all or nothing)
– Performance (run forest, run!)
– Concurrency (we all want that resource)
– Audit (what, when, who, where, why, ...)
– Encryption (data at rest)
– Version management (history of changes)
– ...
• We want all!
– We might need to use different technologies
8
Agenda
• Clinical Information Requirements
• Clinical Information Organization
• Database Technologies & Features
• openEHR
– goals, information model, knowledge model, data store &
query, versioning & audit
• openEHR Data Storage Techniques
– Relational + ORM
– Hybrid
• Data Querying
9
Clinical Information Organization
Clinical records & information are highly hierarchical
paper based or electronic
10
Clinical Information Organization
Clinical records & information are highly hierarchical
11
Agenda
• Clinical Information Requirements
• Clinical Information Organization
• Database Technologies & Features
• openEHR
– goals, information model, knowledge model, data store &
query, versioning & audit
• openEHR Data Storage Techniques
– Relational + ORM
– Hybrid
• Data Querying
12
DBs for different kinds of usage
• operative / transactional databases (OLTP)
– read/write oriented
– support business processes, small historical data
• querying databases
– read oriented
– read-only data, might be in memory
• document database
– audit, versioning, electronic signature (authenticity, incorruptibility)
• analysis database
– read oriented
– might need ETL
– data linking + data mining + statistical analysis + prediction techniques (trends)
• datawarehouse database
– ETL from many data sources
– batch calculations of indicators over loads of historical data
13
Databases and Data Structures
DBMS Relational XML JSON Key/Value Graph
MySQL native partial in development can be modeled can be modeled
Postgres native complete complete hstore extension hstore extension
Oracle native complete complete NoSQL edition NoSQL edition
SQLServer native complete in development can be modeled can be modeled
eXistDB no native output map map
MongoDB no no native JSON JSON
CouchDB /
Couchbase
no no native JSON JSON
Neo4j can be modeled can be modeled can be modeled can be modeled native
Riak no no store and get native no
Which to choose?
relational, documental, key/value,
graph, object, ..., and which brand?
Consider
many use cases can be met efficiently
by relational databases, but each project is different,
and there is no one-fits-all solution
We are not worried about performance just yet, we’ll focus on
how to design Clinical Databases with openEHR first!
16
First approach
• The choice depends on the context
– use cases, estimated # of operations / # of records, organizational knowledge, ...
• For the operative / transactional DB lets go with a relational database:
– MySQL, Postgres, Oracle, SQLServer, …
– NOT a recommendation: just focusing on one option to understand some
common clinical database design concepts applicable on other technologies.
17
First approach
• Loads of reads? Complex queries and JOINs? Low performance?
– try relational for writes + documental for reads
• Needs ETL: relational => doc (JSON,XML)
– you can denormalize the relational DB, and/or
– use documental capabilities of some RDBs (e.g. Postgres supports XML & JSON)
– made good use of indexes
– analyze query plans (Posrgres / MySQL EXPLAIN query)
• Most systems wont have problems with any of these options
– there is always a way to optimize things!
18
Also, we have transformations between models
• When we need to
– migrate to another technology (e.g. from RDBs to Doc)
– integrate different technologies (hybrid solution)
19
We can: XML (canonical xform) JSON
<data xsi:type="COMPOSITION" archetype_node_id="openEHR-EHR-
COMPOSITION.signos.v1">
<name>
<value>Signos vitales</value>
</name>
<archetype_details>
<archetype_id>
<value>openEHR-EHR-COMPOSITION.signos.v1</value>
</archetype_id>
<template_id>
<value>Signos-Vitales</value>
</template_id>
<rm_version>1.0.2</rm_version>
</archetype_details>
<language>
<terminology_id>
<value>ISO_639-1</value>
</terminology_id>
<code_string>es</code_string>
</language>
<territory>
<terminology_id>
<value>ISO_3166-1</value>
</terminology_id>
<code_string>UY</code_string>
</territory>
<category>
...
</category>
...
</data>
{
"data": {
"@xsi:type": "COMPOSITION",
"@archetype_node_id": "openEHR-EHR-COMPOSITION.signos.v1",
"name": {
"value": "Signos vitales"
},
"archetype_details": {
"archetype_id": {
"value": "openEHR-EHR-COMPOSITION.signos.v1"
},
"template_id": {
"value": "Signos-Vitales"
},
"rm_version": "1.0.2"
},
"language": {
"terminology_id": {
"value": "ISO_639-1"
}
},
"territory": {
"terminology_id": {
"value": "ISO_3166-1"
}
},
"category": {
...
}
}
}
openEHR XML JSON equivalent
20 20
Non-RDB-based approaches?
• XML: BaseX, Sedna, eXist, ...
• JSON: Couchbase, CouchDB, MongoDB, ...
• Often suitable if your client side GUI primarily wants XML or JSON
documents/chunks (avoids conversion needs)
…or if you go all-in-javascript on server+client?
• Auto-translating AQL to hierarchy-friendly query languages (e.g. Xquery, N1QL,
Sparql, SQL++?) is often straightforward.
– Consider using a parser generator.
• XML databases fast for transactional (clinical?), but often slow for population-wide
(epidemiology?) queries.
• Solutions such as Couchbase can be very fast for both, after specific indexing is done
(example on next slide).
• Very little is published regarding graph/network databases (Neo4J etc) and object
databases for openEHR usage.
Please test and publish!
21
Scaling? Size & Performance tests, 4.2M patients
Please note:
•All DBs work fine/fast for ”clinical” patient-specific queries, the graph shows population-queries
•the RDB, here used as source and reference, is an epidemiology-optimised non-openEHR-based
reference that we try to match in end-user speed (not size). The XML/JSON based DB-examples have the
flexibility of openEHR to add new archetypes etc. without manually reworking the DB schema etc, the
RDMBs reference example does not have that flexibility.
21
Source: Yet unpublished results, working title: Comparing the Performance of NoSQL Approaches for Storing and Retrieving Archetype-Based
Electronic Health Record Data. Authors: Sergio M Freire, Douglas Teodoro, Fang Wei-Kleiner, Erik Sundvall, Daniel Karlsson, Patrick Lambrix
More about the test data and some of the setup is already published in http://www.ep.liu.se/ecp/070/009/ecp1270009.pdf
Type Databases
 Size in GB
sus42k sus420k sus4200k
RDB
MySQL 
reference
0.09 0.43 3.6
XML files   1.38 13.8 137.9
JSON files   0.83 8.3 82.9
XML DB
BaseX 1.2 11.9 -
eXist 3.3 - -
Berkeley 3.8 - -
JSON DB Couchbase 0.21 2.1 21
22
Agenda
• Clinical Information Requirements
• Clinical Information Organization
• Database Technologies & Features
• openEHR
– goals, information model, knowledge model, data store &
query, versioning & audit
• openEHR Data Storage Techniques
– Relational + ORM
– Hybrid
• Data Querying
23
• Open Standard to create really flexible, future-proof (maintainable in the long term
at large scale with low cost), interoperable EHRs.
– Defines an Infostructure!
• Created, maintained, tested, validated and implemented by an international
community of professionals.
• The community provides Modeling Tools and Open Source Reference
Implementations in many technologies (Java, Eiffel, .Net, Ruby, Python).
• Key elements:
– technological independence
– multi-level models, clean and complete
• information, clinical concepts, terminology bindings, querying, services, ...
– formal methodology for knowledge management
– open & free access to specifications
• a-la W3C / IETF (enabled the implementation of the Internet and the Web)
• Please join us!
– openEHR Foundation:
• http://openehr.org/community/mailinglists
– openEHR en español:
• http://openehr.org.es
Information Model
Our Clincal DB Design will be based on this!
25
Information Model
Clinical records & information are highly hierarchical
26
Record Entries
Different types of entries a clinical document can have
Clinical records are highly hierarchical!
27
Data Types (simplified)
28
Demographic Model
Specifying Clinical Records:
Key Points for Clinical Database Design for openEHR data
30
31
Archetypes & ADL
• Represent clinical concepts by constraints over a generic Information Model
– defined in Archetype Definition Language
– globally valid, multi-language
• Important elements for DB design and implementation!
– multi-axial identifier
• openEHR-EHR-OBSERVATION.blood_pressure.v1
– node identifier
• atNNNN
– node path (e.g. path to systolic BP)
• /data[at0001]/events[at0006]/data[at0003]/items[at0004]/value
• archetype id + path
– unique semantic identifier
– will use them in our databases!
• Need archetypes, no problem: http://ckm.openehr.org/
32
Operational Templates (OPT)
• "Big archetypes"
– Combine archetypes to represent clinical documents
– Allows to add more constraints
– Defined in XML
• Use for specific contexts
– one language
– locally valid (organization, federation, national)
• Used by EHR/EMR software directly
– for validating data
– for generating UIs
– for indexing data
– for querying
– …
33
Operational Templates (OPT)
<template_id>
<value>Consulta Médica</value>
</template_id>
<definition>
<rm_type_name>COMPOSITION</rm_type_name>
...
<node_id>at0000</node_id>
<attributes xsi:type="C_SINGLE_ATTRIBUTE">
<rm_attribute_name>category</rm_attribute_name>
...
<children xsi:type="C_COMPLEX_OBJECT">
<rm_type_name>DV_CODED_TEXT</rm_type_name>
...
<attributes xsi:type="C_SINGLE_ATTRIBUTE">
<rm_attribute_name>defining_code</rm_attribute_name>
...
<children xsi:type="C_CODE_PHRASE">
<rm_type_name>CODE_PHRASE</rm_type_name>
...
<terminology_id>
<value>openehr</value>
</terminology_id>
<code_list>433</code_list> -- category = event
</children>
</attributes>
</children>
</attributes>
...
openEHR IM
class
openEHR IM
attribute
34
Information & Metadata
• Link between Archetypes and the Information Model
– Will use those fields in our persistence model
– Are important for queries!
References to
Archetypes
and Templates
(semantic content
definitions)
35
Agenda
• Clinical Information Requirements
• Clinical Information Organization
• Database Technologies & Features
• openEHR
– goals, information model, knowledge model, data store &
query, versioning & audit
• openEHR Data Storage Techniques
– Relational + ORM
– Hybrid
• Data Querying
Clinical Data Storage Design
37
openEHR Data Storage Design
• openEHR doesn't define how to store data
– The IM is not a Persistence Model
– The Persistence Model will depend on requirements and technologies
• Our work is to adapt the IM to our persistence needs
• We can simplify, adapt or use part of it (openEHR is very flexible)
– openEHR doesn't care about how we store data but does care about:
• structural and semantic consistency (defined by archetypes & OPTs)
• processable / accessable / queryable data
• Tips:
– archetype id, path, template id, node id are important for querying
– references can be simplified (OBJECT_REF) (FKs in Relational)
– structured data can be simplified (ej. DV_CODED_TEXT)
– …
38
Object-Relational Mapping (ORM)
• OO system (openEHR IM) & Relational DB => ORM
– OO: class, attribute, attr. type, relationship, inheritance
– Relational: table, column, column type, reference
• Key elements:
1. identity representation
2. data type mapping
3. association mapping (different cardinalities 1..1, 1..N, N..N)
4. inheritance mapping
39
Identity in Object-Oriented Model
• Objects have an identity to:
– differentiate between objects of the same class
– reference those objects
• In the relational model we have Primary Keys
• Solution:
– add an "id" column in each table
– of type "int" or "long" and use it as PK
– FKs reference only PKs "id"
• represents relationships in the OO model
40
Data Type Mapping
MySQL Postgres SQLServer Oracle
Date
date
datetime
date
timestamp
date
datetime2
date
datetime
String
varchar
text
varchar
text
varchar
nvarchar
varchar2
nvarchar2
clob
Boolean bit boolean bit char(1) CHEK IN ('1','0')
Integer integer numeric int number
... ... ... ... ...
Each type we use in the OO model, should be mapped
to a type in the DBMS we chose.
41
Mapping Classes  Tables
42
Mapping Relationships
43
Mapping Inheritance
TIP: on table per class, is
better to use the same
value for "id" for the
columns of the same
instances distributed in
different tables.
Database Schema Examples
Some databases we have designed
for openEHR data, but with
different purposes
45
EHRServer
+ generic data storage
+ focused on querying
+ doesn’t map the whole IM
+ training purposes (for now)
46
+ operational DB
+ for an EMR system
+ pretty normalized
47
Hybrid approach
• Considerations
– Use only if it makes sense!
• for example if it improves querying performance / scalability
– Modern Relational DBMS compete with some NoSQL features:
• support documents
• scale through clusters
• some allow in-memory tables or views
48
Agenda
• Clinical Information Requirements
• Clinical Information Organization
• Database Technologies & Features
• openEHR
– goals, information model, knowledge model, data
store & query, versioning & audit
• openEHR Data Storage Techniques
– Relational + ORM
– Hybrid
• Data Querying
Data Querying
AQL and path-based queries
50
Archetype Query Language
• AQL is like SQL for EHRs
• Archetype ID is "like" a table (type of info we want)
– openEHR-EHR-OBSERVATION.blood_pressure.v1
• Data points identified by paths, "like" "columns (defined by each archetype)
– Systolic BP: /data[at0001]/events[at0006]/data[at0003]/items[at0004]/value
SELECT
obs/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/magnitude,
obs/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value/magnitude
FROM
EHR [ehr_id/value=$ehrUid] CONTAINS
COMPOSITION [openEHR-EHR-COMPOSITION.encounter.v1] CONTAINS
OBSERVATION obs [openEHR-EHR-OBSERVATION.blood_pressure.v1]
WHERE
obs/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/magnitude >= 140 OR
obs/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value/magnitude >= 90
Get high BP data
https://openehr.atlassian.net/wiki/display/spec/Archetype+Query+Language+Description
51 51
AQL - Query samples
Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG,
Archetype-based data warehouse environment to enable the reuse of
electronic health record data, International Journal of Medical Informatics
(2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
SELECT o/data/events/data/items[at0078.13]/value AS WhiteCellCount
FROM EHR e
CONTAINS COMPOSITION c [openEHR-EHR-
COMPOSITION.encounter.v1]
CONTAINS OBSERVATION o [openEHR-EHR-
OBSERVATION.lab_test_full_blood_count.v1]
WHERE o/data/events/data/items[at0078.13]/value > 11000000000
AND o/data/events/data/items[at0078.13]/value < 17000000000
TIME WINDOW P1Y/2014-02-12
52 52
AQL - Query samples
Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG,
Archetype-based data warehouse environment to enable the reuse of
electronic health record data, International Journal of Medical Informatics
(2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
SELECT o/data/events/data/items[at0078.13]/value
AS WhiteCellCount
FROM EHR e
CONTAINS COMPOSITION c [openEHR-EHR-
COMPOSITION.encounter.v1]
CONTAINS OBSERVATION o [openEHR-EHR-
OBSERVATION.lab_test_full_blood_count.v1]
WHERE
o/data/events/data/items[at0078.13]/value >
11000000000
AND o/data/events/data/items[at0078.13]/value <
17000000000
TIME WINDOW P1Y/2014-02-12
Infectious diseases tests
monitoring at University
Hospital of North Norway
AQL in action
54
AQL in action
Infectious diseases monitoring at UNN:
• Laboratory tests are extracted from the
LIS in a canonical XML format
• Canonical extracts are transformed into
openEHR compliant extracts
• Extracts are loaded into an openEHR data
warehouse (Think!EHR)
Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG,
Archetype-based data warehouse environment to enable the reuse of
electronic health record data, International Journal of Medical Informatics
(2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
55
Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG,
Archetype-based data warehouse environment to enable the reuse of
electronic health record data, International Journal of Medical Informatics
(2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
56 56
SELECT count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022]) -- count (patientId)
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (OBSERVATION o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1])
WHERE (
o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value = 'Kikhoste'
AND
o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value='Positiv'
) AND
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value >= '2013-01-04' AND
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value < '2013-01-05'
Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG,
Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015),
http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
AQL 1:
+ Count positive tests of Pertussis for the day specified in the parameter
AQL in action
57 57
SELECT
count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022]/value)
FROM EHR e
CONTAINS COMPOSITION c
CONTAINS (
OBSERVATION o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1] AND
OBSERVATION o2[openEHR-EHR-OBSERVATION.micro_lab_test.v1]
)
WHERE (
o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value =
'Salmonella' AND
o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value =
'Positiv'
) AND
o1/data[at0001]/events[at0002]/data[at0003]/items[at0020]/value = '1917' AND
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value >= '2013-01-01' AND
o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value < '2013-01-15'
Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG,
Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015),
http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
AQL 2:
+ Count patient ID
+ Salmonella cases in the specified municipality (same as patient just confirmed)
+ In the first 2 weeks of January
AQL in action
EHRServer Queries
Path-based queries in action
https://cabolabs-ehrserver.rhcloud.com/ehr-0.3/query/list
59
EHRServer Query Builder
60
Path-based queries in action
{
"uid": "9c5da334-4b81-4d60-92e2-aa96a722b4ac",
"name": "Documents with high BP",
"format": "xml",
"type": "composition",
"criteriaLogic": "OR",
"criteria": [
{
"archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1",
"path": "/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value",
"conditions": {
"magnitude": { "gt": [ 140 ] },
"units": { "eq": "mm[Hg]" }
}
},
{
"archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1",
"path": "/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value",
"conditions": {
"magnitude": { "gt": [ 90 ] },
"units": { "eq": "mm[Hg]" }
}
}
]
}
Path-based:
+ Get clinical documents (compositions)
+ With high BP
JSON
expression of
EHRServer
queries
61
Path-based queries in action
Results:
+ in XML (or JSON if specified on the query or as a parameter)
+ just the index, no data, get a document using the index or change the query to get the data
<list>
<compositionIndex id="8">
<archetypeId>openEHR-EHR-COMPOSITION.signos.v1</archetypeId>
<category>event</category>
<dataIndexed>true</dataIndexed>
<ehrId>11111111-1111-1111-1111-111111111111</ehrId>
<startTime>2015-08-14 03:06:44.0 EDT</startTime>
<subjectId>11111111-1111-1111-1111-111111111111</subjectId>
<templateId>Signos</templateId>
<uid>e152b2c2-7dbe-44b6-9ec6-2cd698561140</uid>
</compositionIndex>
<compositionIndex id="9">
<archetypeId>openEHR-EHR-COMPOSITION.signos.v1</archetypeId>
<category>event</category>
<dataIndexed>true</dataIndexed>
<ehrId>11111111-1111-1111-1111-111111111111</ehrId>
<startTime>2015-08-14 03:07:06.0 EDT</startTime>
<subjectId>11111111-1111-1111-1111-111111111111</subjectId>
<templateId>Signos</templateId>
<uid>f0a8d192-0f68-4501-8373-f954a47a7385</uid>
</compositionIndex>
...
</list>
62
Path-based queries in action
{
"uid": "70764d85-4e4b-4548-8f71-3a294f35e704",
"name": "Vital Signs",
"format": "json",
"type": "datavalue",
"group": "path",
"projections": [
{
"archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1",
"path": "/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value"
},
{
"archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1",
"path": "/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value"
},
{
"archetypeId": "openEHR-EHR-OBSERVATION.body_temperature.v1",
"path": "/data[at0002]/events[at0003]/data[at0001]/items[at0004]/value"
},
{
"archetypeId": "openEHR-EHR-OBSERVATION.body_weight.v1",
"path": "/data[at0002]/events[at0003]/data[at0001]/items[at0004]/value"
},
{
"archetypeId": "openEHR-EHR-OBSERVATION.pulse.v1",
"path": "/data[at0002]/events[at0003]/data[at0001]/items[at0004]/value"
},
{
"archetypeId": "openEHR-EHR-OBSERVATION.respiration.v1",
"path": "/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value"
}
]
}
Path-based:
+ Get clinical data for all vital signs measures
+ Result in JSON format, grouped by path (type of data)
JSON
expression of
EHRServer
queries
63
GastrOS – Endoscopy Database
http://gastros.codeplex.com
• Open Source openEHR implementation of a commercial DB for academic
research (2011)
• Based on Minimal Standard Terminology for Digestive Endoscopy (MST 2)
• Works with openEHR RM directly
– C# openEHR.NET (Open Source)
– Uses 3 Templates (EGD, Colonopscopy, ERCP)
• Used RDMBS (MS Access and SQLite)
• Uses ORM (Nhibernate) to store XML Compositions
63
64
MST Structure
65
66
Content Model Coverage
67
68
SDE ParserOPT
Reference
Model
Skeleton Instance
(ENTRY types, CLUSTERS)
GUI Form: Widgets+Leaf nodes(ELEMENT)
SDE GUI
Generator
AOM Representation
69
70
A Standards-based Approach to Development of
Clinical Registries -
NZ Gestational Diabetes Registry Pilot
Dr. Koray Atalag MD, PhD, FACHI (National Institute for Health Innovation)
Aleksandar Zivaljevic, PhD candidate (Univ. Of Auckland)
Dr. Carl Eagleton MBChB, FRACP (Counties Manukau District Health Board)
Karen Pickering (Diabetes Projects Trust)
71
GDM Registry Database
• Used OceanEHR Framework
– Academic license from Ocean Informatics
– Simplifies persistence and querying plus more!
– Supports openEHR Demographic IM
– Supports AQL
• Extended MultiPrac App (Source provided on academic license)
– MVC Application (VS 2010 w/ SQL Server)
– Handles user management, basic admin etc.
– Supports reference sets, provider/organisation etc.
71
72
The Dataset
73
Automatic technical conversion – C# Class
74
75
Make your own or reuse existing openEHR persistence?
• Open reusable openEHR persistence & query APIs have been suggested and
are now being formally specified
– Join the REST discussion, openEHR wiki + mailinglists
https://openehr.atlassian.net/wiki/display/spec/openEHR+REST+APIs
– Implementations of openEHR SOAP interfaces exist.
• A SOAP API could be formally specified if there is enough interest
– Other API options?
• New reusable implementations are welcome!
• Before implementing your own persistence, consider:
– Is your main interest storage or clinical application?
– Would AQL be helpful in some of your use-cases?
– In what way will it need to scale?
75
76
Conclusion
• openEHR doesn’t specify how to store openEHR clinical data
– not bound to any technology or modeling technique
• Remember to model data with references to metadata
– archetype id, template id, path, node id
• Use operational templates in software, not archetypes directly
– archetypes are too generic, too many options, not so good for software
• Choosing a technology is on you
– there is no one-fits-all solution
– you might need to mix technologies (hybrid solution)
• Modify the openEHR Information Model
– to create your storage model using the chosen technology
• Design generic query mechanisms based on archetype ids and paths
– go for AQL support if you need it, allows to share queries between openEHR Clinical Data
Storages
• Designing and querying Clinical Databases is hard!
– now you have some pointers on where to start 
Muito Obrigado!
Perguntas?
pablo.pazos@cabolabs.com
@ppazos
github.com/ppazos
koray
@atalagk
erik .sundvall@liu.se
@ErikSundvall
github.com/ErikSundvall
http://www.imt.liu.se/~erisu/
sergio@lampada.uerj.br
luis.marco.ruiz@telemed.no

More Related Content

PPTX
Diabetes Mellitus
PPTX
Hypertension
PPTX
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
PPTX
Power Point Presentation on Artificial Intelligence
PDF
Caça palavras - Bullying
PPTX
PDF
Atividade ortográfica - Caçada aos erros
Diabetes Mellitus
Hypertension
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
Power Point Presentation on Artificial Intelligence
Caça palavras - Bullying
Atividade ortográfica - Caçada aos erros

What's hot (20)

PDF
2 7 open_ehr rm reference model overview
PPTX
EHRbase, open source openEHR CDR
PDF
1 3 introduction to open_ehr
PDF
Openehr clinical modelling
PDF
fhir and loinc
PPTX
Ehr models, standards and semantic interoperability
PDF
1 4 intro to archetypes and templates
PPTX
What is openEHR?
PPT
Date warehousing concepts
PPTX
DSpace-CRIS technical level introduction
PDF
Informatica slides
PDF
An Introduction to SPARQL
PPTX
Intro to Data Management Plans
PDF
Future of Data Engineering
PDF
Basics of Research Data Management
PDF
Key Considerations While Rolling Out Denodo Platform
PPTX
Data Vault 2.0 DeMystified with Dan Linstedt and WhereScape
PDF
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
PDF
Introduction to RDF & SPARQL
PPTX
Inside open metadata—the deep dive
2 7 open_ehr rm reference model overview
EHRbase, open source openEHR CDR
1 3 introduction to open_ehr
Openehr clinical modelling
fhir and loinc
Ehr models, standards and semantic interoperability
1 4 intro to archetypes and templates
What is openEHR?
Date warehousing concepts
DSpace-CRIS technical level introduction
Informatica slides
An Introduction to SPARQL
Intro to Data Management Plans
Future of Data Engineering
Basics of Research Data Management
Key Considerations While Rolling Out Denodo Platform
Data Vault 2.0 DeMystified with Dan Linstedt and WhereScape
Denodo Data Virtualization Platform: Overview (session 1 from Architect to Ar...
Introduction to RDF & SPARQL
Inside open metadata—the deep dive
Ad

Viewers also liked (20)

PDF
Querying EHR Data with Archetype Query Language
PPT
Towards the Implementation of an openEHR-based Open Source EHR Platform (a vi...
PPT
openEHR Developers Workshop at #MedInfo2015
PPTX
Aleksandar Zivaljevic - Annotation of clinical datasets using openEHR Archety...
PDF
Class 1: Email Marketing Certification course: Email Marketing and Your Business
PDF
What is Inbound Recruiting?
PPSX
Capital Hill Cashgate Scandal : Best of London Fashion Week 2016
PPT
openEHR: aspectos de interoperabilidad y mantenibilidad
PPT
Enabling Clinical Data Reuse with openEHR Data Warehouse Environments
PDF
Bonheur au Travail : Outils et Bonnes Pratiques
PDF
Infographic: Medicare Marketing: Direct Mail: Still The #1 Influencer For Tho...
PDF
How to Earn the Attention of Today's Buyer
PDF
25 Discovery Call Questions
PDF
Modern Prospecting Techniques for Connecting with Prospects (from Sales Hacke...
PDF
Behind the Scenes: Launching HubSpot Tokyo
PDF
HubSpot Diversity Data 2016
PDF
Why People Block Ads (And What It Means for Marketers and Advertisers) [New R...
PDF
3 Proven Sales Email Templates Used by Successful Companies
PDF
Add the Women Back: Wikipedia Edit-a-Thon
PPT
Presentacion InfoLac 2014 - generacion de interfaz de usuario para sistemas d...
Querying EHR Data with Archetype Query Language
Towards the Implementation of an openEHR-based Open Source EHR Platform (a vi...
openEHR Developers Workshop at #MedInfo2015
Aleksandar Zivaljevic - Annotation of clinical datasets using openEHR Archety...
Class 1: Email Marketing Certification course: Email Marketing and Your Business
What is Inbound Recruiting?
Capital Hill Cashgate Scandal : Best of London Fashion Week 2016
openEHR: aspectos de interoperabilidad y mantenibilidad
Enabling Clinical Data Reuse with openEHR Data Warehouse Environments
Bonheur au Travail : Outils et Bonnes Pratiques
Infographic: Medicare Marketing: Direct Mail: Still The #1 Influencer For Tho...
How to Earn the Attention of Today's Buyer
25 Discovery Call Questions
Modern Prospecting Techniques for Connecting with Prospects (from Sales Hacke...
Behind the Scenes: Launching HubSpot Tokyo
HubSpot Diversity Data 2016
Why People Block Ads (And What It Means for Marketers and Advertisers) [New R...
3 Proven Sales Email Templates Used by Successful Companies
Add the Women Back: Wikipedia Edit-a-Thon
Presentacion InfoLac 2014 - generacion de interfaz de usuario para sistemas d...
Ad

Similar to Design and implementation of Clinical Databases using openEHR (20)

PPTX
Data base and data entry presentation by mj n somya
PPT
Enabling Clinical Data Reuse with openEHR Data Warehouse Environments
PPT
Developing openEHR EHRs - core functionalities
PDF
Lect 1a - Introduction to Pharmacy Informatics 1a.pdf
PPT
Analysis technologies - day3 slides Lecture notesppt
PPTX
Big Data at Geisinger Health System: Big Wins in a Short Time
PPTX
Hadoop ecosystem for health/life sciences
PDF
Standardised and Flexible Health Data Management with an Archetype Driven EHR...
PPTX
Introduction to data mining and data warehousing
PPTX
lecture5 (1) (2).pptx
PPTX
System Analysis And Design
PPTX
Big Data in Clinical Research
PPTX
Designing modern dw and data lake
PPTX
Dw 07032018-dr pl pradhan
PPTX
Big data Intro - Presentation to OCHackerz Meetup Group
PPTX
Matching Data Intensive Applications and Hardware/Software Architectures
PPTX
Matching Data Intensive Applications and Hardware/Software Architectures
PPTX
Medical Intelligence EDW 20 juni: Radboudumc
PPTX
CSU-ACADIS_dataManagement101-20120217
PDF
TOUG Big Data Challenge and Impact
Data base and data entry presentation by mj n somya
Enabling Clinical Data Reuse with openEHR Data Warehouse Environments
Developing openEHR EHRs - core functionalities
Lect 1a - Introduction to Pharmacy Informatics 1a.pdf
Analysis technologies - day3 slides Lecture notesppt
Big Data at Geisinger Health System: Big Wins in a Short Time
Hadoop ecosystem for health/life sciences
Standardised and Flexible Health Data Management with an Archetype Driven EHR...
Introduction to data mining and data warehousing
lecture5 (1) (2).pptx
System Analysis And Design
Big Data in Clinical Research
Designing modern dw and data lake
Dw 07032018-dr pl pradhan
Big data Intro - Presentation to OCHackerz Meetup Group
Matching Data Intensive Applications and Hardware/Software Architectures
Matching Data Intensive Applications and Hardware/Software Architectures
Medical Intelligence EDW 20 juni: Radboudumc
CSU-ACADIS_dataManagement101-20120217
TOUG Big Data Challenge and Impact

More from Pablo Pazos (20)

PDF
Microservicios y plataformas abiertas en salud - JIAP 2018
PDF
Apoyo a la toma de decisiones clínicas con openEHR y SNOMED CT - casos de uso...
PDF
openEHR presentacion informativa 2017
PDF
CaboLabs - Workshop de interoperabilidad usando estándares
PDF
CaboLabs - Estándares e interoperabilidad en informática en salud
PDF
CaboLabs - Proyectos de informatica en salud
PDF
EHRServer - Plataforma Abierta para Gestionar y Compartir Datos Clínicos Esta...
PDF
Presentación del Taller de Interoperabilidad con Mirth Connect y HL7
PDF
Presentacion del programa de formacion profesional de Informática en Salud, E...
PPT
openEHR training in Latin America - Pablo Pazos #MedInfo2015
PDF
Generación automática de interfaces de usuario para sistemas de información c...
PDF
Taller de Modelado Clínico con openEHR - HIBA 2013
PDF
Taller de implementación de openEHR - HIBA 2013
PDF
CaboLabs: expertos en informática médica, estándares e interoperabilidad
PDF
Pablo Pazos Curriculum Vitae 2013-05-17
PDF
Desarrollo profesional en Tecnologias de la Información desde Uruguay
PDF
Introducción a openEHR para clinicos 2013
PDF
openEHR ¿para qué sirve? HIBA2012
PDF
XRE demo presentation
PDF
EHRGen demo presentation
Microservicios y plataformas abiertas en salud - JIAP 2018
Apoyo a la toma de decisiones clínicas con openEHR y SNOMED CT - casos de uso...
openEHR presentacion informativa 2017
CaboLabs - Workshop de interoperabilidad usando estándares
CaboLabs - Estándares e interoperabilidad en informática en salud
CaboLabs - Proyectos de informatica en salud
EHRServer - Plataforma Abierta para Gestionar y Compartir Datos Clínicos Esta...
Presentación del Taller de Interoperabilidad con Mirth Connect y HL7
Presentacion del programa de formacion profesional de Informática en Salud, E...
openEHR training in Latin America - Pablo Pazos #MedInfo2015
Generación automática de interfaces de usuario para sistemas de información c...
Taller de Modelado Clínico con openEHR - HIBA 2013
Taller de implementación de openEHR - HIBA 2013
CaboLabs: expertos en informática médica, estándares e interoperabilidad
Pablo Pazos Curriculum Vitae 2013-05-17
Desarrollo profesional en Tecnologias de la Información desde Uruguay
Introducción a openEHR para clinicos 2013
openEHR ¿para qué sirve? HIBA2012
XRE demo presentation
EHRGen demo presentation

Recently uploaded (20)

PDF
Dr. Jasvant Modi - Passionate About Philanthropy
PDF
2E-Learning-Together...PICS-PCISF con.pdf
PDF
MINERAL & VITAMIN CHARTS fggfdtujhfd.pdf
PPT
Recent advances in Diagnosis of Autoimmune Disorders
PPTX
3. Adherance Complianace.pptx pharmacy pci
PPTX
PE and Health 7 Quarter 3 Lesson 1 Day 3,4 and 5.pptx
PPTX
Bronchial_Asthma_in_acute_exacerbation_.pptx
PDF
Megan Miller Colona Illinois - Passionate About CrossFit
PPTX
1. Drug Distribution System.pptt b pharmacy
PPTX
CBT FOR OCD TREATMENT WITHOUT MEDICATION
PPTX
AI_in_Pharmaceutical_Technology_Presentation.pptx
PDF
DAY-6. Summer class. Ppt. Cultural Nursing
PPTX
HEMODYNAMICS - I DERANGEMENTS OF BODY FLUIDS.pptx
PPTX
First aid in common emergency conditions.pptx
PDF
NUTRITION THROUGHOUT THE LIFE CYCLE CHILDHOOD -AGEING
PPTX
Pulmonary Circulation PPT final for easy
PDF
Khaled Sary- Trailblazers of Transformation Middle East's 5 Most Inspiring Le...
PPTX
COMMUNICATION SKILSS IN NURSING PRACTICE
PDF
Priorities Critical Care Nursing 7th Edition by Urden Stacy Lough Test Bank.pdf
PPT
Adrenergic drugs (sympathomimetics ).ppt
Dr. Jasvant Modi - Passionate About Philanthropy
2E-Learning-Together...PICS-PCISF con.pdf
MINERAL & VITAMIN CHARTS fggfdtujhfd.pdf
Recent advances in Diagnosis of Autoimmune Disorders
3. Adherance Complianace.pptx pharmacy pci
PE and Health 7 Quarter 3 Lesson 1 Day 3,4 and 5.pptx
Bronchial_Asthma_in_acute_exacerbation_.pptx
Megan Miller Colona Illinois - Passionate About CrossFit
1. Drug Distribution System.pptt b pharmacy
CBT FOR OCD TREATMENT WITHOUT MEDICATION
AI_in_Pharmaceutical_Technology_Presentation.pptx
DAY-6. Summer class. Ppt. Cultural Nursing
HEMODYNAMICS - I DERANGEMENTS OF BODY FLUIDS.pptx
First aid in common emergency conditions.pptx
NUTRITION THROUGHOUT THE LIFE CYCLE CHILDHOOD -AGEING
Pulmonary Circulation PPT final for easy
Khaled Sary- Trailblazers of Transformation Middle East's 5 Most Inspiring Le...
COMMUNICATION SKILSS IN NURSING PRACTICE
Priorities Critical Care Nursing 7th Edition by Urden Stacy Lough Test Bank.pdf
Adrenergic drugs (sympathomimetics ).ppt

Design and implementation of Clinical Databases using openEHR

  • 1. Tutorial - Design and Implementation of Clinical Databases with openEHR Pablo Pazos Gutiérrez, Koray Atalag, Luis Marco- Ruiz, Erik Sundvall, Sérgio Miranda Freire
  • 2. 2 Foundations • Modern Clinical Databases need to ... – handle many types of information, – lost of different data structures, – be flexible and generic, – consistent, standardized, future-proof (evolution) • CDBs are difficult to design! – design is 10% about storing data, 90% about querying, retieve and using data • To achieve a good design we need to have: – deep knowledge of clinical record structures – apply good practices, standards and support generic requirements – knowledge about different technologies / solutions
  • 3. 3 Agenda • Clinical Information Requirements • Clinical Information Organization • Database Technologies & Features • openEHR – goals, information model, knowledge model, data store & query, versioning & audit • openEHR Data Storage Techniques – Relational + ORM – Hybrid • Data Querying
  • 5. 5 Minimal Information Set (ISO 18308) • Related to storage: from the user point of view – Patient history – Physical examination – Psychological, social, environmental, family and self care information – Allergies and other therapeutic precautions – Preventative and wellness measures such as vaccinations and lifestyle interventions – Diagnostic tests and therapeutic interventions such as medications and procedures – Clinical observations, interpretations, decisions and clinical reasoning – Requests/Orders for further investigations, treatments or discharge – Problems, diagnoses, issues, conditions, preferences and expectations – Healthcare plans, health and functional status, and health summaries – Disclosures and consents – Suppliers, model and manufacturer of devices (e.g. implants or prostheses) • Internally we want more generic information elements – especially on our database designs
  • 6. 6 Several ways of accessing clinical data • Related to clinical data querying for clinical usage (patient level): – Chronological (e.g. to sort medical consultations) – Problem-Oriented (access data by condition or disease) • Health records are associated to a health problem • Each problem evolves until it is solved/inactivated if it is not chronic – By medical specialty (e.g. cardiology) – By department, sector, unit or service (e.g. emergency, ICU, ...) – Episode • One or many contacts / visits on different dates • May include hospitalizations • Associated with a health problem (e.g. asthma attack) – Access to individual documents or data points • e.g. all the blood pressure measures for a patient • There is also Public Health and Epidemiology (population level) – we had a tutorial about that yesterday: “Enabling Clinical Data Reuse with openEHR Data Warehouse Environments”
  • 7. 7 Infrastructure Requirements • Related to user experience and quality – Be aware of the CAP theorem! • Scalability (grow maintaining service level) • High availability (% operational time) • Transactionality (all or nothing) – Performance (run forest, run!) – Concurrency (we all want that resource) – Audit (what, when, who, where, why, ...) – Encryption (data at rest) – Version management (history of changes) – ... • We want all! – We might need to use different technologies
  • 8. 8 Agenda • Clinical Information Requirements • Clinical Information Organization • Database Technologies & Features • openEHR – goals, information model, knowledge model, data store & query, versioning & audit • openEHR Data Storage Techniques – Relational + ORM – Hybrid • Data Querying
  • 9. 9 Clinical Information Organization Clinical records & information are highly hierarchical paper based or electronic
  • 10. 10 Clinical Information Organization Clinical records & information are highly hierarchical
  • 11. 11 Agenda • Clinical Information Requirements • Clinical Information Organization • Database Technologies & Features • openEHR – goals, information model, knowledge model, data store & query, versioning & audit • openEHR Data Storage Techniques – Relational + ORM – Hybrid • Data Querying
  • 12. 12 DBs for different kinds of usage • operative / transactional databases (OLTP) – read/write oriented – support business processes, small historical data • querying databases – read oriented – read-only data, might be in memory • document database – audit, versioning, electronic signature (authenticity, incorruptibility) • analysis database – read oriented – might need ETL – data linking + data mining + statistical analysis + prediction techniques (trends) • datawarehouse database – ETL from many data sources – batch calculations of indicators over loads of historical data
  • 13. 13 Databases and Data Structures DBMS Relational XML JSON Key/Value Graph MySQL native partial in development can be modeled can be modeled Postgres native complete complete hstore extension hstore extension Oracle native complete complete NoSQL edition NoSQL edition SQLServer native complete in development can be modeled can be modeled eXistDB no native output map map MongoDB no no native JSON JSON CouchDB / Couchbase no no native JSON JSON Neo4j can be modeled can be modeled can be modeled can be modeled native Riak no no store and get native no
  • 14. Which to choose? relational, documental, key/value, graph, object, ..., and which brand?
  • 15. Consider many use cases can be met efficiently by relational databases, but each project is different, and there is no one-fits-all solution We are not worried about performance just yet, we’ll focus on how to design Clinical Databases with openEHR first!
  • 16. 16 First approach • The choice depends on the context – use cases, estimated # of operations / # of records, organizational knowledge, ... • For the operative / transactional DB lets go with a relational database: – MySQL, Postgres, Oracle, SQLServer, … – NOT a recommendation: just focusing on one option to understand some common clinical database design concepts applicable on other technologies.
  • 17. 17 First approach • Loads of reads? Complex queries and JOINs? Low performance? – try relational for writes + documental for reads • Needs ETL: relational => doc (JSON,XML) – you can denormalize the relational DB, and/or – use documental capabilities of some RDBs (e.g. Postgres supports XML & JSON) – made good use of indexes – analyze query plans (Posrgres / MySQL EXPLAIN query) • Most systems wont have problems with any of these options – there is always a way to optimize things!
  • 18. 18 Also, we have transformations between models • When we need to – migrate to another technology (e.g. from RDBs to Doc) – integrate different technologies (hybrid solution)
  • 19. 19 We can: XML (canonical xform) JSON <data xsi:type="COMPOSITION" archetype_node_id="openEHR-EHR- COMPOSITION.signos.v1"> <name> <value>Signos vitales</value> </name> <archetype_details> <archetype_id> <value>openEHR-EHR-COMPOSITION.signos.v1</value> </archetype_id> <template_id> <value>Signos-Vitales</value> </template_id> <rm_version>1.0.2</rm_version> </archetype_details> <language> <terminology_id> <value>ISO_639-1</value> </terminology_id> <code_string>es</code_string> </language> <territory> <terminology_id> <value>ISO_3166-1</value> </terminology_id> <code_string>UY</code_string> </territory> <category> ... </category> ... </data> { "data": { "@xsi:type": "COMPOSITION", "@archetype_node_id": "openEHR-EHR-COMPOSITION.signos.v1", "name": { "value": "Signos vitales" }, "archetype_details": { "archetype_id": { "value": "openEHR-EHR-COMPOSITION.signos.v1" }, "template_id": { "value": "Signos-Vitales" }, "rm_version": "1.0.2" }, "language": { "terminology_id": { "value": "ISO_639-1" } }, "territory": { "terminology_id": { "value": "ISO_3166-1" } }, "category": { ... } } } openEHR XML JSON equivalent
  • 20. 20 20 Non-RDB-based approaches? • XML: BaseX, Sedna, eXist, ... • JSON: Couchbase, CouchDB, MongoDB, ... • Often suitable if your client side GUI primarily wants XML or JSON documents/chunks (avoids conversion needs) …or if you go all-in-javascript on server+client? • Auto-translating AQL to hierarchy-friendly query languages (e.g. Xquery, N1QL, Sparql, SQL++?) is often straightforward. – Consider using a parser generator. • XML databases fast for transactional (clinical?), but often slow for population-wide (epidemiology?) queries. • Solutions such as Couchbase can be very fast for both, after specific indexing is done (example on next slide). • Very little is published regarding graph/network databases (Neo4J etc) and object databases for openEHR usage. Please test and publish!
  • 21. 21 Scaling? Size & Performance tests, 4.2M patients Please note: •All DBs work fine/fast for ”clinical” patient-specific queries, the graph shows population-queries •the RDB, here used as source and reference, is an epidemiology-optimised non-openEHR-based reference that we try to match in end-user speed (not size). The XML/JSON based DB-examples have the flexibility of openEHR to add new archetypes etc. without manually reworking the DB schema etc, the RDMBs reference example does not have that flexibility. 21 Source: Yet unpublished results, working title: Comparing the Performance of NoSQL Approaches for Storing and Retrieving Archetype-Based Electronic Health Record Data. Authors: Sergio M Freire, Douglas Teodoro, Fang Wei-Kleiner, Erik Sundvall, Daniel Karlsson, Patrick Lambrix More about the test data and some of the setup is already published in http://www.ep.liu.se/ecp/070/009/ecp1270009.pdf Type Databases  Size in GB sus42k sus420k sus4200k RDB MySQL  reference 0.09 0.43 3.6 XML files   1.38 13.8 137.9 JSON files   0.83 8.3 82.9 XML DB BaseX 1.2 11.9 - eXist 3.3 - - Berkeley 3.8 - - JSON DB Couchbase 0.21 2.1 21
  • 22. 22 Agenda • Clinical Information Requirements • Clinical Information Organization • Database Technologies & Features • openEHR – goals, information model, knowledge model, data store & query, versioning & audit • openEHR Data Storage Techniques – Relational + ORM – Hybrid • Data Querying
  • 23. 23 • Open Standard to create really flexible, future-proof (maintainable in the long term at large scale with low cost), interoperable EHRs. – Defines an Infostructure! • Created, maintained, tested, validated and implemented by an international community of professionals. • The community provides Modeling Tools and Open Source Reference Implementations in many technologies (Java, Eiffel, .Net, Ruby, Python). • Key elements: – technological independence – multi-level models, clean and complete • information, clinical concepts, terminology bindings, querying, services, ... – formal methodology for knowledge management – open & free access to specifications • a-la W3C / IETF (enabled the implementation of the Internet and the Web) • Please join us! – openEHR Foundation: • http://openehr.org/community/mailinglists – openEHR en español: • http://openehr.org.es
  • 24. Information Model Our Clincal DB Design will be based on this!
  • 25. 25 Information Model Clinical records & information are highly hierarchical
  • 26. 26 Record Entries Different types of entries a clinical document can have Clinical records are highly hierarchical!
  • 29. Specifying Clinical Records: Key Points for Clinical Database Design for openEHR data
  • 30. 30
  • 31. 31 Archetypes & ADL • Represent clinical concepts by constraints over a generic Information Model – defined in Archetype Definition Language – globally valid, multi-language • Important elements for DB design and implementation! – multi-axial identifier • openEHR-EHR-OBSERVATION.blood_pressure.v1 – node identifier • atNNNN – node path (e.g. path to systolic BP) • /data[at0001]/events[at0006]/data[at0003]/items[at0004]/value • archetype id + path – unique semantic identifier – will use them in our databases! • Need archetypes, no problem: http://ckm.openehr.org/
  • 32. 32 Operational Templates (OPT) • "Big archetypes" – Combine archetypes to represent clinical documents – Allows to add more constraints – Defined in XML • Use for specific contexts – one language – locally valid (organization, federation, national) • Used by EHR/EMR software directly – for validating data – for generating UIs – for indexing data – for querying – …
  • 33. 33 Operational Templates (OPT) <template_id> <value>Consulta Médica</value> </template_id> <definition> <rm_type_name>COMPOSITION</rm_type_name> ... <node_id>at0000</node_id> <attributes xsi:type="C_SINGLE_ATTRIBUTE"> <rm_attribute_name>category</rm_attribute_name> ... <children xsi:type="C_COMPLEX_OBJECT"> <rm_type_name>DV_CODED_TEXT</rm_type_name> ... <attributes xsi:type="C_SINGLE_ATTRIBUTE"> <rm_attribute_name>defining_code</rm_attribute_name> ... <children xsi:type="C_CODE_PHRASE"> <rm_type_name>CODE_PHRASE</rm_type_name> ... <terminology_id> <value>openehr</value> </terminology_id> <code_list>433</code_list> -- category = event </children> </attributes> </children> </attributes> ... openEHR IM class openEHR IM attribute
  • 34. 34 Information & Metadata • Link between Archetypes and the Information Model – Will use those fields in our persistence model – Are important for queries! References to Archetypes and Templates (semantic content definitions)
  • 35. 35 Agenda • Clinical Information Requirements • Clinical Information Organization • Database Technologies & Features • openEHR – goals, information model, knowledge model, data store & query, versioning & audit • openEHR Data Storage Techniques – Relational + ORM – Hybrid • Data Querying
  • 37. 37 openEHR Data Storage Design • openEHR doesn't define how to store data – The IM is not a Persistence Model – The Persistence Model will depend on requirements and technologies • Our work is to adapt the IM to our persistence needs • We can simplify, adapt or use part of it (openEHR is very flexible) – openEHR doesn't care about how we store data but does care about: • structural and semantic consistency (defined by archetypes & OPTs) • processable / accessable / queryable data • Tips: – archetype id, path, template id, node id are important for querying – references can be simplified (OBJECT_REF) (FKs in Relational) – structured data can be simplified (ej. DV_CODED_TEXT) – …
  • 38. 38 Object-Relational Mapping (ORM) • OO system (openEHR IM) & Relational DB => ORM – OO: class, attribute, attr. type, relationship, inheritance – Relational: table, column, column type, reference • Key elements: 1. identity representation 2. data type mapping 3. association mapping (different cardinalities 1..1, 1..N, N..N) 4. inheritance mapping
  • 39. 39 Identity in Object-Oriented Model • Objects have an identity to: – differentiate between objects of the same class – reference those objects • In the relational model we have Primary Keys • Solution: – add an "id" column in each table – of type "int" or "long" and use it as PK – FKs reference only PKs "id" • represents relationships in the OO model
  • 40. 40 Data Type Mapping MySQL Postgres SQLServer Oracle Date date datetime date timestamp date datetime2 date datetime String varchar text varchar text varchar nvarchar varchar2 nvarchar2 clob Boolean bit boolean bit char(1) CHEK IN ('1','0') Integer integer numeric int number ... ... ... ... ... Each type we use in the OO model, should be mapped to a type in the DBMS we chose.
  • 43. 43 Mapping Inheritance TIP: on table per class, is better to use the same value for "id" for the columns of the same instances distributed in different tables.
  • 44. Database Schema Examples Some databases we have designed for openEHR data, but with different purposes
  • 45. 45 EHRServer + generic data storage + focused on querying + doesn’t map the whole IM + training purposes (for now)
  • 46. 46 + operational DB + for an EMR system + pretty normalized
  • 47. 47 Hybrid approach • Considerations – Use only if it makes sense! • for example if it improves querying performance / scalability – Modern Relational DBMS compete with some NoSQL features: • support documents • scale through clusters • some allow in-memory tables or views
  • 48. 48 Agenda • Clinical Information Requirements • Clinical Information Organization • Database Technologies & Features • openEHR – goals, information model, knowledge model, data store & query, versioning & audit • openEHR Data Storage Techniques – Relational + ORM – Hybrid • Data Querying
  • 49. Data Querying AQL and path-based queries
  • 50. 50 Archetype Query Language • AQL is like SQL for EHRs • Archetype ID is "like" a table (type of info we want) – openEHR-EHR-OBSERVATION.blood_pressure.v1 • Data points identified by paths, "like" "columns (defined by each archetype) – Systolic BP: /data[at0001]/events[at0006]/data[at0003]/items[at0004]/value SELECT obs/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/magnitude, obs/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value/magnitude FROM EHR [ehr_id/value=$ehrUid] CONTAINS COMPOSITION [openEHR-EHR-COMPOSITION.encounter.v1] CONTAINS OBSERVATION obs [openEHR-EHR-OBSERVATION.blood_pressure.v1] WHERE obs/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/magnitude >= 140 OR obs/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value/magnitude >= 90 Get high BP data https://openehr.atlassian.net/wiki/display/spec/Archetype+Query+Language+Description
  • 51. 51 51 AQL - Query samples Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG, Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016 SELECT o/data/events/data/items[at0078.13]/value AS WhiteCellCount FROM EHR e CONTAINS COMPOSITION c [openEHR-EHR- COMPOSITION.encounter.v1] CONTAINS OBSERVATION o [openEHR-EHR- OBSERVATION.lab_test_full_blood_count.v1] WHERE o/data/events/data/items[at0078.13]/value > 11000000000 AND o/data/events/data/items[at0078.13]/value < 17000000000 TIME WINDOW P1Y/2014-02-12
  • 52. 52 52 AQL - Query samples Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG, Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016 SELECT o/data/events/data/items[at0078.13]/value AS WhiteCellCount FROM EHR e CONTAINS COMPOSITION c [openEHR-EHR- COMPOSITION.encounter.v1] CONTAINS OBSERVATION o [openEHR-EHR- OBSERVATION.lab_test_full_blood_count.v1] WHERE o/data/events/data/items[at0078.13]/value > 11000000000 AND o/data/events/data/items[at0078.13]/value < 17000000000 TIME WINDOW P1Y/2014-02-12
  • 53. Infectious diseases tests monitoring at University Hospital of North Norway AQL in action
  • 54. 54 AQL in action Infectious diseases monitoring at UNN: • Laboratory tests are extracted from the LIS in a canonical XML format • Canonical extracts are transformed into openEHR compliant extracts • Extracts are loaded into an openEHR data warehouse (Think!EHR) Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG, Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
  • 55. 55 Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG, Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016
  • 56. 56 56 SELECT count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022]) -- count (patientId) FROM EHR e CONTAINS COMPOSITION c CONTAINS (OBSERVATION o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1]) WHERE ( o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value = 'Kikhoste' AND o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value='Positiv' ) AND o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value >= '2013-01-04' AND o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value < '2013-01-05' Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG, Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016 AQL 1: + Count positive tests of Pertussis for the day specified in the parameter AQL in action
  • 57. 57 57 SELECT count(o1/data[at0001]/events[at0002]/data[at0003]/items[at0022]/value) FROM EHR e CONTAINS COMPOSITION c CONTAINS ( OBSERVATION o1[openEHR-EHR-OBSERVATION.micro_lab_test.v1] AND OBSERVATION o2[openEHR-EHR-OBSERVATION.micro_lab_test.v1] ) WHERE ( o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0036]/value = 'Salmonella' AND o1/data[at0001]/events[at0002]/data[at0003]/items[at0010]/items[at0043]/items[at0037]/value = 'Positiv' ) AND o1/data[at0001]/events[at0002]/data[at0003]/items[at0020]/value = '1917' AND o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value >= '2013-01-01' AND o1/data[at0001]/events[at0002]/data[at0003]/items[at0024]/value < '2013-01-15' Marco-Ruiz L, Moner D, Maldonado JA, Kolstrup N, Bellika JG, Archetype-based data warehouse environment to enable the reuse of electronic health record data, International Journal of Medical Informatics (2015), http://dx.doi.org/10.1016/j.ijmedinf.2015.05.016 AQL 2: + Count patient ID + Salmonella cases in the specified municipality (same as patient just confirmed) + In the first 2 weeks of January AQL in action
  • 58. EHRServer Queries Path-based queries in action https://cabolabs-ehrserver.rhcloud.com/ehr-0.3/query/list
  • 60. 60 Path-based queries in action { "uid": "9c5da334-4b81-4d60-92e2-aa96a722b4ac", "name": "Documents with high BP", "format": "xml", "type": "composition", "criteriaLogic": "OR", "criteria": [ { "archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1", "path": "/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value", "conditions": { "magnitude": { "gt": [ 140 ] }, "units": { "eq": "mm[Hg]" } } }, { "archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1", "path": "/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value", "conditions": { "magnitude": { "gt": [ 90 ] }, "units": { "eq": "mm[Hg]" } } } ] } Path-based: + Get clinical documents (compositions) + With high BP JSON expression of EHRServer queries
  • 61. 61 Path-based queries in action Results: + in XML (or JSON if specified on the query or as a parameter) + just the index, no data, get a document using the index or change the query to get the data <list> <compositionIndex id="8"> <archetypeId>openEHR-EHR-COMPOSITION.signos.v1</archetypeId> <category>event</category> <dataIndexed>true</dataIndexed> <ehrId>11111111-1111-1111-1111-111111111111</ehrId> <startTime>2015-08-14 03:06:44.0 EDT</startTime> <subjectId>11111111-1111-1111-1111-111111111111</subjectId> <templateId>Signos</templateId> <uid>e152b2c2-7dbe-44b6-9ec6-2cd698561140</uid> </compositionIndex> <compositionIndex id="9"> <archetypeId>openEHR-EHR-COMPOSITION.signos.v1</archetypeId> <category>event</category> <dataIndexed>true</dataIndexed> <ehrId>11111111-1111-1111-1111-111111111111</ehrId> <startTime>2015-08-14 03:07:06.0 EDT</startTime> <subjectId>11111111-1111-1111-1111-111111111111</subjectId> <templateId>Signos</templateId> <uid>f0a8d192-0f68-4501-8373-f954a47a7385</uid> </compositionIndex> ... </list>
  • 62. 62 Path-based queries in action { "uid": "70764d85-4e4b-4548-8f71-3a294f35e704", "name": "Vital Signs", "format": "json", "type": "datavalue", "group": "path", "projections": [ { "archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1", "path": "/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value" }, { "archetypeId": "openEHR-EHR-OBSERVATION.blood_pressure.v1", "path": "/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value" }, { "archetypeId": "openEHR-EHR-OBSERVATION.body_temperature.v1", "path": "/data[at0002]/events[at0003]/data[at0001]/items[at0004]/value" }, { "archetypeId": "openEHR-EHR-OBSERVATION.body_weight.v1", "path": "/data[at0002]/events[at0003]/data[at0001]/items[at0004]/value" }, { "archetypeId": "openEHR-EHR-OBSERVATION.pulse.v1", "path": "/data[at0002]/events[at0003]/data[at0001]/items[at0004]/value" }, { "archetypeId": "openEHR-EHR-OBSERVATION.respiration.v1", "path": "/data[at0001]/events[at0002]/data[at0003]/items[at0004]/value" } ] } Path-based: + Get clinical data for all vital signs measures + Result in JSON format, grouped by path (type of data) JSON expression of EHRServer queries
  • 63. 63 GastrOS – Endoscopy Database http://gastros.codeplex.com • Open Source openEHR implementation of a commercial DB for academic research (2011) • Based on Minimal Standard Terminology for Digestive Endoscopy (MST 2) • Works with openEHR RM directly – C# openEHR.NET (Open Source) – Uses 3 Templates (EGD, Colonopscopy, ERCP) • Used RDMBS (MS Access and SQLite) • Uses ORM (Nhibernate) to store XML Compositions 63
  • 65. 65
  • 67. 67
  • 68. 68 SDE ParserOPT Reference Model Skeleton Instance (ENTRY types, CLUSTERS) GUI Form: Widgets+Leaf nodes(ELEMENT) SDE GUI Generator AOM Representation
  • 69. 69
  • 70. 70 A Standards-based Approach to Development of Clinical Registries - NZ Gestational Diabetes Registry Pilot Dr. Koray Atalag MD, PhD, FACHI (National Institute for Health Innovation) Aleksandar Zivaljevic, PhD candidate (Univ. Of Auckland) Dr. Carl Eagleton MBChB, FRACP (Counties Manukau District Health Board) Karen Pickering (Diabetes Projects Trust)
  • 71. 71 GDM Registry Database • Used OceanEHR Framework – Academic license from Ocean Informatics – Simplifies persistence and querying plus more! – Supports openEHR Demographic IM – Supports AQL • Extended MultiPrac App (Source provided on academic license) – MVC Application (VS 2010 w/ SQL Server) – Handles user management, basic admin etc. – Supports reference sets, provider/organisation etc. 71
  • 74. 74
  • 75. 75 Make your own or reuse existing openEHR persistence? • Open reusable openEHR persistence & query APIs have been suggested and are now being formally specified – Join the REST discussion, openEHR wiki + mailinglists https://openehr.atlassian.net/wiki/display/spec/openEHR+REST+APIs – Implementations of openEHR SOAP interfaces exist. • A SOAP API could be formally specified if there is enough interest – Other API options? • New reusable implementations are welcome! • Before implementing your own persistence, consider: – Is your main interest storage or clinical application? – Would AQL be helpful in some of your use-cases? – In what way will it need to scale? 75
  • 76. 76 Conclusion • openEHR doesn’t specify how to store openEHR clinical data – not bound to any technology or modeling technique • Remember to model data with references to metadata – archetype id, template id, path, node id • Use operational templates in software, not archetypes directly – archetypes are too generic, too many options, not so good for software • Choosing a technology is on you – there is no one-fits-all solution – you might need to mix technologies (hybrid solution) • Modify the openEHR Information Model – to create your storage model using the chosen technology • Design generic query mechanisms based on archetype ids and paths – go for AQL support if you need it, allows to share queries between openEHR Clinical Data Storages • Designing and querying Clinical Databases is hard! – now you have some pointers on where to start 

Editor's Notes

  • #3: types of information: clinical, demographic, administrative, financial, accounting, ... good design: we will try to share knowledge on the 3 areas mentioned.
  • #5: General ideas of the information we need to store and the most common ways to query it.
  • #6: What information we need to store, from the point of view of the end user. The message here is we’ll need a generic and flexible solution to store that information and other information that appears in the future without changing the whole database schema/structure (A.K.A future proof database)
  • #7: The most common ways of querying clinical data and documents, it is also related on the way the information is organized in real life and in the persistence model.
  • #8: What we need to provide to the end user We want all of these! and we might need to mix different technologies to be close to a one-fits-all solution, but adapted to our own context/requirements, since there is no such thing for all the contexts, CAP is why we don’t have such thing. Transactionality: Atomicity on transactions
  • #10: on paper we can&amp;apos;t include the same document in two folders. tree structure of folders to organize documents....
  • #11: secciones son titulares se pueden anidar entradas agrupan campos tree structure inside documents, organize entries in sections and fields in entries
  • #13: procesamiento: calculos que pueden darse a nivel de la base de datos, dentro de las consultas o como stored procedures OLTP&amp;gt; online transaction processing http://datawarehouse4u.info/OLTP-vs-OLAP.html
  • #14: This is just to give an idea of the options, not a strict comparison. Entity/Actribute/Value column not included. Mayn brands not included. http://neo4j.com/docs/stable/tutorial-comparing-models.html didnt added object databases, I dont know enough... https://en.wikipedia.org/wiki/InterSystems_Cach%C3%A9 http://www.objectdb.com/ https://en.wikipedia.org/wiki/Db4o
  • #16: We are not suggesting RM is better, we are trying to move forward choosing one, and come avoid that discussion. Lots of JOINS: this is true if we are querying all the data together, of course it depends on the design and implementation of each system, but most queries will not query lots of tables together, and optimizations can be done.
  • #17: The goal of this slide is to make attendees to focus just on one or two technological options, and introduce the topic of ORM. We are NOT suggesting, or saying that one technology is better than another.
  • #18: The goal of this slide is to make attendees to focus just on one or two technological options, and introduce the topic of ORM. We are NOT suggesting, or saying that one technology is better than another.
  • #19: MODEL BASED TRANSFORMATIONS vs. 1-to-1 model ad-hoc transformations. Las transformaciones son importantes para mover datos entre distintas DBs, Sistemas, y para proveer servicios. It is very probable we have an OO model because we use an OO programming language. Mas adelante veremos ORM
  • #20: so if we use a JSON DB we can transform it to XML and give that to the application and viceversa.
  • #28: IMPORTANT: put the DvCodedText hierarchy in the whiteboard, we&amp;apos;ll use it in the slide with the EHRServer database design.
  • #31: openEHR process to define clinical records el modelo de información tiene observation, evaluatio, instruction y action, no tiene BP, heart rate, diagnosis, medication prescription, etc.
  • #34: https://raw.githubusercontent.com/ppazos/cabolabs-ehrserver/master/opts/Encuentro.opt archetypes and templates are putting pieces together from the IM to represent a full clinical document, it&amp;apos;s like lego...
  • #35: mostrar donde esta path, archetype id, node id, etc. FIXME: relacion COMPO-EVENT CONTEXT
  • #38: recordar &amp;quot;independencia tecnológica&amp;quot;
  • #39: https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software
  • #41: If you are creating a DBMS independent solution, consider the type correspondences between different DBMS, some tools already do that, like Grails ORM.
  • #42: Because of &amp;quot;identity&amp;quot;, one attribute will be &amp;quot;id&amp;quot;.
  • #43: one-to-one (bidirectional) can be embeded many-to-one (unidirectional) many-to-one with self reference (person-person relationship) many-to-many JOIN table one-to-many (bidirectional) backlink (at the DB level is the same as many-to-one unidirectional)
  • #46: MySQL - Query-Oriented Database, that&amp;apos;s why we use &amp;quot;indexes&amp;quot;. IMPORTANT: reference the DvCodedText hierarchy in the whiteboard (from slide 25).
  • #47: SQLServer - Operational / Transactional DB
  • #51: Just introducing the AQL concept.
  • #52: The example represents an AQL query over the archetype openEHREHR-OBSERVATION lab _test _full _blood _count.v1 taken from the International Clinical Knowledge Manager [41] to retrieve all the tests of full blood count indicating a moderate leukocytosis. Following the openEHR RM class hierarchy, the query selects for the EHR identified as 1ADC27 any encounter composition that contains a full blood count test observation. The condition of the where clause constraints to values in white cell count between 11 × 10^9 and 17 × 10^9 . The TIME WINDOW section is indicating that the fetched values should be restricted to the period of 1 year (P1Y) before 2014-02-12 (ISO-8601)
  • #53: The example represents an AQL query over the archetype openEHREHR-OBSERVATION lab _test _full _blood _count.v1 taken from the International Clinical Knowledge Manager [41] to retrieve all the tests of full blood count indicating a moderate leukocytosis. Following the openEHR RM class hierarchy, the query selects for the EHR identified as 1ADC27 any encounter composition that contains a full blood count test observation. The condition of the where clause constraints to values in white cell count between 11 × 10^9 and 17 × 10^9 . The TIME WINDOW section is indicating that the fetched values should be restricted to the period of 1 year (P1Y) before 2014-02-12 (ISO-8601)
  • #60: get full clinical documents or data points choose semantic identifiers to define criteria or projections for criteria, define the logic operator save and execute! test UI or from the REST API