SlideShare a Scribd company logo
Design of-absorption-column
DESIGN OF ABSORPTION
COLUMN
PRESENTED BY: ALI SHAAN(016)
USAMA SAEED(049)
ALI HASSAN(031)
CASE
It is required to design a packed tower to treat 40000 ft3
/h of an air stream containing
20 mole% of so2 at 700
c and 1 atm total pressure. It is necessary to recover 96% of
the so2 using water at a rate 30% more than the minimum. The column may be
packed with
1
1
2
-inch Raschig rings and may be operated at 60% of the flooding
velocity. The individual mass transfer coefficients are / 3
xk a=1.25kmol/m s and
/ 3
yk a=0.075kmol/m s . Design the tower.
STEPS USED DURING DESIGN OF
ABSORPTION COLUMN
• Selection of solvent
• Selection of column type
• Selection of packing
• Equilibrium data
• Material balance
• Minimum solvent flow rate
CONTINUED…
• Operating solvent flow rate
• Flooding/Diameter collection
• Pressure drop
• Height of packing
SOLVENT SELECTION
We Selected water(H2O) here:
• Because it is cheap.
• Non Toxic.
• Easily available.
SELECTION OF PACKING
We have selected random packing here:
• Because pressure drop is nearly negligible in our case.
• It is cheap as compare to structured .
MATERIAL AND TYPE OF PACKING
Raschig ring 1.5 inches.
Ceramic material.
Because they have:
• High Strength.
• High Fracture Toughness.
• High Hardness.
• Excellent Wear Resistance.
• Good Frictional Behaviour.
EQUILIBRIUM DATA
g S02/100 g H2O 600c 700c 900c
0.01 0.43 0.689999997 1.21
0.05 5.24 7.793333308 12.9
0.1 13.5 19.56666661 31.7
0.15 22.7 32.53333324 52.2
0.2 32.6 46.29999986 73.7
0.25 42.8 60.46666649 95.8
0.3 53.3 74.86666645 118
CONTINUED…
Mole Fractions
X y
2.8124E-05 0.000908
0.000140604 0.010254
0.000281169 0.025746
0.000421694 0.042807
0.000562179 0.060921
0.000702625 0.079561
0.000843032 0.098509
0.001123727 0.137456
0.001404264 0.177456
0.00280459 0.385088
CONTINUED…
Mole Ratios
X Y
2.8125E-05 0.000909
0.00014062 0.010361
0.00028125 0.026426
0.00042187 0.044721
0.0005625 0.064873
0.00070312 0.086439
0.00084374 0.109273
0.00112499 0.159361
0.00140624 0.215741
0.00281248 0.626248
CONTINUED…
Conversion is as follows:
The equilibrium (x, y) data are converted to mole ratio unit (X, Y) and plotted on X-Y plane.
As shown below. The cure is slightly convex upward. So the operating line corresponding to
the minimum liquid rate will not touch the equilibrium line. It will rather meet the equilibrium
line at the point having an ordinate Y1 (0.25). This is the pinch point having abscissa = (X1)max
= 0.0015.
2
2
2 2
-4
so -5
so 0
0.6
( .g) 7.89x10
760
/ M.W 0.02 / 64
( . ) 5.625x10
/ M.W 100 / . 0.02 / 64 100 /18
so
atm
H
P mmHg
y e
P mmHg
c
x e g
c M W
   
   
 
EQUILIBRIUM CURVE
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0 0.0005 0.001 0.0015 0.002 0.0025 0.003
Equilibrium curve
Material Balance
Average molecular weight = (mole fr. So2)*(M.W of so2)+( mole fr. Air)*(M.W of Air)
Volumetric flow rate = 40,000 ft3/h
Mass flow =m
. (.2)(64) (.8)(28.8)
35.84
M w  

31*35.84
0.07945 /
1.31443*343.15
PM
ft h
RT
  ρ
.
3 3
40,000 / *0.07945 / ftft h lb
CONTINUED…
1
1
1
1
1
1
1 1
2 1 1
2 2
2
3178.38 /
1441.6889 /
(1441.6889 / 35.84) kmol/ h
40.2256 /
0.2
0.25
1
(1 ) 32.180 /
8.04512 /
*(0.96) 7.7233152 /
s
G lb h
G kg h
G
G kmol h
y
y
Y
y
G G y kmol h
so entering G y kmol h
so absorbed so entering kmol h
so leaving





 

  
 
 
2 2
2 2 2
0.32180 /
/ 0.01
1 / 0.001
s
kmol h
concentration
Y so G
y Y Y

 
  
CONTINUED…
As solvent is pure
x2=0 (Mole Fraction unit)
X2=0 (Mole ratio unit)
MINIMUM LIQUID FLOW RATE
By an overall material balance:
Molecular weight of solvent =18
min 1 2
1 max 2
min
min
( )
( ) X
( ) 4984.682 /
( ) 1.3( ) 6480.0866 /
s
s
s
s operating s
L Y Y
G X
L kmol h
L L kmol h




 
6480.0886 /18
116641 /
s
s
L
L kg h


LIQUID FLOW RATE AT BOTTOM OF
TOWER
And the x1=0.002462
1 2 116641 7.7233 116649.2821 /sL L so absorbed kg h    
FLOODING VELOCITY CALCULATION
Total pressure in the tower =1atm ( I have neglected the pressure drop in the tower); temp=
303 k
L1=116649.2821 kg/h
G1=1441.6889 kg/h
M.Wav=35.84
µl=0.4079cp; surface tension = 64.47 dyne/cm (McCabe smith 7th edition)
(liquid)=61.07 lb/ft3 =978.25 kg/m3 (McCabe smith 7th edition)
3 3
0.07945 / 1.267 /g lb ft kg m ρ
ρ
CONTINUED…
Flow parameter
As our packing material is Raschig (dp=1.5 inch);
By using Eckert’s GPDC Chart ( Figure 5.33, principle of mass transfer and separation by
Binay k. dutta). Since it good enough for first generation packing. At flooding Flv=2.91, the
capacity parameter is 0.0075.
0.5
( ) 2.91
g
l
lv
L
F
G
 
ρ
ρ
The other parameters are:
Capacity parameter equation for the first generation.
1w
l

ρ
ρ
8 2
0.4079
94.5 /
4.18x10 /
l
p
c
µ cp
F ft
g ft h



CONTINUED…
2 0.2
l
( ') ( )( )w
lfl p
p
l
g c
G F µ
c
g

ρ
ρ
ρ ρ
CONTINUED…
2
fl
2
2
' 438.931 / .
' 0.70* ' 307 / .
' 1500 / .
op fl
op
G lb ft h
G G lb ft h
G kg m h

 

TOWER DIAMETER
Tower cross section:
Diameter
2
/ ' 1441.6889/1500
0.9611
opG G
m
 

0.9611*4
1.106m

 
TOWER HEIGHT CALCULATION
Overall material balance equation:
min 1 2
1 2
( )
X
s
s
L Y Y
G X



1
1
2
2
32.180 /
6480.0866 /
0.20
0.001547
0.001
0
s
s
G kmol h
L kmol h
y
x
y
x






CONTINUED…
The individual gas and liquid phase mass transfer coefficient are given. The following equation
is used to find the height.
Now we have plotted the equilibrium data on x-y plane (mole fr. Unit). Then we fined the
interfacial concentrations on the gas side. ( By Following the procedure describe in the Section
6.4.1 ( principle of mass transfer and separation process By Binay K.Dutta).
1 1
2 2
*
'
' '
(1 )
( )
(1 )*( )
tG tG
tG
y
y y
iM
tG
iy y
h H N
G
H
k a
y
N dy f y dy
y y y



 
  
CONTINUED…
0
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27
0.3
0.33
0.36
0.39
0.42
0 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018 0.0021 0.0024 0.0027 0.003
Equilibrium Curve (mole fr. unit)
CONTINUED…
y yi (1-y)im 1-y y-yi f(y)
0.2 0.19 0.80499 0.8 0.01 100.6237
0.185 0.175 0.81999 0.815 0.01 100.6122
0.149 0.133 0.858975 0.851 0.016 63.08572
0.1 0.047 0.926247 0.9 0.053 19.41818
0.0569 0.0513 0.945897 0.9431 0.0056 179.1011
0.0427 0.0376 0.959848 0.9573 0.0051 196.6003
0.00887 0.00633 0.992399 0.99113 0.00254 394.205
0.00335 0.00178 0.997435 0.99665 0.00157 637.4442
CONTINUED…
By using trapezoidal rule:
1 1
2 2
(1 )
( ) 12.5
(1 )*( )
12.5
y y
iM
tG
iy y
tG
y
N dy f y dy
y y y
so
N

  
 

 
CONTINUED…
The height of a gas-phase transfer unit:
2
2
1
2
2 2
2
'
' '
' 0.075*3600 270 / .
' 40.2256 / 0.9611 41.85371 / .
' / (1 )*0.9611 33.4824kmol/ h.m
' 37.6686kmol/ h.m
0.311
*
0.311*12.5 3.88
tG
y
y
s
tG
tG tG
G
H
k a
k kmol h m
G kmol h m
G G y
G
H m
h N H
h m

 
 
  



 
Specification Sheet
Identification:
Item: Packed Absorption Column
Item No: N/A
No. required: 1
Function: To remove SO2 from mixture of gases
Operation: Continuous
CONTINUED…
Entering gas
Kg/hr
Exit gas
Kg/hr
Liquid entering
Kg/hr
1441.6889 1045.904 116649
Design data:
No. of transfer units = 12.5
Height of transfer units = 0.311 m
Total height of column = 3.88m
Diameter = 1.109m
Pressure drop = Neglected
CONTINUED…
Internals:
Size and type = 1.5 in Rachig ring
Material of packing: Ceramic
Packing arrangement: Dumped
Type of packing support: Simple grid & perforated support
Design of-absorption-column

More Related Content

PDF
Production of 66000 ton/year of Formaldehyde from Methanol using Silver catal...
PDF
Heat Exchanger
PPTX
Unit operations.pptx
PDF
Design of packed columns
PPTX
Methods of Separating mixtures
PPTX
Methanol Process Design: Process Alternatives, Mass and Energy Balance, Equip...
PDF
23685872 industrial-organic-chemistry
PDF
The six step guide to practical project management
Production of 66000 ton/year of Formaldehyde from Methanol using Silver catal...
Heat Exchanger
Unit operations.pptx
Design of packed columns
Methods of Separating mixtures
Methanol Process Design: Process Alternatives, Mass and Energy Balance, Equip...
23685872 industrial-organic-chemistry
The six step guide to practical project management

What's hot (20)

PDF
01 kern's method.
PDF
Absorption stripping
PDF
Feed conditions in distillation column with respect to feed plate and reflux
PPTX
Types of Distillation & column internals
PDF
VLE VAPOR LIQUID EQUILIBRIUM - Introduction
PPTX
Distillation Column-Pohnchon savrit method.pptx
PPT
conversion and reactor sizing
PDF
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
DOCX
Heat exchanger lab 2
PDF
Excess property determination
PDF
batch distillation, multi stage batch distillation
DOCX
Types and design of the towers trays
PPTX
Recycle Reactor (Basics & Design Eqn)
PDF
Distillation column design
PDF
Packed bed flooding
PDF
Transport phenomena Solved problems
PPTX
Evaporator performance
01 kern's method.
Absorption stripping
Feed conditions in distillation column with respect to feed plate and reflux
Types of Distillation & column internals
VLE VAPOR LIQUID EQUILIBRIUM - Introduction
Distillation Column-Pohnchon savrit method.pptx
conversion and reactor sizing
Flash Distillation in Chemical and Process Engineering (Part 2 of 3)
Heat exchanger lab 2
Excess property determination
batch distillation, multi stage batch distillation
Types and design of the towers trays
Recycle Reactor (Basics & Design Eqn)
Distillation column design
Packed bed flooding
Transport phenomena Solved problems
Evaporator performance
Ad

Viewers also liked (20)

DOC
PPTX
Absorption and Stripping - mass transfer
DOCX
Gas absorbtion
PPTX
gas absorption
PPT
Absorption & indusrial absorber
PPTX
Gas Absorption Laboratory Experiment
PPTX
Gas absorption ppt
PDF
Preliminary Design SWS
PDF
CHE451- CO2 Absorption Oral Report
PPT
Gpdc for random and structured packings
PDF
L 34 and 35 final
PDF
Principles of mass transfer and separation process bkd b k dutta
PDF
Ejercicios Valladolid Fenomenos de Transporte
PDF
Unit operations of chemical engineering, 5th edition.
DOCX
Packed tower
PDF
Transport processes and unit operations geankoplis
PDF
transport-phenomena-2nd-ed-by-bird-stewart-lightfoot-solution-manual
PDF
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
PDF
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
PPT
Unit operation
Absorption and Stripping - mass transfer
Gas absorbtion
gas absorption
Absorption & indusrial absorber
Gas Absorption Laboratory Experiment
Gas absorption ppt
Preliminary Design SWS
CHE451- CO2 Absorption Oral Report
Gpdc for random and structured packings
L 34 and 35 final
Principles of mass transfer and separation process bkd b k dutta
Ejercicios Valladolid Fenomenos de Transporte
Unit operations of chemical engineering, 5th edition.
Packed tower
Transport processes and unit operations geankoplis
transport-phenomena-2nd-ed-by-bird-stewart-lightfoot-solution-manual
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Unit operation
Ad

Similar to Design of-absorption-column (20)

PDF
Shallow and Deep Founation Design Calucations
DOCX
gantry crane report
PDF
Fluid mechanic white (cap2.1)
PDF
Fundamentals of Heat and Mass Transfer: Exercise Solutions, 6th Edition - The...
PDF
Principles of Heat Transfer 8th Edition Kreith Solutions Manual
PDF
Foundationeng deep-foundations_ps
PPTX
Seismic design of liquid storage tanks.pptx
PPTX
Section 6 multistage separation processes
PPTX
Excercise pc 20172018
DOC
2 compression
PPTX
MBDA 13.03.13
PDF
PPTX
Chapter 11
PPTX
PED_Distillation_Column_designing_Sum (1).pptx
PDF
Rhodes solutions-ch4
PDF
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
PDF
Episode 5 liquid solid separation horizontal diaphragm filter press
PDF
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
DOCX
Thermo problem set no. 2
Shallow and Deep Founation Design Calucations
gantry crane report
Fluid mechanic white (cap2.1)
Fundamentals of Heat and Mass Transfer: Exercise Solutions, 6th Edition - The...
Principles of Heat Transfer 8th Edition Kreith Solutions Manual
Foundationeng deep-foundations_ps
Seismic design of liquid storage tanks.pptx
Section 6 multistage separation processes
Excercise pc 20172018
2 compression
MBDA 13.03.13
Chapter 11
PED_Distillation_Column_designing_Sum (1).pptx
Rhodes solutions-ch4
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Episode 5 liquid solid separation horizontal diaphragm filter press
[W f stoecker]_refrigeration_and_a_ir_conditioning_(book_zz.org)
Thermo problem set no. 2

Recently uploaded (20)

PPTX
communication and presentation skills 01
PPTX
introduction to high performance computing
PDF
Visual Aids for Exploratory Data Analysis.pdf
PPT
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Fundamentals of Mechanical Engineering.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT
Occupational Health and Safety Management System
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
Soil Improvement Techniques Note - Rabbi
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
PPT on Performance Review to get promotions
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Artificial Intelligence
communication and presentation skills 01
introduction to high performance computing
Visual Aids for Exploratory Data Analysis.pdf
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
R24 SURVEYING LAB MANUAL for civil enggi
Fundamentals of Mechanical Engineering.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Occupational Health and Safety Management System
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Soil Improvement Techniques Note - Rabbi
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Fundamentals of safety and accident prevention -final (1).pptx
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PPT on Performance Review to get promotions
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Artificial Intelligence

Design of-absorption-column

  • 2. DESIGN OF ABSORPTION COLUMN PRESENTED BY: ALI SHAAN(016) USAMA SAEED(049) ALI HASSAN(031)
  • 3. CASE It is required to design a packed tower to treat 40000 ft3 /h of an air stream containing 20 mole% of so2 at 700 c and 1 atm total pressure. It is necessary to recover 96% of the so2 using water at a rate 30% more than the minimum. The column may be packed with 1 1 2 -inch Raschig rings and may be operated at 60% of the flooding velocity. The individual mass transfer coefficients are / 3 xk a=1.25kmol/m s and / 3 yk a=0.075kmol/m s . Design the tower.
  • 4. STEPS USED DURING DESIGN OF ABSORPTION COLUMN • Selection of solvent • Selection of column type • Selection of packing • Equilibrium data • Material balance • Minimum solvent flow rate
  • 5. CONTINUED… • Operating solvent flow rate • Flooding/Diameter collection • Pressure drop • Height of packing
  • 6. SOLVENT SELECTION We Selected water(H2O) here: • Because it is cheap. • Non Toxic. • Easily available.
  • 7. SELECTION OF PACKING We have selected random packing here: • Because pressure drop is nearly negligible in our case. • It is cheap as compare to structured .
  • 8. MATERIAL AND TYPE OF PACKING Raschig ring 1.5 inches. Ceramic material. Because they have: • High Strength. • High Fracture Toughness. • High Hardness. • Excellent Wear Resistance. • Good Frictional Behaviour.
  • 9. EQUILIBRIUM DATA g S02/100 g H2O 600c 700c 900c 0.01 0.43 0.689999997 1.21 0.05 5.24 7.793333308 12.9 0.1 13.5 19.56666661 31.7 0.15 22.7 32.53333324 52.2 0.2 32.6 46.29999986 73.7 0.25 42.8 60.46666649 95.8 0.3 53.3 74.86666645 118
  • 10. CONTINUED… Mole Fractions X y 2.8124E-05 0.000908 0.000140604 0.010254 0.000281169 0.025746 0.000421694 0.042807 0.000562179 0.060921 0.000702625 0.079561 0.000843032 0.098509 0.001123727 0.137456 0.001404264 0.177456 0.00280459 0.385088
  • 11. CONTINUED… Mole Ratios X Y 2.8125E-05 0.000909 0.00014062 0.010361 0.00028125 0.026426 0.00042187 0.044721 0.0005625 0.064873 0.00070312 0.086439 0.00084374 0.109273 0.00112499 0.159361 0.00140624 0.215741 0.00281248 0.626248
  • 12. CONTINUED… Conversion is as follows: The equilibrium (x, y) data are converted to mole ratio unit (X, Y) and plotted on X-Y plane. As shown below. The cure is slightly convex upward. So the operating line corresponding to the minimum liquid rate will not touch the equilibrium line. It will rather meet the equilibrium line at the point having an ordinate Y1 (0.25). This is the pinch point having abscissa = (X1)max = 0.0015. 2 2 2 2 -4 so -5 so 0 0.6 ( .g) 7.89x10 760 / M.W 0.02 / 64 ( . ) 5.625x10 / M.W 100 / . 0.02 / 64 100 /18 so atm H P mmHg y e P mmHg c x e g c M W          
  • 14. Material Balance Average molecular weight = (mole fr. So2)*(M.W of so2)+( mole fr. Air)*(M.W of Air) Volumetric flow rate = 40,000 ft3/h Mass flow =m . (.2)(64) (.8)(28.8) 35.84 M w    31*35.84 0.07945 / 1.31443*343.15 PM ft h RT   ρ . 3 3 40,000 / *0.07945 / ftft h lb
  • 15. CONTINUED… 1 1 1 1 1 1 1 1 2 1 1 2 2 2 3178.38 / 1441.6889 / (1441.6889 / 35.84) kmol/ h 40.2256 / 0.2 0.25 1 (1 ) 32.180 / 8.04512 / *(0.96) 7.7233152 / s G lb h G kg h G G kmol h y y Y y G G y kmol h so entering G y kmol h so absorbed so entering kmol h so leaving                2 2 2 2 2 0.32180 / / 0.01 1 / 0.001 s kmol h concentration Y so G y Y Y      
  • 16. CONTINUED… As solvent is pure x2=0 (Mole Fraction unit) X2=0 (Mole ratio unit)
  • 17. MINIMUM LIQUID FLOW RATE By an overall material balance: Molecular weight of solvent =18 min 1 2 1 max 2 min min ( ) ( ) X ( ) 4984.682 / ( ) 1.3( ) 6480.0866 / s s s s operating s L Y Y G X L kmol h L L kmol h       6480.0886 /18 116641 / s s L L kg h  
  • 18. LIQUID FLOW RATE AT BOTTOM OF TOWER And the x1=0.002462 1 2 116641 7.7233 116649.2821 /sL L so absorbed kg h    
  • 19. FLOODING VELOCITY CALCULATION Total pressure in the tower =1atm ( I have neglected the pressure drop in the tower); temp= 303 k L1=116649.2821 kg/h G1=1441.6889 kg/h M.Wav=35.84 µl=0.4079cp; surface tension = 64.47 dyne/cm (McCabe smith 7th edition) (liquid)=61.07 lb/ft3 =978.25 kg/m3 (McCabe smith 7th edition) 3 3 0.07945 / 1.267 /g lb ft kg m ρ ρ
  • 20. CONTINUED… Flow parameter As our packing material is Raschig (dp=1.5 inch); By using Eckert’s GPDC Chart ( Figure 5.33, principle of mass transfer and separation by Binay k. dutta). Since it good enough for first generation packing. At flooding Flv=2.91, the capacity parameter is 0.0075. 0.5 ( ) 2.91 g l lv L F G   ρ ρ
  • 21. The other parameters are: Capacity parameter equation for the first generation. 1w l  ρ ρ 8 2 0.4079 94.5 / 4.18x10 / l p c µ cp F ft g ft h    CONTINUED… 2 0.2 l ( ') ( )( )w lfl p p l g c G F µ c g  ρ ρ ρ ρ
  • 22. CONTINUED… 2 fl 2 2 ' 438.931 / . ' 0.70* ' 307 / . ' 1500 / . op fl op G lb ft h G G lb ft h G kg m h    
  • 23. TOWER DIAMETER Tower cross section: Diameter 2 / ' 1441.6889/1500 0.9611 opG G m    0.9611*4 1.106m   
  • 24. TOWER HEIGHT CALCULATION Overall material balance equation: min 1 2 1 2 ( ) X s s L Y Y G X    1 1 2 2 32.180 / 6480.0866 / 0.20 0.001547 0.001 0 s s G kmol h L kmol h y x y x      
  • 25. CONTINUED… The individual gas and liquid phase mass transfer coefficient are given. The following equation is used to find the height. Now we have plotted the equilibrium data on x-y plane (mole fr. Unit). Then we fined the interfacial concentrations on the gas side. ( By Following the procedure describe in the Section 6.4.1 ( principle of mass transfer and separation process By Binay K.Dutta). 1 1 2 2 * ' ' ' (1 ) ( ) (1 )*( ) tG tG tG y y y iM tG iy y h H N G H k a y N dy f y dy y y y        
  • 26. CONTINUED… 0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42 0 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018 0.0021 0.0024 0.0027 0.003 Equilibrium Curve (mole fr. unit)
  • 27. CONTINUED… y yi (1-y)im 1-y y-yi f(y) 0.2 0.19 0.80499 0.8 0.01 100.6237 0.185 0.175 0.81999 0.815 0.01 100.6122 0.149 0.133 0.858975 0.851 0.016 63.08572 0.1 0.047 0.926247 0.9 0.053 19.41818 0.0569 0.0513 0.945897 0.9431 0.0056 179.1011 0.0427 0.0376 0.959848 0.9573 0.0051 196.6003 0.00887 0.00633 0.992399 0.99113 0.00254 394.205 0.00335 0.00178 0.997435 0.99665 0.00157 637.4442
  • 28. CONTINUED… By using trapezoidal rule: 1 1 2 2 (1 ) ( ) 12.5 (1 )*( ) 12.5 y y iM tG iy y tG y N dy f y dy y y y so N         
  • 29. CONTINUED… The height of a gas-phase transfer unit: 2 2 1 2 2 2 2 ' ' ' ' 0.075*3600 270 / . ' 40.2256 / 0.9611 41.85371 / . ' / (1 )*0.9611 33.4824kmol/ h.m ' 37.6686kmol/ h.m 0.311 * 0.311*12.5 3.88 tG y y s tG tG tG G H k a k kmol h m G kmol h m G G y G H m h N H h m             
  • 30. Specification Sheet Identification: Item: Packed Absorption Column Item No: N/A No. required: 1 Function: To remove SO2 from mixture of gases Operation: Continuous
  • 31. CONTINUED… Entering gas Kg/hr Exit gas Kg/hr Liquid entering Kg/hr 1441.6889 1045.904 116649 Design data: No. of transfer units = 12.5 Height of transfer units = 0.311 m Total height of column = 3.88m Diameter = 1.109m Pressure drop = Neglected
  • 32. CONTINUED… Internals: Size and type = 1.5 in Rachig ring Material of packing: Ceramic Packing arrangement: Dumped Type of packing support: Simple grid & perforated support

Editor's Notes

  • #10: Newton 2 point formulae
  • #11: Y=(Partial pressure of so2)/total pressure………. X=(C/M.Wso2)/c/M.wso2+C/M.Wh2O
  • #15: R units are FPS
  • #18: The equilibrium (x, y) data are converted to mole ratio unit (X, Y) and plotted on X-Y plane. As shown below. The cure is slightly convex upward. So the operating line corresponding to the minimum liquid rate will not touch the equilibrium line. It will rather meet the equilibrium line at the point having an ordinate Y1 (0.25). This is the pinch point having abscissa = (X1)max = 0.0015
  • #30: K’y=individual mass transfer coefficient of gas film a’=interfacial area G’1=mass flowrate /tower area G’2=exiting gas flow rate G’=average