This document describes the development of a 3D convolutional neural network (CNN) model to recognize human activities using moderate computation capabilities. The model is trained on the KTH dataset, which contains activities like walking, running, jogging, handwaving, handclapping, and boxing. The proposed model uses 3D CNN layers and max pooling layers to extract both spatial and temporal features from video frames. Testing achieved an accuracy of 93.33% for activity recognition. The number of model parameters and operations are also calculated to show the model can perform human activity recognition with reasonable computational requirements suitable for devices with moderate capabilities.