1. INSTYTUT METALURGII I INŻYNIERII MATERIAŁOWEJ
im. Aleksandra Krupkowskiego
Polskiej Akademii Nauk
Projekt nr WND-POWR.03.02.00-00-IO43/16
Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim
Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie
Kraków 2020
Photovoltaic systems – theory
and practice
Part 4
Marek Lipiński
2. 1. Introduction to photovoltaics
Basic information about the solar energy and photovoltaic Energy conversion
2. Technology of solar cells
The industrial technology of silicon solar cells and thin films solar cells will be presented
3. Emerging photovoltaics
Emerging materials and devices including dye-sensitized solar cell, organic solar cell, perovskite
solar cell and quantum dot solar cell
4. Photovoltaic systems
Technology, applications, economics of photovoltaic systems
Cours description
Projekt nr WND-POWR.03.02.00-00-IO43/16
Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim
Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie
6. In a semiconductor crystallite whose size is smaller than
twice the size of its exciton Bohr radius (ab), the
excitons are squeezed, leading to quantum confinement.
https://en.wikipedia.org/wiki/Quantum_dot
7. aB = m0/m* a0
a0 Bohr radius a0 ≈ 0.53 nm
semiconductor dielectiric
constant m* effective mass of
electron of hole
or for exciton reduced mass (mexe*-1 =
me*-1 +mh*-1
1 O. Madelung , Semiconductors: Data Handbook.
Material properties and Bohr radii aB of various bulk semiconductors
8. Semiconductor Size
(nm
)
Eg (eV)
PbSe 0.27 i
PbSe 5.4 0.73
PbSe 4.7 0.82
PbSe 3.9 0.91
PbS 0.41 i
PbS 5.5 0.85
PbTe 0.31 i
PbTe 5.5 0.91
Si 1.12
Si 2 1.7
QD solar cells
9. h+
h+
e-
e-
e-
hv
The effects of quantum confinement in quantum
dots
• Slowing down the cooling of excitons,
strengthening the Auger process,
• There is no request to maintain the crystalline
momentum
• One photon can generate many e-h pairs. Crash
ionization multi-exciton generation by high energy
photons
• Expanding the energy gap
Eg
One photon two pairs e-h
•A.J. Nozik / Physica E
14 (2002) 115
•A. Luque, A. Marti, and
A.J. Nozik, MRS Bulletin Vol.
32 (2007) 236
QD solar cells
10. (a) TEM image showing PbSe NCs with average diameter of
5.2nm. (b) Linear absorption spectra of a
series of PbSe NCs with average diameter ranging
from 3.3nm to 8.1nm. Strong excitonic absorption
and a blue-shift of the onset are signatures of quantum
confinement in NCs.
QD solar cells
https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.200810013
12. 1. Photoelectrodes from QDs "arrays„ (super-
lattice)
2. Nanocrystalline TiO2 sensitized QDs
3. QDs immersed in a polymer blend ("e" and "h")
A.J. Nozik / Physica E 14 (2002) 115
Solar cell configurations with quantum dots:
QD solar cells
13. p
n
i
Quatum super-
lattice - (QDs)
Slow down cooling process, transport and collection of hot carriers in p and n contacts -
higher voltage or larger photocurrent as a result of MEG
1. Quantum super-lattice – p-i-n structure.
A. Luque, A. Marti, and J. Nozik, MRS Bulletin Vol. 32 (2007) p. 236
QD solar cells
14. J. M. Luther, M. Law, M. C. Beard, Q., M.O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett.,Vol.
8, No. 10,2008, p.3488.
Qunatum super-lattice– Structure with a Schottki diode
NCs layer– deposited by „layer – by layer (LBL) dip coating”, 60 nm thickness
QD solar cells
15. 2. QDs DSSC
Barwnik w ogniwach DSSC zastąpiony jest przez QDs.
A. Luque, A. Marti, and J.
Nozik, MRS Bulletin Vol. 32
(2007) p. 236
18. The schematic band energy structure of bulk-heterojunction organic cell used to produce the results
(b)(left) a schematic showing random distribution of donor (P3HT) and acceptor (PCBM) regions in the
blended bulk-heterojunction organic solar cell, (right) a schematic diagram of systematic alignment of
donor and acceptor layers
QDs immersed in a polymer blend
20. IBSC made from solutions. PbS quantum dots (4 nm) immersed in MAPbBr3 perovskite
Nature Comunications (2019)
IBSC cells from colloidal solutions of quantum dots
22. Cross-sectional TEM images of the multilayer (a) low and (b) high magnification. The
sample was annealed at 1100oC (M. Lipiński in Archives of Materials Science and
Engineering, 46 (2010) 69-87).
Silicon Quantum dots for III generation solar cells
23. Górne ogniwo QD
(Eg = 1.7 eV 2 nm QD
Złącze tunelowe
Ogniwo Si
(Eg = 1.1 eV)
p
n
p
n
supersieć QD 2 nm
Eg =1.7 eV
ogniwo Si
Eg =1.1 eV
p Si QD bariery SiNx
a)Scheme of a two-junction silicon cell. The upper cell is made of a silicon superlattice
quantum dots with an energy gap of 1.7 eV, the bottom cell is a classic silicon link. These
cells are connected with each other by a tunnel junction [1].
b) Scheme of the band structure of a two-junction cell [2].
Tandem silicon solar cells using Si Qdots
[1] E.-C. Cho, M.A.Green, G. Conibeer et al., Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells, Hindwai
Publishing Corporation, Advances in OptoElectronics (2007) 1-11
2] G. Coniber, Third-generation photovoltaics, Materials Today 10 (2007) 42-50.
24. Nanoparticles MAPbBr3
STUDYING OF PEROVSKITE NANOPARTICLES IN
PMMA MATRIX USED AS LIGHT CONVERTER
FOR SILICON SOLAR CELL
Light converter from perovskite nanoparticles
28. Source: Web of Science. Topic: Perovskite solar cells
A review of the patent landscape. Cintelliq https://go.nature.com/2IGsIR9 (2018).
Progress in perovskite solar cells
8
29. Perovskite - Calcium titanium oxide CaTiO3 was discovered in the Urals Mountains in 1838
by Gustav Rose and named after Russian mineralogist Lev Perovski
All materials with the crystallographic structure of calcium titanium oxide CaTiO3 are
named
perovskites
The general chemical formula for pure perovskite compounds is ABX3, where ‘A’ and ‘B’ are
two cations of very different sizes, and ‘X’ is an anion that binds to both.
Ideal crystal structure of cubic
perovskite
Perovskite ABX3
29
30. Peng Gao et al., Organohalide lead
perovskites for photovoltaic applications,
Energy & Enviromental Science, 2014
Perowskite crystalline
system (ABX3)
Halide perovskite ABX3
A I (Li+, K+, Cs+, CH3NH3
+)
B II (Pb2+
, Mg2+
, Ca2+
, Sn2+
, Ba2+
, Zn2+
)
X (F-, Cl-, Br-, I-)
Oxide perovskite ABO3
AII (Mg2+, Ca2+, Ba2+)
B IV
(Ti4+
, Si4+
)
Organo-metal halide
perovskite
Alkali-halide perovskite
30
B
A
X
Halide perovskite ABX3
31. 1892 r : First article on halide perovskites
31
32. t = 0,89–1.0 cubic structure
dla t < 0,89 tetragonal or orthorhombic
M. A. Green, A. H-Bailie, and H. J. Snaith, Nature Photonics, 8,
2014
A RA [nm]
MA 0,18
FA 0,19-0,22
Cs 0,17
Rb 0,15
X RA [nm]
I 0.220
Br 0.196
Cl 0.181
B RB [nm]
Pb 0.119
Sn 0.110
Cs + (cezu) MA (metyloamoniowy) FA (formamidinowy)
Goldschmidts tolerance factor t :
t = (RB+RX)/{2(RB+RX)}
RA, RB, RX ionic radii
For halide perovskites:
0,81 < t < 1,11
X = F, Cl, Br, I
A = organic cation: MA (CH3NH3
+) , FA (CH3(NH2)2
+) or Cs+
B = inorganic cations (Pb, Sn)
Kationy A:
Halide perovskite ABX3
32
33. t phase, color Phase after
annealing
Eg PCE
MAPbI3 0,89 Tetragonal, black Tetragonal 1,5 20,3
FAPbI3 1,02
Hexagonal, yellow
regular 1,49 17
CsPbI3 0,79 Rhombic, yellow Rhombic, yellow 1,72 10,77
FAPbI3 −xBrx, Eg =1.48 – 2.23 eV
Halide perovskite ABX3
33
34. Perovskit Cariers D(cm2s-1) LD(nm)
CH3 NH3 PbI3−x Clx electron 0.042±0.016 1069±204
hole 0.054±0.022 1213±243
CH3 NH3 PbI3 electron 0.017±0.011 129±41
hole 0.011±0.007 105±32
D diffusion
coefficient
LD diffusion length
H.J. Snaith i współp.: Science 342 (2013) 341
Electronic properties of perovskites
34
35. M. A. Green, A.H-Baillie and H. J. Snaith, NATURE PHOTONICS 8, 2014, 506.
MAPbI3 x
− Clx
CH3NH3PbI3
Optical properties of perovskites
35
37. Eg = 1.55 eV for MAPbI3
Shockley - Queisser efficiency limit for an ideal solar cell versus band gap energy for: (a)
unconcentrated 6000 K black body radiation (1595.9 Wm-2); (b) full concentrated 6000 K black
body radiation (7349.0 × 104 Wm-2); (c) unconcentrated AM1.5-Direct [18] (767.2 Wm-2) and (d)
AM1.5 Global (962.5 Wm-2)
Handbook of Photovoltaic
Science and Engineering, Ed:
A. Luque and S. Hegedus ,
J. Wiley, 2003.
Shockley - Queisser efficiency limit
37
38. T. Leijtens et al ., Nature Energy, 3,(2018) 828–838
Top perovskite cell: FA0.83Cs0.17Pb(I 0.6Br0.4)3 Eg = 1.72 eV
botom cell Si: Eg = 1.12 eV
Theoretical limit for tandem (2-junctions)
38
39. Disadvanges:
• Low stability
• Toxicity from
Pb
1. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016).
2.Eperon, G. E. et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy
Environ. Sci.7, 982–988 (2014).
3. Unger, E. L. et al. Roadmap and road blocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017).
5. H.J. Snaith et al., Science 342 (2013) 341
Advantages:
• Semiconductor with excellent opto-
electronics properties,
• Eg can be changed in wide range :1.2 - 2.0
eV,
• High absorption,
• Low non-radiative carrier recombination
rates,
• Excellent charge transport: diffusion of
lenght > 1mm )
• Low crystallization temperature
• Simple methods of manufacturing
from solutions: spin-on, ink-jet
printing, spray,
• Flexibility
• Earth-abundant elements: C, N, H, Pb,
I..
• High efficiency > 20%
39
40. K. Kalyanasundaram, S. M. Zakeeruddin, M. Grätzel, Material Matters, 2016, 11.1, 3
Perovskite solar cells
40
41. FAPbI3 −xBrx, Eg =1.48 – 2.23 eV
T. Leijtens et al. , J. Mater. Chem. A, 2017, 5,11483
(B) Sn - decreases Eg
(X) Br - increases Eg
t Eg PCE
MAPbI3 0.89 1.5 20.3
FAPbI3 1.02 1.49 17
CsPbI3 0.79 1.72 10,77
FA0.85MA0.15Pb(I0.85Br0.15)3
1.62 22.1
FA0.85Cs0.15PbI3
0.99 1.52 17.3
FA0.85Cs0.17Pb(I0.83Br0.17)3
1.01 1.74 20.0
FA0.75Cs0.25Pb0.5Sn0.5I3
1.2
Halide perovskites ABX3 and with mixed ions
41
43. Je
pr
o
On
CH
ong-Hyeok Im i in., Morphology-
photovoltaic perty correlation in
perovskite solar cells:
e-step versus two-step deposition of
3NH3PbI3, APL Materials, 2014
PbI2
Spin – coating: 3000 r. p. m, 30s
Annealing: 40 ° C – 2 min., 100 ° C - 5 min.
CH3NH3I
Dippng: 40 s
Annealing : 100 ° C, 10 min
Two-stage method - production of perovskites in mesoporous skeletal structures (TiOx, ZnO)
Two etap method
Perovskite solar cells
43
45. , 2014
Division of Advanced Materials, Korea Research Institute of Chemical
Technology, Korea,
Department of Energy Science, University, Suwon ,Republic of Korea
Perovskite solar cells
45
46. Characteristics of J-V perovskite cell made in LF IMIM
PAN in Kozy
Cells developed at LF IMIM
Perovskite solar cells
47. J-V characteristics of the perovskite cell for both scan directions for scanning speeds of 25 V / s (a), 1V / s (b)
and 0.5 V/s. Cells made in LF IMIM PAN in Kozy
47
I-V characteristic hysteresis
48. Destruction of MAPbI3 perovskite in the cell (without HTM and without encapsulation). A yellow color indicates
the presence of PbI2. The cell exposed to sunlight. Test of S9 and S7 polymers (polyazomethines) for
encapsulation 48
Stability
50. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate and A.
Hagfeldt, Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance, Science, 2016,
354(6309), 206.
Stability
50
51. CH3NH2 methylamine - volatile and water-soluble HI-
water-soluble 1]
1. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde and A. Walsh,, Nano Lett., 2014, 14, 2584–2590
2. J. A. Christians , P. A. Miranda Herrera , P
. V. Kamat ,J. Am. Chem. Soc. 2015 ,137 , 1530 .
4MAPbI3 + 2H2O MA4PbI6 H2O
+3PbI2
Another mechanism according to
[2]
51
52. Requirements:
Cell operating temperature -40 to> 85 oC. Cell operation up to 85˚C
Lamination - 150 ˚ C
MAPbX3 unstable at 85oC - MA sublimates at 85 oC even in an inert
atmosphere
MAPbX3 is not suitable for industrial production!
Adv. Energy Mater., 2015, 1500477
Thermal stability
52
54. t Faza, kolor Faza po
wygrzaniu
Eg PCE Przejście fazowe
MAPbI3 0,89 Tetragonal, black Tetragonal 1,5 20,3 Regular, 60o C
FAPbI3 1,02
Hexagonal, yellow
regular 1,49 17 Regular, 150o C
CsPbI3 0,79 Rhombic, yellow Rhombic,
yellow
1,72 10,77 Regular, 300o C
FA0.85MA0.15Pb(I0.85Br0.15)3
Regular, black Regular black 1,62 22,1
FA0.85Cs0.15PbI3
0,99 Tetragonal, black tetragonal 1,52 17,3
FA0.85Cs0.15Pb(I0.83Br0.17)3
1,01 Tetragonal, blacka tetragonal 1,74 20,0
Tomas Leijtens, Kevin Bush, Rongrong Cheacharoen, Rachel Beal,
Andrea Bowring and Michael D. McGehee,
Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and
thermal stability, J. Mater. Chem. A, 2017, 5,11483
Department of Materials Science, Stanford University, Lomita Mall, Stanford, CA, USA.
3D metal halide perovskites used in photovoltaics
Mixed cations [FAMA], [FACs]
54
55. Eg [eV] PCE [%] cell ref
FA0.83Cs0.17Pb(I0.83Br0.17)3
1,74 23,6
PSC/Si
Tandem monolit
PSC/Si
[2]
FA0.75Cs0.25Pb0.5Sn0.5I3
FA0.83Cs0.17Pb(I0.5Br0.5)3
1,2
1,8
17,0
PSC/PSC
Tandem
PSC/PSC [3]
Science, 2015, 348(6240),1234
[1] [2] NREL, Best Research-Cell Efficiencies, 2017
3D metal halide perovskites used in photovoltaics
Mixed cations [FAMA], [FACs]
55
58. A) J-V characteristic for 10 mVs-1 cell with 21.8% efficiency (Voc = 1180 mV,
Jsc = 22.8 mA cm−2, FF 81%).
B) cell with the highest Voc. 19% PCE stabilized for 0.5 cm2 cell.
Saliba et al. Science, 2016, 354(6309), 206
Mixed cations [RbCsMAFA]
58
59. Thermal stability test. Aging 500 hours at 85oC, full solar lighting at the point of
maximum power in the atmosphere N2. Aging procedure more stringent than for
industrial standards.
Saliba et al. Science, 2016, 354(6309), 206
Kationy mieszane [RbCsMAFA]
Mixed cations [RbCsMAFA]
59
60. R2(A)n-1BnX3n+1 (n=1, 2, 3, 4, …) n the numer of layer (Ruddlesden-Popper structure).
Dla R= kation butyloamoniowy (n butylammonium)
R – large alkylammonium cations:
PEA = C8H9NH3 phenylethylammonium cation
BA = C4H9NH3 butylammonium cation
Layered perovskites
60
61. Voc = 1.18 V
PCE = 4.73%
Eg =2,1 eV
(PEA)2(MA)2Pb3I10
Layered perovskites
61
62. 3D perovkite FA0.83Cs0.17Pb(I yBr1 − y)3
2D perovskite (BA)2(MA)3Pb4I13
2D-3D structure:
BA0.09(FA0.83Cs0.17)0.91 Pb(I 0.6Br0.4)3 ( x = 0.09)
2D-3D structures - the ways of icreasing stability
62
63. Model struktury 2D-3D
Model of energetic bands of 2D-3D structure, CB- conductivity band, VB valence band.
Z Wang et al., NATURE ENERGY 2, 2017, 17135
2D-3D structures
63
64. FA0.83Cs0.17Pb(I 0.6Br0.4)3 ( x = 0) BA0.09(FA0.83Cs0.17)0.91 Pb(I 0.6Br0.4)3 ( x = 0.09)
3D 3D-2D
2D-3D structures
64
65. (a) J-V characteristics: 3D perovskite FA0.83Cs0.17Pb(I 0.6Br0.4)3 (x=0) (Eg = 1.72 eV)
and for 3D-2D BA0.09(FA0.83Cs0.17)0.91Pb(I 0.6Br0.4)3 (x= 0,09)
(a) Stabilized cell efficiency (SPO) of the best cell (SPO ratio - ratio of SPO to PCE.
2D-3D structures
Z Wang et al., NATURE ENERGY 2, 2017, 17135
65
66. J-V characteristics: 3D perovskite for BA0.05(FA0.83Cs0.17)0.95Pb(I 0.8Br0.2)3 (Eg = 1.61 eV). Statistical
distribution
2D-3D structures
Z Wang et al., NATURE ENERGY 2, 2017, 17135
66
68. Z Wang et al., NATURE ENERGY 2, 2017, 17135
Aging - AM1.5 xenon lamp with a power of 76 mW/cm2 in the air (approx. 45 RH%) without
UV filter, in Voc conditions, tested for different time intervals by a separate AM1.5 simulator
with a power of 100mWcm-2. Light pulse aging with Suntest XLS +. The structure of the cell
glass/FTO/SnO2/ C60 /perovskit/spiro-OMeTAD (with Li-TFSI and tBP) / Au.
2D-3D structures
68
70. Cho and al. Energy & Environmental Science, w druku
PEA2PbI4 - Cs0,1FA0,74MA0,13PbI2,48Br0,39
2D-3D structures
70
71. CFMPIB - Cs0.1FA0.74MA0.13PbI 2.48Br0.39
L-CFM/P (CFMPIB i PEA2PbI4)
Cho and al. Energy & Environmental Science, w druku
2D-3D structures
71
72. Photo-stability test for continuous (full) lighting in an inert
atmosphere (blank stamps) and in the air (full) encapsulated under
glass
Cs0.1FA0.74MA0.13PbI 2.48Br0.39 (CFMPIB)
L-CFM/P (perowskit CFMPIB i PEA2PbI4).
Cho and al. Energy & Environmental Science, w druku
2D-3D structures
72
76. Stability during operation of the TiO2 / FAMACs / EH44 / Au (a) and ETL / FAMACs / EH44 / Mox / Al
cells (ETL = TiO2 (4 cells) or SnO2 - 15 cells) (b) in air under certain conditions of humidity and
temperature .
77. Cs2AgBiBr6 – doubling of the unit cell size and replacement of Pb2 by M+ i M3+ cations
Cs2AgInCl6, MA2AgSbI6, MA2TlBiBr6, MA2KBiCl6, …..
Double halide perovskites
77
82. (2 7 J U N E 2 0 1 9 | V O L 5 7 0 | N A T U R E | 4 2
9)
82
More than a 12 firms are involved in commercializing perovskite solar cells:
• Energy Materials Corp.(US),
• Frontier Energy Solution (South Korea),
• Microquanta Semiconductor (China),
• Oxford PV (UK),
• Saule Technologies (Poland),
• Sekisui/Panasonic/Toshiba (Japan),
• Solaronix SA (Switzerland),
• Solliance (Netherlands), Swift Solar (US),
• Tandem PV (US),
• WonderSolar (China).
Commercialization
83. Oxford PV’s industrial site in
Brandenburg an der Havel, Germany,
where the complete 250 MW
production line will commence
perovskite-on-silicon tandem solar
cell production at the end of 2020.
Oxford PV tandem perovskite on the silicon pass the IEC 61646 test stability:
200 thermal cycles (-40o C to +85o C) with <5 % drop, full sun light soaking 1000 hours
(85%RH/85o C) with <4% drop, damp heat 1000 hours <4% drop)
Commercialization
22
84. The future of perovskite photovoltaic is bright. Perovskite solar
cell technology is close to commercialization.
In the last few years there has been huge progress in the
efficiency and in improving the stability of perovskite cells.
The perovskit /Si tandem cells has the greatest prospects for
large-scale electricity production in near future.
84