SlideShare a Scribd company logo
INSTYTUT METALURGII I INŻYNIERII MATERIAŁOWEJ
im. Aleksandra Krupkowskiego
Polskiej Akademii Nauk
Projekt nr WND-POWR.03.02.00-00-IO43/16
Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim
Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie
Kraków 2020
Photovoltaic systems – theory
and practice
Part 4
Marek Lipiński
1. Introduction to photovoltaics
Basic information about the solar energy and photovoltaic Energy conversion
2. Technology of solar cells
The industrial technology of silicon solar cells and thin films solar cells will be presented
3. Emerging photovoltaics
Emerging materials and devices including dye-sensitized solar cell, organic solar cell, perovskite
solar cell and quantum dot solar cell
4. Photovoltaic systems
Technology, applications, economics of photovoltaic systems
Cours description
Projekt nr WND-POWR.03.02.00-00-IO43/16
Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim
Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie
3
Emerging PV
4
QD solar cells
In a semiconductor crystallite whose size is smaller than
twice the size of its exciton Bohr radius (ab), the
excitons are squeezed, leading to quantum confinement.
https://en.wikipedia.org/wiki/Quantum_dot
aB =  m0/m* a0
a0 Bohr radius a0 ≈ 0.53 nm
 semiconductor dielectiric
constant m* effective mass of
electron of hole
or for exciton reduced mass (mexe*-1 =
me*-1 +mh*-1
1 O. Madelung , Semiconductors: Data Handbook.
Material properties and Bohr radii aB of various bulk semiconductors
Semiconductor Size
(nm
)
Eg (eV)
PbSe  0.27 i
PbSe 5.4 0.73
PbSe 4.7 0.82
PbSe 3.9 0.91
PbS  0.41 i
PbS 5.5 0.85
PbTe  0.31 i
PbTe 5.5 0.91
Si  1.12
Si 2 1.7
QD solar cells
h+
h+
e-
e-
e-
hv
The effects of quantum confinement in quantum
dots
• Slowing down the cooling of excitons,
strengthening the Auger process,
• There is no request to maintain the crystalline
momentum
• One photon can generate many e-h pairs. Crash
ionization multi-exciton generation by high energy
photons
• Expanding the energy gap
Eg
One photon two pairs e-h
•A.J. Nozik / Physica E
14 (2002) 115
•A. Luque, A. Marti, and
A.J. Nozik, MRS Bulletin Vol.
32 (2007) 236
QD solar cells
(a) TEM image showing PbSe NCs with average diameter of
5.2nm. (b) Linear absorption spectra of a
series of PbSe NCs with average diameter ranging
from 3.3nm to 8.1nm. Strong excitonic absorption
and a blue-shift of the onset are signatures of quantum
confinement in NCs.
QD solar cells
https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.200810013
Eg
„bulk” QDot
VB
1De
1Pe
1Se
Eg
C
B
1Sh
1Ph
1Dh
Quantum dot fluorescence (Q-dots)
CdSe of various sizes when exposed to
UV light
QD solar cells
https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.200810013
1. Photoelectrodes from QDs "arrays„ (super-
lattice)
2. Nanocrystalline TiO2 sensitized QDs
3. QDs immersed in a polymer blend ("e" and "h")
A.J. Nozik / Physica E 14 (2002) 115
Solar cell configurations with quantum dots:
QD solar cells
p
n
i
Quatum super-
lattice - (QDs)
Slow down cooling process, transport and collection of hot carriers in p and n contacts -
higher voltage or larger photocurrent as a result of MEG
1. Quantum super-lattice – p-i-n structure.
A. Luque, A. Marti, and J. Nozik, MRS Bulletin Vol. 32 (2007) p. 236
QD solar cells
J. M. Luther, M. Law, M. C. Beard, Q., M.O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett.,Vol.
8, No. 10,2008, p.3488.
Qunatum super-lattice– Structure with a Schottki diode
NCs layer– deposited by „layer – by layer (LBL) dip coating”, 60 nm thickness
QD solar cells
2. QDs DSSC
Barwnik w ogniwach DSSC zastąpiony jest przez QDs.
A. Luque, A. Marti, and J.
Nozik, MRS Bulletin Vol. 32
(2007) p. 236
QDs immersed in a polymer blend
QDs immersed in a polymer blend
The schematic band energy structure of bulk-heterojunction organic cell used to produce the results
(b)(left) a schematic showing random distribution of donor (P3HT) and acceptor (PCBM) regions in the
blended bulk-heterojunction organic solar cell, (right) a schematic diagram of systematic alignment of
donor and acceptor layers
QDs immersed in a polymer blend
QDs immersed in a polymer blend
IBSC made from solutions. PbS quantum dots (4 nm) immersed in MAPbBr3 perovskite
Nature Comunications (2019)
IBSC cells from colloidal solutions of quantum dots
Silicon Quantum dots for III generation solar cells
Cross-sectional TEM images of the multilayer (a) low and (b) high magnification. The
sample was annealed at 1100oC (M. Lipiński in Archives of Materials Science and
Engineering, 46 (2010) 69-87).
Silicon Quantum dots for III generation solar cells
Górne ogniwo QD
(Eg = 1.7 eV 2 nm QD
Złącze tunelowe
Ogniwo Si
(Eg = 1.1 eV)
p
n
p
n
supersieć QD 2 nm
Eg =1.7 eV
ogniwo Si
Eg =1.1 eV
p Si QD bariery SiNx
a)Scheme of a two-junction silicon cell. The upper cell is made of a silicon superlattice
quantum dots with an energy gap of 1.7 eV, the bottom cell is a classic silicon link. These
cells are connected with each other by a tunnel junction [1].
b) Scheme of the band structure of a two-junction cell [2].
Tandem silicon solar cells using Si Qdots
[1] E.-C. Cho, M.A.Green, G. Conibeer et al., Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells, Hindwai
Publishing Corporation, Advances in OptoElectronics (2007) 1-11
2] G. Coniber, Third-generation photovoltaics, Materials Today 10 (2007) 42-50.
Nanoparticles MAPbBr3
STUDYING OF PEROVSKITE NANOPARTICLES IN
PMMA MATRIX USED AS LIGHT CONVERTER
FOR SILICON SOLAR CELL
Light converter from perovskite nanoparticles
Light converter from perovskite nanoparticles
Light converter from perovskite nanoparticles
Perovskite solar cells
Source: Web of Science. Topic: Perovskite solar cells
A review of the patent landscape. Cintelliq https://go.nature.com/2IGsIR9 (2018).
Progress in perovskite solar cells
8
Perovskite - Calcium titanium oxide CaTiO3 was discovered in the Urals Mountains in 1838
by Gustav Rose and named after Russian mineralogist Lev Perovski
All materials with the crystallographic structure of calcium titanium oxide CaTiO3 are
named
perovskites
The general chemical formula for pure perovskite compounds is ABX3, where ‘A’ and ‘B’ are
two cations of very different sizes, and ‘X’ is an anion that binds to both.
Ideal crystal structure of cubic
perovskite
Perovskite ABX3
29
Peng Gao et al., Organohalide lead
perovskites for photovoltaic applications,
Energy & Enviromental Science, 2014
Perowskite crystalline
system (ABX3)
Halide perovskite ABX3
A I (Li+, K+, Cs+, CH3NH3
+)
B II (Pb2+
, Mg2+
, Ca2+
, Sn2+
, Ba2+
, Zn2+
)
X (F-, Cl-, Br-, I-)
Oxide perovskite ABO3
AII (Mg2+, Ca2+, Ba2+)
B IV
(Ti4+
, Si4+
)
Organo-metal halide
perovskite
Alkali-halide perovskite
30
B
A
X
Halide perovskite ABX3
1892 r : First article on halide perovskites
31
t = 0,89–1.0 cubic structure
dla t < 0,89 tetragonal or orthorhombic
M. A. Green, A. H-Bailie, and H. J. Snaith, Nature Photonics, 8,
2014
A RA [nm]
MA 0,18
FA 0,19-0,22
Cs 0,17
Rb 0,15
X RA [nm]
I 0.220
Br 0.196
Cl 0.181
B RB [nm]
Pb 0.119
Sn 0.110
Cs + (cezu) MA (metyloamoniowy) FA (formamidinowy)
Goldschmidts tolerance factor t :
t = (RB+RX)/{2(RB+RX)}
RA, RB, RX ionic radii
For halide perovskites:
0,81 < t < 1,11
X = F, Cl, Br, I
A = organic cation: MA (CH3NH3
+) , FA (CH3(NH2)2
+) or Cs+
B = inorganic cations (Pb, Sn)
Kationy A:
Halide perovskite ABX3
32
t phase, color Phase after
annealing
Eg PCE
MAPbI3 0,89 Tetragonal, black Tetragonal 1,5 20,3
FAPbI3 1,02
Hexagonal, yellow
regular 1,49 17
CsPbI3 0,79 Rhombic, yellow Rhombic, yellow 1,72 10,77
FAPbI3 −xBrx, Eg =1.48 – 2.23 eV
Halide perovskite ABX3
33
Perovskit Cariers D(cm2s-1) LD(nm)
CH3 NH3 PbI3−x Clx electron 0.042±0.016 1069±204
hole 0.054±0.022 1213±243
CH3 NH3 PbI3 electron 0.017±0.011 129±41
hole 0.011±0.007 105±32
D diffusion
coefficient
LD diffusion length
H.J. Snaith i współp.: Science 342 (2013) 341
Electronic properties of perovskites
34
M. A. Green, A.H-Baillie and H. J. Snaith, NATURE PHOTONICS 8, 2014, 506.
MAPbI3 x
− Clx
CH3NH3PbI3
Optical properties of perovskites
35
CB
VB
ETL
HTL
Absorber –
Perowskit halogenkowy
ETL: TiO2 , SnO2,….
HTL: spiro-MeOTAD , PTAA
PTAA - poly(triaryl amine)
spiro-MeOTAD =
2,2 0,7,7 0-tetrakis-( N,N0-di-p-methoxyphenylamine)- 9,9 0-spirobifluorene)
LITFSI (lithium bis(trifluoromethanesulfonyl)imide) + TBP
Voc
Perovskite solar cells
36
Eg = 1.55 eV for MAPbI3
Shockley - Queisser efficiency limit for an ideal solar cell versus band gap energy for: (a)
unconcentrated 6000 K black body radiation (1595.9 Wm-2); (b) full concentrated 6000 K black
body radiation (7349.0 × 104 Wm-2); (c) unconcentrated AM1.5-Direct [18] (767.2 Wm-2) and (d)
AM1.5 Global (962.5 Wm-2)
Handbook of Photovoltaic
Science and Engineering, Ed:
A. Luque and S. Hegedus ,
J. Wiley, 2003.
Shockley - Queisser efficiency limit
37
T. Leijtens et al ., Nature Energy, 3,(2018) 828–838
Top perovskite cell: FA0.83Cs0.17Pb(I 0.6Br0.4)3 Eg = 1.72 eV
botom cell Si: Eg = 1.12 eV
Theoretical limit for tandem (2-junctions)
38
Disadvanges:
• Low stability
• Toxicity from
Pb
1. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016).
2.Eperon, G. E. et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy
Environ. Sci.7, 982–988 (2014).
3. Unger, E. L. et al. Roadmap and road blocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017).
5. H.J. Snaith et al., Science 342 (2013) 341
Advantages:
• Semiconductor with excellent opto-
electronics properties,
• Eg can be changed in wide range :1.2 - 2.0
eV,
• High absorption,
• Low non-radiative carrier recombination
rates,
• Excellent charge transport: diffusion of
lenght > 1mm )
• Low crystallization temperature
• Simple methods of manufacturing
from solutions: spin-on, ink-jet
printing, spray,
• Flexibility
• Earth-abundant elements: C, N, H, Pb,
I..
• High efficiency > 20%
39
K. Kalyanasundaram, S. M. Zakeeruddin, M. Grätzel, Material Matters, 2016, 11.1, 3
Perovskite solar cells
40
FAPbI3 −xBrx, Eg =1.48 – 2.23 eV
T. Leijtens et al. , J. Mater. Chem. A, 2017, 5,11483
(B) Sn - decreases Eg
(X) Br - increases Eg
t Eg PCE
MAPbI3 0.89 1.5 20.3
FAPbI3 1.02 1.49 17
CsPbI3 0.79 1.72 10,77
FA0.85MA0.15Pb(I0.85Br0.15)3
1.62 22.1
FA0.85Cs0.15PbI3
0.99 1.52 17.3
FA0.85Cs0.17Pb(I0.83Br0.17)3
1.01 1.74 20.0
FA0.75Cs0.25Pb0.5Sn0.5I3
1.2
Halide perovskites ABX3 and with mixed ions
41
643
Meso-Al2O3
10,9 %
Meso-
TiO2
7,6 %
Z
ł
ą
c
z
e
p
l
a
n
Perovskite solar cells
42
Je
pr
o
On
CH
ong-Hyeok Im i in., Morphology-
photovoltaic perty correlation in
perovskite solar cells:
e-step versus two-step deposition of
3NH3PbI3, APL Materials, 2014
PbI2
Spin – coating: 3000 r. p. m, 30s
Annealing: 40 ° C – 2 min., 100 ° C - 5 min.
CH3NH3I
Dippng: 40 s
Annealing : 100 ° C, 10 min
Two-stage method - production of perovskites in mesoporous skeletal structures (TiOx, ZnO)
Two etap method
Perovskite solar cells
43
2014
one-step method
Perovskite solar cells
44
, 2014
Division of Advanced Materials, Korea Research Institute of Chemical
Technology, Korea,
Department of Energy Science, University, Suwon ,Republic of Korea
Perovskite solar cells
45
Characteristics of J-V perovskite cell made in LF IMIM
PAN in Kozy
Cells developed at LF IMIM
Perovskite solar cells
J-V characteristics of the perovskite cell for both scan directions for scanning speeds of 25 V / s (a), 1V / s (b)
and 0.5 V/s. Cells made in LF IMIM PAN in Kozy
47
I-V characteristic hysteresis
Destruction of MAPbI3 perovskite in the cell (without HTM and without encapsulation). A yellow color indicates
the presence of PbI2. The cell exposed to sunlight. Test of S9 and S7 polymers (polyazomethines) for
encapsulation 48
Stability
Stability
• Structure stability
• Thermal stability
• Atmospheric stability
• Oxygen interaction
• Water impact
• Stability to UV radiation
49
M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate and A.
Hagfeldt, Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance, Science, 2016,
354(6309), 206.
Stability
50
CH3NH2 methylamine - volatile and water-soluble HI-
water-soluble 1]
1. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde and A. Walsh,, Nano Lett., 2014, 14, 2584–2590
2. J. A. Christians , P. A. Miranda Herrera , P
. V. Kamat ,J. Am. Chem. Soc. 2015 ,137 , 1530 .
4MAPbI3 + 2H2O  MA4PbI6 H2O
+3PbI2
Another mechanism according to
[2]
51
Requirements:
Cell operating temperature -40 to> 85 oC. Cell operation up to 85˚C
Lamination - 150 ˚ C
MAPbX3 unstable at 85oC - MA sublimates at 85 oC even in an inert
atmosphere
MAPbX3 is not suitable for industrial production!
Adv. Energy Mater., 2015, 1500477
Thermal stability
52
53
t Faza, kolor Faza po
wygrzaniu
Eg PCE Przejście fazowe
MAPbI3 0,89 Tetragonal, black Tetragonal 1,5 20,3 Regular, 60o C
FAPbI3 1,02
Hexagonal, yellow
regular 1,49 17 Regular, 150o C
CsPbI3 0,79 Rhombic, yellow Rhombic,
yellow
1,72 10,77 Regular, 300o C
FA0.85MA0.15Pb(I0.85Br0.15)3
Regular, black Regular black 1,62 22,1
FA0.85Cs0.15PbI3
0,99 Tetragonal, black tetragonal 1,52 17,3
FA0.85Cs0.15Pb(I0.83Br0.17)3
1,01 Tetragonal, blacka tetragonal 1,74 20,0
Tomas Leijtens, Kevin Bush, Rongrong Cheacharoen, Rachel Beal,
Andrea Bowring and Michael D. McGehee,
Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and
thermal stability, J. Mater. Chem. A, 2017, 5,11483
Department of Materials Science, Stanford University, Lomita Mall, Stanford, CA, USA.
3D metal halide perovskites used in photovoltaics
Mixed cations [FAMA], [FACs]
54
Eg [eV] PCE [%] cell ref
FA0.83Cs0.17Pb(I0.83Br0.17)3
1,74 23,6
PSC/Si
Tandem monolit
PSC/Si
[2]
FA0.75Cs0.25Pb0.5Sn0.5I3
FA0.83Cs0.17Pb(I0.5Br0.5)3
1,2
1,8
17,0
PSC/PSC
Tandem
PSC/PSC [3]
Science, 2015, 348(6240),1234
[1] [2] NREL, Best Research-Cell Efficiencies, 2017
3D metal halide perovskites used in photovoltaics
Mixed cations [FAMA], [FACs]
55
[2]
[3]
56
Mixed cations [RbCsMAFA]
57
A) J-V characteristic for 10 mVs-1 cell with 21.8% efficiency (Voc = 1180 mV,
Jsc = 22.8 mA cm−2, FF 81%).
B) cell with the highest Voc. 19% PCE stabilized for 0.5 cm2 cell.
Saliba et al. Science, 2016, 354(6309), 206
Mixed cations [RbCsMAFA]
58
Thermal stability test. Aging 500 hours at 85oC, full solar lighting at the point of
maximum power in the atmosphere N2. Aging procedure more stringent than for
industrial standards.
Saliba et al. Science, 2016, 354(6309), 206
Kationy mieszane [RbCsMAFA]
Mixed cations [RbCsMAFA]
59
R2(A)n-1BnX3n+1 (n=1, 2, 3, 4, …) n the numer of layer (Ruddlesden-Popper structure).
Dla R= kation butyloamoniowy (n butylammonium)
R – large alkylammonium cations:
PEA = C8H9NH3 phenylethylammonium cation
BA = C4H9NH3 butylammonium cation
Layered perovskites
60
Voc = 1.18 V
PCE = 4.73%
Eg =2,1 eV
(PEA)2(MA)2Pb3I10
Layered perovskites
61
3D perovkite FA0.83Cs0.17Pb(I yBr1 − y)3
2D perovskite (BA)2(MA)3Pb4I13
2D-3D structure:
BA0.09(FA0.83Cs0.17)0.91 Pb(I 0.6Br0.4)3 ( x = 0.09)
2D-3D structures - the ways of icreasing stability
62
Model struktury 2D-3D
Model of energetic bands of 2D-3D structure, CB- conductivity band, VB valence band.
Z Wang et al., NATURE ENERGY 2, 2017, 17135
2D-3D structures
63
FA0.83Cs0.17Pb(I 0.6Br0.4)3 ( x = 0) BA0.09(FA0.83Cs0.17)0.91 Pb(I 0.6Br0.4)3 ( x = 0.09)
3D 3D-2D
2D-3D structures
64
(a) J-V characteristics: 3D perovskite FA0.83Cs0.17Pb(I 0.6Br0.4)3 (x=0) (Eg = 1.72 eV)
and for 3D-2D BA0.09(FA0.83Cs0.17)0.91Pb(I 0.6Br0.4)3 (x= 0,09)
(a) Stabilized cell efficiency (SPO) of the best cell (SPO ratio - ratio of SPO to PCE.
2D-3D structures
Z Wang et al., NATURE ENERGY 2, 2017, 17135
65
J-V characteristics: 3D perovskite for BA0.05(FA0.83Cs0.17)0.95Pb(I 0.8Br0.2)3 (Eg = 1.61 eV). Statistical
distribution
2D-3D structures
Z Wang et al., NATURE ENERGY 2, 2017, 17135
66
2D-3D structures
Z Wang et al., NATURE ENERGY 2, 2017, 17135
67
Z Wang et al., NATURE ENERGY 2, 2017, 17135
Aging - AM1.5 xenon lamp with a power of 76 mW/cm2 in the air (approx. 45 RH%) without
UV filter, in Voc conditions, tested for different time intervals by a separate AM1.5 simulator
with a power of 100mWcm-2. Light pulse aging with Suntest XLS +. The structure of the cell
glass/FTO/SnO2/ C60 /perovskit/spiro-OMeTAD (with Li-TFSI and tBP) / Au.
2D-3D structures
68
69
Cho and al. Energy & Environmental Science, w druku
PEA2PbI4 - Cs0,1FA0,74MA0,13PbI2,48Br0,39
2D-3D structures
70
CFMPIB - Cs0.1FA0.74MA0.13PbI 2.48Br0.39
L-CFM/P (CFMPIB i PEA2PbI4)
Cho and al. Energy & Environmental Science, w druku
2D-3D structures
71
Photo-stability test for continuous (full) lighting in an inert
atmosphere (blank stamps) and in the air (full) encapsulated under
glass
Cs0.1FA0.74MA0.13PbI 2.48Br0.39 (CFMPIB)
L-CFM/P (perowskit CFMPIB i PEA2PbI4).
Cho and al. Energy & Environmental Science, w druku
2D-3D structures
72
PMMA- Poly(methyl 2-methylpropenoate)
P3HT- Poly(3-hexylthiophene)
PTAA –poly(triarylamine)
SWNT - carbon nanotube, single-walled
73
NREL Scientists Demonstrate Remarkable Stability in Perovskite Solar
Cells January 30, 2018
https://
www.nrel.gov/news/press/2018/nrel_scientists_demonstrate_remarkable_stability_in_pe
rovskite.html
74
New HTL and electrodes
75
Stability during operation of the TiO2 / FAMACs / EH44 / Au (a) and ETL / FAMACs / EH44 / Mox / Al
cells (ETL = TiO2 (4 cells) or SnO2 - 15 cells) (b) in air under certain conditions of humidity and
temperature .
Cs2AgBiBr6 – doubling of the unit cell size and replacement of Pb2 by M+ i M3+ cations
Cs2AgInCl6, MA2AgSbI6, MA2TlBiBr6, MA2KBiCl6, …..
Double halide perovskites
77
Double halide perovskites
78
Double halide perovskites
79
Double halide perovskites
80
81
CuSCN copper(I) thiocyanate
The ways of icreasing stability
(2 7 J U N E 2 0 1 9 | V O L 5 7 0 | N A T U R E | 4 2
9)
82
More than a 12 firms are involved in commercializing perovskite solar cells:
• Energy Materials Corp.(US),
• Frontier Energy Solution (South Korea),
• Microquanta Semiconductor (China),
• Oxford PV (UK),
• Saule Technologies (Poland),
• Sekisui/Panasonic/Toshiba (Japan),
• Solaronix SA (Switzerland),
• Solliance (Netherlands), Swift Solar (US),
• Tandem PV (US),
• WonderSolar (China).
Commercialization
Oxford PV’s industrial site in
Brandenburg an der Havel, Germany,
where the complete 250 MW
production line will commence
perovskite-on-silicon tandem solar
cell production at the end of 2020.
Oxford PV tandem perovskite on the silicon pass the IEC 61646 test stability:
200 thermal cycles (-40o C to +85o C) with <5 % drop, full sun light soaking 1000 hours
(85%RH/85o C) with <4% drop, damp heat 1000 hours <4% drop)
Commercialization
22
The future of perovskite photovoltaic is bright. Perovskite solar
cell technology is close to commercialization.
In the last few years there has been huge progress in the
efficiency and in improving the stability of perovskite cells.
The perovskit /Si tandem cells has the greatest prospects for
large-scale electricity production in near future.
84
85
Thank you for your
attention

More Related Content

PPTX
Perovskite Solar Cell
PPTX
Perovskite Photovoltaic solar cell.pptx
PDF
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
PPT
Organic- Inorganic Perovskite Solar Cell
PDF
Emerging Next Generation Solar Cells: Route to High Efficiency and Low Cost
PDF
Solar MATERIALS used in. Photovoltaic ce
PPTX
Abhishek presentation
PPS
Lecture Conference Ourzazate ennaoui
Perovskite Solar Cell
Perovskite Photovoltaic solar cell.pptx
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
Organic- Inorganic Perovskite Solar Cell
Emerging Next Generation Solar Cells: Route to High Efficiency and Low Cost
Solar MATERIALS used in. Photovoltaic ce
Abhishek presentation
Lecture Conference Ourzazate ennaoui

Similar to development of PV technology & their types (20)

PPTX
Perovskite solar cells
PPTX
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
PPTX
Thesis pdf ca3pi3 Based Perovskite gaas Semiconductor
PPTX
Perovskite solar cells
PDF
Perovskites solar cells degradation solutions
PDF
Perovskite solar cells - An Introduction, By Dawn John Mullassery
PPTX
Progress in all inorganic perovskite solar cell
PPTX
IIIgshas shgasha shghasghagsTDM PPT.pptx
PPTX
The Versatility of Mesoscopic Solar Cells.
PDF
overview214-0i2-0123-0124-1294-1241942-120.pdf
PDF
Advantages and problems of perovskite solar cell
PPT
ppt on the Solar cells understanding semiconductor devices
PPT
New Promising Materials for Next Generation Solar Cells
PPTX
Quantum_dot_solar_cell_PbS
PPTX
Solar Power: THE PEROVSKITE
PPTX
Lattice anchoring stabilizes the solution processes semiconducts.pptx
PDF
(eBook PDF) Nanomaterials for Solar Cell Applications by Sabu Thomas
PDF
Thin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
PDF
Advance Solar Cells and Printed Solar Cell A Review
PDF
Glen Junor Senior Thesis
Perovskite solar cells
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Thesis pdf ca3pi3 Based Perovskite gaas Semiconductor
Perovskite solar cells
Perovskites solar cells degradation solutions
Perovskite solar cells - An Introduction, By Dawn John Mullassery
Progress in all inorganic perovskite solar cell
IIIgshas shgasha shghasghagsTDM PPT.pptx
The Versatility of Mesoscopic Solar Cells.
overview214-0i2-0123-0124-1294-1241942-120.pdf
Advantages and problems of perovskite solar cell
ppt on the Solar cells understanding semiconductor devices
New Promising Materials for Next Generation Solar Cells
Quantum_dot_solar_cell_PbS
Solar Power: THE PEROVSKITE
Lattice anchoring stabilizes the solution processes semiconducts.pptx
(eBook PDF) Nanomaterials for Solar Cell Applications by Sabu Thomas
Thin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
Advance Solar Cells and Printed Solar Cell A Review
Glen Junor Senior Thesis
Ad

Recently uploaded (20)

PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
International_Financial_Reporting_Standa.pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
advance database management system book.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
Complications of Minimal Access-Surgery.pdf
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
Trump Administration's workforce development strategy
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
B.Sc. DS Unit 2 Software Engineering.pptx
Uderstanding digital marketing and marketing stratergie for engaging the digi...
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Hazard Identification & Risk Assessment .pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Weekly quiz Compilation Jan -July 25.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
International_Financial_Reporting_Standa.pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
HVAC Specification 2024 according to central public works department
advance database management system book.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Complications of Minimal Access-Surgery.pdf
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Trump Administration's workforce development strategy
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Ad

development of PV technology & their types

  • 1. INSTYTUT METALURGII I INŻYNIERII MATERIAŁOWEJ im. Aleksandra Krupkowskiego Polskiej Akademii Nauk Projekt nr WND-POWR.03.02.00-00-IO43/16 Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie Kraków 2020 Photovoltaic systems – theory and practice Part 4 Marek Lipiński
  • 2. 1. Introduction to photovoltaics Basic information about the solar energy and photovoltaic Energy conversion 2. Technology of solar cells The industrial technology of silicon solar cells and thin films solar cells will be presented 3. Emerging photovoltaics Emerging materials and devices including dye-sensitized solar cell, organic solar cell, perovskite solar cell and quantum dot solar cell 4. Photovoltaic systems Technology, applications, economics of photovoltaic systems Cours description Projekt nr WND-POWR.03.02.00-00-IO43/16 Międzynarodowe interdyscyplinarne studia doktoranckie z zakresu nauk o materiałach z wykładowym językiem angielskim Program Operacyjny Wiedza Edukacja Rozwój 2014-2020, Działanie 3.2 Studia doktoranckie
  • 3. 3
  • 6. In a semiconductor crystallite whose size is smaller than twice the size of its exciton Bohr radius (ab), the excitons are squeezed, leading to quantum confinement. https://en.wikipedia.org/wiki/Quantum_dot
  • 7. aB =  m0/m* a0 a0 Bohr radius a0 ≈ 0.53 nm  semiconductor dielectiric constant m* effective mass of electron of hole or for exciton reduced mass (mexe*-1 = me*-1 +mh*-1 1 O. Madelung , Semiconductors: Data Handbook. Material properties and Bohr radii aB of various bulk semiconductors
  • 8. Semiconductor Size (nm ) Eg (eV) PbSe  0.27 i PbSe 5.4 0.73 PbSe 4.7 0.82 PbSe 3.9 0.91 PbS  0.41 i PbS 5.5 0.85 PbTe  0.31 i PbTe 5.5 0.91 Si  1.12 Si 2 1.7 QD solar cells
  • 9. h+ h+ e- e- e- hv The effects of quantum confinement in quantum dots • Slowing down the cooling of excitons, strengthening the Auger process, • There is no request to maintain the crystalline momentum • One photon can generate many e-h pairs. Crash ionization multi-exciton generation by high energy photons • Expanding the energy gap Eg One photon two pairs e-h •A.J. Nozik / Physica E 14 (2002) 115 •A. Luque, A. Marti, and A.J. Nozik, MRS Bulletin Vol. 32 (2007) 236 QD solar cells
  • 10. (a) TEM image showing PbSe NCs with average diameter of 5.2nm. (b) Linear absorption spectra of a series of PbSe NCs with average diameter ranging from 3.3nm to 8.1nm. Strong excitonic absorption and a blue-shift of the onset are signatures of quantum confinement in NCs. QD solar cells https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.200810013
  • 11. Eg „bulk” QDot VB 1De 1Pe 1Se Eg C B 1Sh 1Ph 1Dh Quantum dot fluorescence (Q-dots) CdSe of various sizes when exposed to UV light QD solar cells https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.200810013
  • 12. 1. Photoelectrodes from QDs "arrays„ (super- lattice) 2. Nanocrystalline TiO2 sensitized QDs 3. QDs immersed in a polymer blend ("e" and "h") A.J. Nozik / Physica E 14 (2002) 115 Solar cell configurations with quantum dots: QD solar cells
  • 13. p n i Quatum super- lattice - (QDs) Slow down cooling process, transport and collection of hot carriers in p and n contacts - higher voltage or larger photocurrent as a result of MEG 1. Quantum super-lattice – p-i-n structure. A. Luque, A. Marti, and J. Nozik, MRS Bulletin Vol. 32 (2007) p. 236 QD solar cells
  • 14. J. M. Luther, M. Law, M. C. Beard, Q., M.O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett.,Vol. 8, No. 10,2008, p.3488. Qunatum super-lattice– Structure with a Schottki diode NCs layer– deposited by „layer – by layer (LBL) dip coating”, 60 nm thickness QD solar cells
  • 15. 2. QDs DSSC Barwnik w ogniwach DSSC zastąpiony jest przez QDs. A. Luque, A. Marti, and J. Nozik, MRS Bulletin Vol. 32 (2007) p. 236
  • 16. QDs immersed in a polymer blend
  • 17. QDs immersed in a polymer blend
  • 18. The schematic band energy structure of bulk-heterojunction organic cell used to produce the results (b)(left) a schematic showing random distribution of donor (P3HT) and acceptor (PCBM) regions in the blended bulk-heterojunction organic solar cell, (right) a schematic diagram of systematic alignment of donor and acceptor layers QDs immersed in a polymer blend
  • 19. QDs immersed in a polymer blend
  • 20. IBSC made from solutions. PbS quantum dots (4 nm) immersed in MAPbBr3 perovskite Nature Comunications (2019) IBSC cells from colloidal solutions of quantum dots
  • 21. Silicon Quantum dots for III generation solar cells
  • 22. Cross-sectional TEM images of the multilayer (a) low and (b) high magnification. The sample was annealed at 1100oC (M. Lipiński in Archives of Materials Science and Engineering, 46 (2010) 69-87). Silicon Quantum dots for III generation solar cells
  • 23. Górne ogniwo QD (Eg = 1.7 eV 2 nm QD Złącze tunelowe Ogniwo Si (Eg = 1.1 eV) p n p n supersieć QD 2 nm Eg =1.7 eV ogniwo Si Eg =1.1 eV p Si QD bariery SiNx a)Scheme of a two-junction silicon cell. The upper cell is made of a silicon superlattice quantum dots with an energy gap of 1.7 eV, the bottom cell is a classic silicon link. These cells are connected with each other by a tunnel junction [1]. b) Scheme of the band structure of a two-junction cell [2]. Tandem silicon solar cells using Si Qdots [1] E.-C. Cho, M.A.Green, G. Conibeer et al., Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells, Hindwai Publishing Corporation, Advances in OptoElectronics (2007) 1-11 2] G. Coniber, Third-generation photovoltaics, Materials Today 10 (2007) 42-50.
  • 24. Nanoparticles MAPbBr3 STUDYING OF PEROVSKITE NANOPARTICLES IN PMMA MATRIX USED AS LIGHT CONVERTER FOR SILICON SOLAR CELL Light converter from perovskite nanoparticles
  • 25. Light converter from perovskite nanoparticles
  • 26. Light converter from perovskite nanoparticles
  • 28. Source: Web of Science. Topic: Perovskite solar cells A review of the patent landscape. Cintelliq https://go.nature.com/2IGsIR9 (2018). Progress in perovskite solar cells 8
  • 29. Perovskite - Calcium titanium oxide CaTiO3 was discovered in the Urals Mountains in 1838 by Gustav Rose and named after Russian mineralogist Lev Perovski All materials with the crystallographic structure of calcium titanium oxide CaTiO3 are named perovskites The general chemical formula for pure perovskite compounds is ABX3, where ‘A’ and ‘B’ are two cations of very different sizes, and ‘X’ is an anion that binds to both. Ideal crystal structure of cubic perovskite Perovskite ABX3 29
  • 30. Peng Gao et al., Organohalide lead perovskites for photovoltaic applications, Energy & Enviromental Science, 2014 Perowskite crystalline system (ABX3) Halide perovskite ABX3 A I (Li+, K+, Cs+, CH3NH3 +) B II (Pb2+ , Mg2+ , Ca2+ , Sn2+ , Ba2+ , Zn2+ ) X (F-, Cl-, Br-, I-) Oxide perovskite ABO3 AII (Mg2+, Ca2+, Ba2+) B IV (Ti4+ , Si4+ ) Organo-metal halide perovskite Alkali-halide perovskite 30 B A X Halide perovskite ABX3
  • 31. 1892 r : First article on halide perovskites 31
  • 32. t = 0,89–1.0 cubic structure dla t < 0,89 tetragonal or orthorhombic M. A. Green, A. H-Bailie, and H. J. Snaith, Nature Photonics, 8, 2014 A RA [nm] MA 0,18 FA 0,19-0,22 Cs 0,17 Rb 0,15 X RA [nm] I 0.220 Br 0.196 Cl 0.181 B RB [nm] Pb 0.119 Sn 0.110 Cs + (cezu) MA (metyloamoniowy) FA (formamidinowy) Goldschmidts tolerance factor t : t = (RB+RX)/{2(RB+RX)} RA, RB, RX ionic radii For halide perovskites: 0,81 < t < 1,11 X = F, Cl, Br, I A = organic cation: MA (CH3NH3 +) , FA (CH3(NH2)2 +) or Cs+ B = inorganic cations (Pb, Sn) Kationy A: Halide perovskite ABX3 32
  • 33. t phase, color Phase after annealing Eg PCE MAPbI3 0,89 Tetragonal, black Tetragonal 1,5 20,3 FAPbI3 1,02 Hexagonal, yellow regular 1,49 17 CsPbI3 0,79 Rhombic, yellow Rhombic, yellow 1,72 10,77 FAPbI3 −xBrx, Eg =1.48 – 2.23 eV Halide perovskite ABX3 33
  • 34. Perovskit Cariers D(cm2s-1) LD(nm) CH3 NH3 PbI3−x Clx electron 0.042±0.016 1069±204 hole 0.054±0.022 1213±243 CH3 NH3 PbI3 electron 0.017±0.011 129±41 hole 0.011±0.007 105±32 D diffusion coefficient LD diffusion length H.J. Snaith i współp.: Science 342 (2013) 341 Electronic properties of perovskites 34
  • 35. M. A. Green, A.H-Baillie and H. J. Snaith, NATURE PHOTONICS 8, 2014, 506. MAPbI3 x − Clx CH3NH3PbI3 Optical properties of perovskites 35
  • 36. CB VB ETL HTL Absorber – Perowskit halogenkowy ETL: TiO2 , SnO2,…. HTL: spiro-MeOTAD , PTAA PTAA - poly(triaryl amine) spiro-MeOTAD = 2,2 0,7,7 0-tetrakis-( N,N0-di-p-methoxyphenylamine)- 9,9 0-spirobifluorene) LITFSI (lithium bis(trifluoromethanesulfonyl)imide) + TBP Voc Perovskite solar cells 36
  • 37. Eg = 1.55 eV for MAPbI3 Shockley - Queisser efficiency limit for an ideal solar cell versus band gap energy for: (a) unconcentrated 6000 K black body radiation (1595.9 Wm-2); (b) full concentrated 6000 K black body radiation (7349.0 × 104 Wm-2); (c) unconcentrated AM1.5-Direct [18] (767.2 Wm-2) and (d) AM1.5 Global (962.5 Wm-2) Handbook of Photovoltaic Science and Engineering, Ed: A. Luque and S. Hegedus , J. Wiley, 2003. Shockley - Queisser efficiency limit 37
  • 38. T. Leijtens et al ., Nature Energy, 3,(2018) 828–838 Top perovskite cell: FA0.83Cs0.17Pb(I 0.6Br0.4)3 Eg = 1.72 eV botom cell Si: Eg = 1.12 eV Theoretical limit for tandem (2-junctions) 38
  • 39. Disadvanges: • Low stability • Toxicity from Pb 1. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016). 2.Eperon, G. E. et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci.7, 982–988 (2014). 3. Unger, E. L. et al. Roadmap and road blocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017). 5. H.J. Snaith et al., Science 342 (2013) 341 Advantages: • Semiconductor with excellent opto- electronics properties, • Eg can be changed in wide range :1.2 - 2.0 eV, • High absorption, • Low non-radiative carrier recombination rates, • Excellent charge transport: diffusion of lenght > 1mm ) • Low crystallization temperature • Simple methods of manufacturing from solutions: spin-on, ink-jet printing, spray, • Flexibility • Earth-abundant elements: C, N, H, Pb, I.. • High efficiency > 20% 39
  • 40. K. Kalyanasundaram, S. M. Zakeeruddin, M. Grätzel, Material Matters, 2016, 11.1, 3 Perovskite solar cells 40
  • 41. FAPbI3 −xBrx, Eg =1.48 – 2.23 eV T. Leijtens et al. , J. Mater. Chem. A, 2017, 5,11483 (B) Sn - decreases Eg (X) Br - increases Eg t Eg PCE MAPbI3 0.89 1.5 20.3 FAPbI3 1.02 1.49 17 CsPbI3 0.79 1.72 10,77 FA0.85MA0.15Pb(I0.85Br0.15)3 1.62 22.1 FA0.85Cs0.15PbI3 0.99 1.52 17.3 FA0.85Cs0.17Pb(I0.83Br0.17)3 1.01 1.74 20.0 FA0.75Cs0.25Pb0.5Sn0.5I3 1.2 Halide perovskites ABX3 and with mixed ions 41
  • 43. Je pr o On CH ong-Hyeok Im i in., Morphology- photovoltaic perty correlation in perovskite solar cells: e-step versus two-step deposition of 3NH3PbI3, APL Materials, 2014 PbI2 Spin – coating: 3000 r. p. m, 30s Annealing: 40 ° C – 2 min., 100 ° C - 5 min. CH3NH3I Dippng: 40 s Annealing : 100 ° C, 10 min Two-stage method - production of perovskites in mesoporous skeletal structures (TiOx, ZnO) Two etap method Perovskite solar cells 43
  • 45. , 2014 Division of Advanced Materials, Korea Research Institute of Chemical Technology, Korea, Department of Energy Science, University, Suwon ,Republic of Korea Perovskite solar cells 45
  • 46. Characteristics of J-V perovskite cell made in LF IMIM PAN in Kozy Cells developed at LF IMIM Perovskite solar cells
  • 47. J-V characteristics of the perovskite cell for both scan directions for scanning speeds of 25 V / s (a), 1V / s (b) and 0.5 V/s. Cells made in LF IMIM PAN in Kozy 47 I-V characteristic hysteresis
  • 48. Destruction of MAPbI3 perovskite in the cell (without HTM and without encapsulation). A yellow color indicates the presence of PbI2. The cell exposed to sunlight. Test of S9 and S7 polymers (polyazomethines) for encapsulation 48 Stability
  • 49. Stability • Structure stability • Thermal stability • Atmospheric stability • Oxygen interaction • Water impact • Stability to UV radiation 49
  • 50. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate and A. Hagfeldt, Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance, Science, 2016, 354(6309), 206. Stability 50
  • 51. CH3NH2 methylamine - volatile and water-soluble HI- water-soluble 1] 1. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde and A. Walsh,, Nano Lett., 2014, 14, 2584–2590 2. J. A. Christians , P. A. Miranda Herrera , P . V. Kamat ,J. Am. Chem. Soc. 2015 ,137 , 1530 . 4MAPbI3 + 2H2O  MA4PbI6 H2O +3PbI2 Another mechanism according to [2] 51
  • 52. Requirements: Cell operating temperature -40 to> 85 oC. Cell operation up to 85˚C Lamination - 150 ˚ C MAPbX3 unstable at 85oC - MA sublimates at 85 oC even in an inert atmosphere MAPbX3 is not suitable for industrial production! Adv. Energy Mater., 2015, 1500477 Thermal stability 52
  • 53. 53
  • 54. t Faza, kolor Faza po wygrzaniu Eg PCE Przejście fazowe MAPbI3 0,89 Tetragonal, black Tetragonal 1,5 20,3 Regular, 60o C FAPbI3 1,02 Hexagonal, yellow regular 1,49 17 Regular, 150o C CsPbI3 0,79 Rhombic, yellow Rhombic, yellow 1,72 10,77 Regular, 300o C FA0.85MA0.15Pb(I0.85Br0.15)3 Regular, black Regular black 1,62 22,1 FA0.85Cs0.15PbI3 0,99 Tetragonal, black tetragonal 1,52 17,3 FA0.85Cs0.15Pb(I0.83Br0.17)3 1,01 Tetragonal, blacka tetragonal 1,74 20,0 Tomas Leijtens, Kevin Bush, Rongrong Cheacharoen, Rachel Beal, Andrea Bowring and Michael D. McGehee, Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability, J. Mater. Chem. A, 2017, 5,11483 Department of Materials Science, Stanford University, Lomita Mall, Stanford, CA, USA. 3D metal halide perovskites used in photovoltaics Mixed cations [FAMA], [FACs] 54
  • 55. Eg [eV] PCE [%] cell ref FA0.83Cs0.17Pb(I0.83Br0.17)3 1,74 23,6 PSC/Si Tandem monolit PSC/Si [2] FA0.75Cs0.25Pb0.5Sn0.5I3 FA0.83Cs0.17Pb(I0.5Br0.5)3 1,2 1,8 17,0 PSC/PSC Tandem PSC/PSC [3] Science, 2015, 348(6240),1234 [1] [2] NREL, Best Research-Cell Efficiencies, 2017 3D metal halide perovskites used in photovoltaics Mixed cations [FAMA], [FACs] 55
  • 58. A) J-V characteristic for 10 mVs-1 cell with 21.8% efficiency (Voc = 1180 mV, Jsc = 22.8 mA cm−2, FF 81%). B) cell with the highest Voc. 19% PCE stabilized for 0.5 cm2 cell. Saliba et al. Science, 2016, 354(6309), 206 Mixed cations [RbCsMAFA] 58
  • 59. Thermal stability test. Aging 500 hours at 85oC, full solar lighting at the point of maximum power in the atmosphere N2. Aging procedure more stringent than for industrial standards. Saliba et al. Science, 2016, 354(6309), 206 Kationy mieszane [RbCsMAFA] Mixed cations [RbCsMAFA] 59
  • 60. R2(A)n-1BnX3n+1 (n=1, 2, 3, 4, …) n the numer of layer (Ruddlesden-Popper structure). Dla R= kation butyloamoniowy (n butylammonium) R – large alkylammonium cations: PEA = C8H9NH3 phenylethylammonium cation BA = C4H9NH3 butylammonium cation Layered perovskites 60
  • 61. Voc = 1.18 V PCE = 4.73% Eg =2,1 eV (PEA)2(MA)2Pb3I10 Layered perovskites 61
  • 62. 3D perovkite FA0.83Cs0.17Pb(I yBr1 − y)3 2D perovskite (BA)2(MA)3Pb4I13 2D-3D structure: BA0.09(FA0.83Cs0.17)0.91 Pb(I 0.6Br0.4)3 ( x = 0.09) 2D-3D structures - the ways of icreasing stability 62
  • 63. Model struktury 2D-3D Model of energetic bands of 2D-3D structure, CB- conductivity band, VB valence band. Z Wang et al., NATURE ENERGY 2, 2017, 17135 2D-3D structures 63
  • 64. FA0.83Cs0.17Pb(I 0.6Br0.4)3 ( x = 0) BA0.09(FA0.83Cs0.17)0.91 Pb(I 0.6Br0.4)3 ( x = 0.09) 3D 3D-2D 2D-3D structures 64
  • 65. (a) J-V characteristics: 3D perovskite FA0.83Cs0.17Pb(I 0.6Br0.4)3 (x=0) (Eg = 1.72 eV) and for 3D-2D BA0.09(FA0.83Cs0.17)0.91Pb(I 0.6Br0.4)3 (x= 0,09) (a) Stabilized cell efficiency (SPO) of the best cell (SPO ratio - ratio of SPO to PCE. 2D-3D structures Z Wang et al., NATURE ENERGY 2, 2017, 17135 65
  • 66. J-V characteristics: 3D perovskite for BA0.05(FA0.83Cs0.17)0.95Pb(I 0.8Br0.2)3 (Eg = 1.61 eV). Statistical distribution 2D-3D structures Z Wang et al., NATURE ENERGY 2, 2017, 17135 66
  • 67. 2D-3D structures Z Wang et al., NATURE ENERGY 2, 2017, 17135 67
  • 68. Z Wang et al., NATURE ENERGY 2, 2017, 17135 Aging - AM1.5 xenon lamp with a power of 76 mW/cm2 in the air (approx. 45 RH%) without UV filter, in Voc conditions, tested for different time intervals by a separate AM1.5 simulator with a power of 100mWcm-2. Light pulse aging with Suntest XLS +. The structure of the cell glass/FTO/SnO2/ C60 /perovskit/spiro-OMeTAD (with Li-TFSI and tBP) / Au. 2D-3D structures 68
  • 69. 69
  • 70. Cho and al. Energy & Environmental Science, w druku PEA2PbI4 - Cs0,1FA0,74MA0,13PbI2,48Br0,39 2D-3D structures 70
  • 71. CFMPIB - Cs0.1FA0.74MA0.13PbI 2.48Br0.39 L-CFM/P (CFMPIB i PEA2PbI4) Cho and al. Energy & Environmental Science, w druku 2D-3D structures 71
  • 72. Photo-stability test for continuous (full) lighting in an inert atmosphere (blank stamps) and in the air (full) encapsulated under glass Cs0.1FA0.74MA0.13PbI 2.48Br0.39 (CFMPIB) L-CFM/P (perowskit CFMPIB i PEA2PbI4). Cho and al. Energy & Environmental Science, w druku 2D-3D structures 72
  • 73. PMMA- Poly(methyl 2-methylpropenoate) P3HT- Poly(3-hexylthiophene) PTAA –poly(triarylamine) SWNT - carbon nanotube, single-walled 73
  • 74. NREL Scientists Demonstrate Remarkable Stability in Perovskite Solar Cells January 30, 2018 https:// www.nrel.gov/news/press/2018/nrel_scientists_demonstrate_remarkable_stability_in_pe rovskite.html 74
  • 75. New HTL and electrodes 75
  • 76. Stability during operation of the TiO2 / FAMACs / EH44 / Au (a) and ETL / FAMACs / EH44 / Mox / Al cells (ETL = TiO2 (4 cells) or SnO2 - 15 cells) (b) in air under certain conditions of humidity and temperature .
  • 77. Cs2AgBiBr6 – doubling of the unit cell size and replacement of Pb2 by M+ i M3+ cations Cs2AgInCl6, MA2AgSbI6, MA2TlBiBr6, MA2KBiCl6, ….. Double halide perovskites 77
  • 81. 81 CuSCN copper(I) thiocyanate The ways of icreasing stability
  • 82. (2 7 J U N E 2 0 1 9 | V O L 5 7 0 | N A T U R E | 4 2 9) 82 More than a 12 firms are involved in commercializing perovskite solar cells: • Energy Materials Corp.(US), • Frontier Energy Solution (South Korea), • Microquanta Semiconductor (China), • Oxford PV (UK), • Saule Technologies (Poland), • Sekisui/Panasonic/Toshiba (Japan), • Solaronix SA (Switzerland), • Solliance (Netherlands), Swift Solar (US), • Tandem PV (US), • WonderSolar (China). Commercialization
  • 83. Oxford PV’s industrial site in Brandenburg an der Havel, Germany, where the complete 250 MW production line will commence perovskite-on-silicon tandem solar cell production at the end of 2020. Oxford PV tandem perovskite on the silicon pass the IEC 61646 test stability: 200 thermal cycles (-40o C to +85o C) with <5 % drop, full sun light soaking 1000 hours (85%RH/85o C) with <4% drop, damp heat 1000 hours <4% drop) Commercialization 22
  • 84. The future of perovskite photovoltaic is bright. Perovskite solar cell technology is close to commercialization. In the last few years there has been huge progress in the efficiency and in improving the stability of perovskite cells. The perovskit /Si tandem cells has the greatest prospects for large-scale electricity production in near future. 84
  • 85. 85 Thank you for your attention