SlideShare a Scribd company logo
2
Most read
10
Most read
13
Most read
DERIVATIVES
Definition and Notation
• Line 𝑙 is the tangent line of the graph of 𝒚 = 𝒇(𝒙)
at point 𝑷.
• It touches the graph of 𝑦 = 𝑓(𝑥) at point 𝑃(𝑥0, 𝑓 𝑥0 )
• Slope of the line 𝑙
• 𝑚𝑙 = lim
Δ𝑥→0
𝑓 𝑥0+Δ𝑥 −𝑓 𝑥0
Δ𝑥
• Equation of line 𝑙
• If 𝑚𝑙 exists: 𝑦 − 𝑓 𝑥0 = 𝑚𝑙(𝑥 − 𝑥0)
• If 𝑚𝑙 = 0: 𝑦 = 𝑓(𝑥0)
• If 𝑚𝑙 approaches ±∞: 𝑥 = 𝑥0
Tangent Line
• The slope of the tangent line at a certain
point gives us an idea on the graph at that
point.
• Positive slope: graph is rising
• Negative slope: graph is falling
• Large slope: graph is relatively steep
• Small slope: graph is relatively flat
• Tangent line in this case does not necessarily
touch the graph only once.
• It touches the graph once, locally (at a small
portion of the graph)
• It may touch the graph again at other “far” points
Normal Line
• Line 𝑘 is the normal line of the graph of 𝒚 =
𝒇(𝒙) at point 𝑷.
• It touches the graph of 𝑦 = 𝑓(𝑥) at point 𝑃(𝑥0, 𝑓 𝑥0 )
• It is perpendicular to the tangent line
• Slope of the line 𝑘
• 𝑚𝑘 = −
1
𝑚𝑙
• Equation of line 𝑘
• If 𝑚𝑘 exists: 𝑦 − 𝑓 𝑥0 = 𝑚𝑘(𝑥 − 𝑥0)
• If 𝑚𝑘 = 0: 𝑦 = 𝑓(𝑥0)
• If 𝑚𝑘 approaches ±∞: 𝑥 = 𝑥0
Definition of the Derivative
• The derivative of a function 𝑓 𝑥 , denoted by 𝑓′(𝑥) is:
𝑓′ 𝑥 = lim
Δ𝑥→0
𝑓 𝑥 + Δ𝑥 − 𝑓 𝑥
Δ𝑥
• 𝑓′(𝑥0) is the slope of the tangent line to the graph of 𝑓(𝑥) at point
𝑥0, 𝑓 𝑥0
Definition of the Derivative
• The derivative of a function 𝑓 𝑥 at 𝑥 = 𝑥0, denoted by 𝑓′(𝑥0) is:
𝑓′ 𝑥0 = lim
Δ𝑥→0
𝑓 𝑥0 + Δ𝑥 − 𝑓 𝑥0
Δ𝑥
• Or if we set Δ𝑥 = 𝑥 − 𝑥0:
𝑓′ 𝑥0 = lim
(𝑥−𝑥0)→0
𝑓 𝑥0 + (𝑥 − 𝑥0) − 𝑓 𝑥0
(𝑥 − 𝑥0)
𝑓′
𝑥0 = lim
𝑥→𝑥0
𝑓 𝑥 − 𝑓 𝑥0
𝑥 − 𝑥0
• The process of solving for the derivative is called differentiation.
Definition of the Derivative
• Notation used for the derivative given 𝑦 = 𝑓(𝑥):
• 𝑓′ 𝑥
• 𝑓′
• 𝑦′
•
𝑑𝑦
𝑑𝑥
• 𝐷𝑥[𝑓 𝑥 ]
• 𝐷𝑥(𝑦)
Differentiation Rules
• Let 𝑓, 𝑔, and ℎ be functions and 𝑐 is a real number.
• If 𝑓 𝑥 = 𝑐 ∈ ℝ, then 𝑓′ 𝑥 = 0.
• If 𝑓 𝑥 = 𝑐 ⋅ 𝑔 𝑥 , then 𝑓′ x = c ⋅ 𝑔′ 𝑥 if 𝑔′(𝑥) exists.
• If ℎ 𝑥 = 𝑓 𝑥 ± 𝑔 𝑥 , then ℎ′ 𝑥 = 𝑓′ 𝑥 ± 𝑔′ 𝑥 ..
Differentiation Rules
• Let 𝑓, 𝑔, and ℎ be functions and 𝑐 is a real number.
• Power Rule:
• If 𝑓 𝑥 = 𝑥𝑛, where 𝑛 is a rational number, then 𝑓′ 𝑥 = 𝑛𝑥𝑛−1.
• Product Rule:
• If ℎ 𝑥 = 𝑓 𝑥 𝑔(𝑥), then ℎ′ 𝑥 = 𝑓 𝑥 𝑔′ 𝑥 + 𝑔 𝑥 𝑓′ 𝑥 .
• Quotient Rule
• If ℎ 𝑥 =
𝑓 𝑥
𝑔 𝑥
where 𝑔 𝑥 ≠ 0, then ℎ′ 𝑥 =
𝑔 𝑥 𝑓′ 𝑥 −𝑓 𝑥 𝑔′ 𝑥
𝑔 𝑥 2 .
Differentiation Rules
• The following differentiation formulas hold:
1.
d
dx
sin 𝑥 = cos 𝑥
2.
𝑑
𝑑𝑥
cos 𝑥 = − sin 𝑥
3.
𝑑
𝑑𝑥
tan 𝑥 = sec2 𝑥
4.
𝑑
𝑑𝑥
cot 𝑥 = − csc2 𝑥
5.
𝑑
𝑑𝑥
sec 𝑥 = sec 𝑥 tan 𝑥
6.
𝑑
𝑑𝑥
csc 𝑥 = − csc 𝑥 cot 𝑥
7.
𝑑
𝑑𝑥
ln 𝑥 =
1
𝑥
8.
𝑑
𝑑𝑥
𝑒𝑥 = 𝑒𝑥
9.
𝑑
𝑑𝑥
𝑎𝑥 = 𝑎𝑥 ln 𝑎 , 𝑎 > 0, 𝑎 ≠ 1
10.
𝑑
𝑑𝑥
log𝑎 𝑥 =
1
ln 𝑎 𝑥
, 𝑎 > 0, 𝑎 ≠ 1
Differentiation Rules
• The following differentiation formulas hold:
11.
𝑑
𝑑𝑥
sin−1 𝑥 =
1
1−𝑥2
12.
𝑑
𝑑𝑥
cos−1 𝑥 = −
1
1−𝑥2
13.
𝑑
𝑑𝑥
tan−1 𝑥 =
1
1+𝑥2
14.
𝑑
𝑑𝑥
cot−1 𝑥 = −
1
1+𝑥2
15.
𝑑
𝑑𝑥
sec−1
𝑥 =
1
𝑥 𝑥2−1
16.
𝑑
𝑑𝑥
csc−1 𝑥 = −
1
𝑥 𝑥2−1
17.
𝑑
𝑑𝑥
sinh 𝑥 = cosh 𝑥
18.
𝑑
𝑑𝑥
cosh 𝑥 = sinh 𝑥
19.
𝑑
𝑑𝑥
tanh 𝑥 = sech2 𝑥
20.
𝑑
𝑑𝑥
coth 𝑥 = − csch2
𝑥
21.
𝑑
𝑑𝑥
sech 𝑥 = − sech 𝑥 tanh 𝑥
22.
𝑑
𝑑𝑥
csch 𝑥 = − csch 𝑥 coth 𝑥
Exercise
1.
𝑑
𝑑𝑥
𝑥
3
2
2.
𝑑
𝑑𝑥
(4
𝑥)
3.
𝑑
𝑑𝑥
(
3
𝑥7)
4. 𝐷𝑥(6)
5. 𝐷𝑥(9𝑥)
6. 𝐷𝑥
1
𝑥2
7.
𝑑𝑦
𝑑𝑥
if 𝑦 = 3𝑥2
8.
𝑑
𝑑𝑥
[ 4𝑥 2]
9. 𝐷𝑥(4𝑥2 + 10𝑥)
10. 𝐷𝑥(𝑥7 − 3 cos 𝑥 + cot 𝑥 − 𝑒𝑥 −
sech 𝑥 + csc−1
𝑥 + 8)
• Solve for the following derivatives
Exercise
 Solve for the following derivatives
11.
𝑑
𝑑𝑥
𝑥 − 3 2𝑥2 − 3
12. 𝐷𝑥 3𝑥5 + 6𝑥
4
3 − 2 4𝑥3 − 53
𝑥
13.
𝑑𝑦
𝑑𝑥
if 𝑦 =
2𝑥3−
1
𝑥3+4
3𝑥−5
14. 𝑓′(𝑥) if 𝑓 𝑥 =
2𝑥4− 𝑥+2
2𝑥3−4 𝑥−3𝑥
15. 𝐷𝑥 𝑥3 −
1
𝑥3
16.
𝑑
𝑑𝑥
sec 𝑥 csc 𝑥
17. 𝐷𝑥
cot 𝑥−𝑥
1+tan 𝑥
18.
𝑑
𝑑𝑥
(sin 2𝑥)
19. 𝐷𝑥 2𝑥 cos 𝑥
20.
𝑑
𝑑𝑥
𝑥−8 4
𝑥
sec 𝑥−3 cot 𝑥
Answers to Exercises
1.
3
2
𝑥
1
2
2.
1
4
4
𝑥3
3.
7
3
3
𝑥4
4. 0
5. 9
6. −
2
𝑥3
7. 6𝑥
8. 32𝑥
9. 8𝑥 + 10
10. 7𝑥6 + 3 sin 𝑥 − csc2 𝑥 − 𝑒𝑥 +
sech 𝑥 tanh 𝑥 −
1
𝑥 𝑥2−1
Answers to Exercises
11. 6𝑥2 − 12𝑥 − 3
12. 3𝑥5 + 6𝑥
4
3 − 2 12𝑥2 −
5
3
3
𝑥2
+ (4𝑥3 −
16. sec 𝑥 tan 𝑥 csc 𝑥 + (sec 𝑥)(− csc 𝑥 cot 𝑥)
17.
1+tan 𝑥 − csc2 𝑥−1 − cot 𝑥−𝑥 sec2 𝑥
1+tan 𝑥 2
18. 2 sin 𝑥 − sin 𝑥 + cos 𝑥 cos 𝑥
19. 2𝑥 − sin 𝑥 + (cos 𝑥)(2)
20.
sec 𝑥−3 cot 𝑥 1−
2
4
𝑥3
− 𝑥−84
𝑥 sec 𝑥 tan 𝑥+3 csc2 𝑥
sec 𝑥−3 cot 𝑥

More Related Content

PDF
Derivative rules.docx
PPTX
1 review on derivatives
PDF
Difrentiation 140930015134-phpapp01
PPT
Derivatives
PDF
Difrentiation
PPTX
LESSON-1-DERIVATIVES.pptxvjjhggkkkkkhggfff
PPTX
Differential Calculus- differentiation
PPTX
Differentiation
Derivative rules.docx
1 review on derivatives
Difrentiation 140930015134-phpapp01
Derivatives
Difrentiation
LESSON-1-DERIVATIVES.pptxvjjhggkkkkkhggfff
Differential Calculus- differentiation
Differentiation

Similar to DIFFERENTAL CALCULUS DERIVATIVES FIRST PART (20)

PPT
Differential calculus
PPTX
Basic Calculus_Derivative of a Function_PPT.pptx
PPTX
Differentiation (Part 1).pptx
PPTX
Basic Calculus Basic Differentiation Rules
PDF
3. DERIVATIVE BY INCREMENT IN CALULUS 01
PPTX
3.2 Derivative as a Function
PPTX
3.2 Derivative as a Function
PPT
Limits and derivatives
PPTX
derivatives part 1.pptx
PPTX
0.5.derivatives
PDF
CalculusStudyGuide
PPTX
Calculus_slides (1).pptxdgyyruyturuuuuuu
PDF
College textbook business math and statistics - section b - business mathem...
PDF
MATH&151 Final Project Fundamentals of Derivatives.pdf
PDF
Week 6
PDF
Calculus 2 L4 Derivatives and Differentiation
PDF
Calculus 2 Lesson 4 Numerical Derivatives
PPTX
derivative -I for higher classes bca and bba
PDF
Calculus Review Session Brian Prest Duke University Nicholas School of the En...
PDF
Lesson 8: Basic Differentiation Rules
Differential calculus
Basic Calculus_Derivative of a Function_PPT.pptx
Differentiation (Part 1).pptx
Basic Calculus Basic Differentiation Rules
3. DERIVATIVE BY INCREMENT IN CALULUS 01
3.2 Derivative as a Function
3.2 Derivative as a Function
Limits and derivatives
derivatives part 1.pptx
0.5.derivatives
CalculusStudyGuide
Calculus_slides (1).pptxdgyyruyturuuuuuu
College textbook business math and statistics - section b - business mathem...
MATH&151 Final Project Fundamentals of Derivatives.pdf
Week 6
Calculus 2 L4 Derivatives and Differentiation
Calculus 2 Lesson 4 Numerical Derivatives
derivative -I for higher classes bca and bba
Calculus Review Session Brian Prest Duke University Nicholas School of the En...
Lesson 8: Basic Differentiation Rules
Ad

Recently uploaded (20)

PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Complications of Minimal Access Surgery at WLH
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Final Presentation General Medicine 03-08-2024.pptx
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Cell Structure & Organelles in detailed.
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
RMMM.pdf make it easy to upload and study
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
Trump Administration's workforce development strategy
Module 4: Burden of Disease Tutorial Slides S2 2025
Complications of Minimal Access Surgery at WLH
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Final Presentation General Medicine 03-08-2024.pptx
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
A systematic review of self-coping strategies used by university students to ...
LDMMIA Reiki Yoga Finals Review Spring Summer
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Cell Structure & Organelles in detailed.
History, Philosophy and sociology of education (1).pptx
RMMM.pdf make it easy to upload and study
STATICS OF THE RIGID BODIES Hibbelers.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Computing-Curriculum for Schools in Ghana
Final Presentation General Medicine 03-08-2024.pptx
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Yogi Goddess Pres Conference Studio Updates
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Trump Administration's workforce development strategy
Ad

DIFFERENTAL CALCULUS DERIVATIVES FIRST PART

  • 2. Definition and Notation • Line 𝑙 is the tangent line of the graph of 𝒚 = 𝒇(𝒙) at point 𝑷. • It touches the graph of 𝑦 = 𝑓(𝑥) at point 𝑃(𝑥0, 𝑓 𝑥0 ) • Slope of the line 𝑙 • 𝑚𝑙 = lim Δ𝑥→0 𝑓 𝑥0+Δ𝑥 −𝑓 𝑥0 Δ𝑥 • Equation of line 𝑙 • If 𝑚𝑙 exists: 𝑦 − 𝑓 𝑥0 = 𝑚𝑙(𝑥 − 𝑥0) • If 𝑚𝑙 = 0: 𝑦 = 𝑓(𝑥0) • If 𝑚𝑙 approaches ±∞: 𝑥 = 𝑥0
  • 3. Tangent Line • The slope of the tangent line at a certain point gives us an idea on the graph at that point. • Positive slope: graph is rising • Negative slope: graph is falling • Large slope: graph is relatively steep • Small slope: graph is relatively flat • Tangent line in this case does not necessarily touch the graph only once. • It touches the graph once, locally (at a small portion of the graph) • It may touch the graph again at other “far” points
  • 4. Normal Line • Line 𝑘 is the normal line of the graph of 𝒚 = 𝒇(𝒙) at point 𝑷. • It touches the graph of 𝑦 = 𝑓(𝑥) at point 𝑃(𝑥0, 𝑓 𝑥0 ) • It is perpendicular to the tangent line • Slope of the line 𝑘 • 𝑚𝑘 = − 1 𝑚𝑙 • Equation of line 𝑘 • If 𝑚𝑘 exists: 𝑦 − 𝑓 𝑥0 = 𝑚𝑘(𝑥 − 𝑥0) • If 𝑚𝑘 = 0: 𝑦 = 𝑓(𝑥0) • If 𝑚𝑘 approaches ±∞: 𝑥 = 𝑥0
  • 5. Definition of the Derivative • The derivative of a function 𝑓 𝑥 , denoted by 𝑓′(𝑥) is: 𝑓′ 𝑥 = lim Δ𝑥→0 𝑓 𝑥 + Δ𝑥 − 𝑓 𝑥 Δ𝑥 • 𝑓′(𝑥0) is the slope of the tangent line to the graph of 𝑓(𝑥) at point 𝑥0, 𝑓 𝑥0
  • 6. Definition of the Derivative • The derivative of a function 𝑓 𝑥 at 𝑥 = 𝑥0, denoted by 𝑓′(𝑥0) is: 𝑓′ 𝑥0 = lim Δ𝑥→0 𝑓 𝑥0 + Δ𝑥 − 𝑓 𝑥0 Δ𝑥 • Or if we set Δ𝑥 = 𝑥 − 𝑥0: 𝑓′ 𝑥0 = lim (𝑥−𝑥0)→0 𝑓 𝑥0 + (𝑥 − 𝑥0) − 𝑓 𝑥0 (𝑥 − 𝑥0) 𝑓′ 𝑥0 = lim 𝑥→𝑥0 𝑓 𝑥 − 𝑓 𝑥0 𝑥 − 𝑥0 • The process of solving for the derivative is called differentiation.
  • 7. Definition of the Derivative • Notation used for the derivative given 𝑦 = 𝑓(𝑥): • 𝑓′ 𝑥 • 𝑓′ • 𝑦′ • 𝑑𝑦 𝑑𝑥 • 𝐷𝑥[𝑓 𝑥 ] • 𝐷𝑥(𝑦)
  • 8. Differentiation Rules • Let 𝑓, 𝑔, and ℎ be functions and 𝑐 is a real number. • If 𝑓 𝑥 = 𝑐 ∈ ℝ, then 𝑓′ 𝑥 = 0. • If 𝑓 𝑥 = 𝑐 ⋅ 𝑔 𝑥 , then 𝑓′ x = c ⋅ 𝑔′ 𝑥 if 𝑔′(𝑥) exists. • If ℎ 𝑥 = 𝑓 𝑥 ± 𝑔 𝑥 , then ℎ′ 𝑥 = 𝑓′ 𝑥 ± 𝑔′ 𝑥 ..
  • 9. Differentiation Rules • Let 𝑓, 𝑔, and ℎ be functions and 𝑐 is a real number. • Power Rule: • If 𝑓 𝑥 = 𝑥𝑛, where 𝑛 is a rational number, then 𝑓′ 𝑥 = 𝑛𝑥𝑛−1. • Product Rule: • If ℎ 𝑥 = 𝑓 𝑥 𝑔(𝑥), then ℎ′ 𝑥 = 𝑓 𝑥 𝑔′ 𝑥 + 𝑔 𝑥 𝑓′ 𝑥 . • Quotient Rule • If ℎ 𝑥 = 𝑓 𝑥 𝑔 𝑥 where 𝑔 𝑥 ≠ 0, then ℎ′ 𝑥 = 𝑔 𝑥 𝑓′ 𝑥 −𝑓 𝑥 𝑔′ 𝑥 𝑔 𝑥 2 .
  • 10. Differentiation Rules • The following differentiation formulas hold: 1. d dx sin 𝑥 = cos 𝑥 2. 𝑑 𝑑𝑥 cos 𝑥 = − sin 𝑥 3. 𝑑 𝑑𝑥 tan 𝑥 = sec2 𝑥 4. 𝑑 𝑑𝑥 cot 𝑥 = − csc2 𝑥 5. 𝑑 𝑑𝑥 sec 𝑥 = sec 𝑥 tan 𝑥 6. 𝑑 𝑑𝑥 csc 𝑥 = − csc 𝑥 cot 𝑥 7. 𝑑 𝑑𝑥 ln 𝑥 = 1 𝑥 8. 𝑑 𝑑𝑥 𝑒𝑥 = 𝑒𝑥 9. 𝑑 𝑑𝑥 𝑎𝑥 = 𝑎𝑥 ln 𝑎 , 𝑎 > 0, 𝑎 ≠ 1 10. 𝑑 𝑑𝑥 log𝑎 𝑥 = 1 ln 𝑎 𝑥 , 𝑎 > 0, 𝑎 ≠ 1
  • 11. Differentiation Rules • The following differentiation formulas hold: 11. 𝑑 𝑑𝑥 sin−1 𝑥 = 1 1−𝑥2 12. 𝑑 𝑑𝑥 cos−1 𝑥 = − 1 1−𝑥2 13. 𝑑 𝑑𝑥 tan−1 𝑥 = 1 1+𝑥2 14. 𝑑 𝑑𝑥 cot−1 𝑥 = − 1 1+𝑥2 15. 𝑑 𝑑𝑥 sec−1 𝑥 = 1 𝑥 𝑥2−1 16. 𝑑 𝑑𝑥 csc−1 𝑥 = − 1 𝑥 𝑥2−1 17. 𝑑 𝑑𝑥 sinh 𝑥 = cosh 𝑥 18. 𝑑 𝑑𝑥 cosh 𝑥 = sinh 𝑥 19. 𝑑 𝑑𝑥 tanh 𝑥 = sech2 𝑥 20. 𝑑 𝑑𝑥 coth 𝑥 = − csch2 𝑥 21. 𝑑 𝑑𝑥 sech 𝑥 = − sech 𝑥 tanh 𝑥 22. 𝑑 𝑑𝑥 csch 𝑥 = − csch 𝑥 coth 𝑥
  • 12. Exercise 1. 𝑑 𝑑𝑥 𝑥 3 2 2. 𝑑 𝑑𝑥 (4 𝑥) 3. 𝑑 𝑑𝑥 ( 3 𝑥7) 4. 𝐷𝑥(6) 5. 𝐷𝑥(9𝑥) 6. 𝐷𝑥 1 𝑥2 7. 𝑑𝑦 𝑑𝑥 if 𝑦 = 3𝑥2 8. 𝑑 𝑑𝑥 [ 4𝑥 2] 9. 𝐷𝑥(4𝑥2 + 10𝑥) 10. 𝐷𝑥(𝑥7 − 3 cos 𝑥 + cot 𝑥 − 𝑒𝑥 − sech 𝑥 + csc−1 𝑥 + 8) • Solve for the following derivatives
  • 13. Exercise  Solve for the following derivatives 11. 𝑑 𝑑𝑥 𝑥 − 3 2𝑥2 − 3 12. 𝐷𝑥 3𝑥5 + 6𝑥 4 3 − 2 4𝑥3 − 53 𝑥 13. 𝑑𝑦 𝑑𝑥 if 𝑦 = 2𝑥3− 1 𝑥3+4 3𝑥−5 14. 𝑓′(𝑥) if 𝑓 𝑥 = 2𝑥4− 𝑥+2 2𝑥3−4 𝑥−3𝑥 15. 𝐷𝑥 𝑥3 − 1 𝑥3 16. 𝑑 𝑑𝑥 sec 𝑥 csc 𝑥 17. 𝐷𝑥 cot 𝑥−𝑥 1+tan 𝑥 18. 𝑑 𝑑𝑥 (sin 2𝑥) 19. 𝐷𝑥 2𝑥 cos 𝑥 20. 𝑑 𝑑𝑥 𝑥−8 4 𝑥 sec 𝑥−3 cot 𝑥
  • 14. Answers to Exercises 1. 3 2 𝑥 1 2 2. 1 4 4 𝑥3 3. 7 3 3 𝑥4 4. 0 5. 9 6. − 2 𝑥3 7. 6𝑥 8. 32𝑥 9. 8𝑥 + 10 10. 7𝑥6 + 3 sin 𝑥 − csc2 𝑥 − 𝑒𝑥 + sech 𝑥 tanh 𝑥 − 1 𝑥 𝑥2−1
  • 15. Answers to Exercises 11. 6𝑥2 − 12𝑥 − 3 12. 3𝑥5 + 6𝑥 4 3 − 2 12𝑥2 − 5 3 3 𝑥2 + (4𝑥3 − 16. sec 𝑥 tan 𝑥 csc 𝑥 + (sec 𝑥)(− csc 𝑥 cot 𝑥) 17. 1+tan 𝑥 − csc2 𝑥−1 − cot 𝑥−𝑥 sec2 𝑥 1+tan 𝑥 2 18. 2 sin 𝑥 − sin 𝑥 + cos 𝑥 cos 𝑥 19. 2𝑥 − sin 𝑥 + (cos 𝑥)(2) 20. sec 𝑥−3 cot 𝑥 1− 2 4 𝑥3 − 𝑥−84 𝑥 sec 𝑥 tan 𝑥+3 csc2 𝑥 sec 𝑥−3 cot 𝑥