SlideShare a Scribd company logo
Digital Twin: the Convergence of
Multimedia Technologies
Abdulmotaleb El Saddik
FIEEE, FCAE, FEIC
Abdulmotaleb El Saddik
FIEEE, FCAE, FEIC
Distinguished Professor & University Research Chair
Multimedia Communications Research Lab
elsaddik@uottawa.ca
© elsaddik@uottawa.ca 2018
2© 2002 Multimedia Communications research Laboratory (MCRLab)
3© 2002 Multimedia Communications research Laboratory (MCRLab)
Digital Twin
A digital twin is a digital replica of
a living or non-living physical entity1.
By bridging the physical and the virtual world, data is transmitted seamlessly
allowing the virtual entity to exist simultaneously with the physical entity.
1 El Saddik, A. (2018). Digital Twins: The Convergence of Multimedia Technologies. IEEE MultiMedia, 25(2), 87-92.
4© 2002 Multimedia Communications research Laboratory (MCRLab)
Why is digital twin important
now?• According to Gartner,
– Digital Twin is the 4th of the top 10 technological trends for 
2019
– More than 50% IoT companies teams have digital twin in 
their annual plan as a strategic mandate
• According to Market Research Future:
– it is expected that the digital twin market will reach $15B by 
2023
• Smart Cities becoming the new political
mandate
5© 2002 Multimedia Communications research Laboratory (MCRLab)
Facts
Things and Being are interconnected
Demographic data
from various parts
of city
Data from various
soft sensors
Data from
various
hard-sensors
Data from
surveillance
cameras
Data from the
crowd
Data from health
monitors of
citizens
Source of data: People,
Process, Product
BigMM & AI
Multimodal Interactions Cybersecurity & Biometrics
Massive
throughput
Massive low
latency
Massive
sensing
Massive
heterogeneity
Fast feedback
Massive
privacy
Security/Trust
5G & Tactile Internet
6© 2002 Multimedia Communications research Laboratory (MCRLab)
© 2016, Prof. A. El Saddik, elsaddik@uottawa.ca, reproduce with permission
Convergence of MM Tech
Cybersecurity
(including biometric,
privacy)
Data
IoT
Social
Networks
QoE-powered
Communications
(BT, Wi-Fi, 4G,
5G, etc.)
AI MMI
AR/VR
Holograms Haptics/
H-Robots
Machine
Learning
Deep
Learning
Ontology
Audio/
Video
Rules
Cognition
FinanceMedical
7© 2002 Multimedia Communications research Laboratory (MCRLab)
Digital Twin
Topological
Structure
Plug & Play
Transducer
Kazi Masudul Alam and Abdulmotaleb El Saddik, “C2PS: A Digital Twin Architecture Reference Model for the Cloud‐
Based Cyber‐Physical Systems”, IEEE Access, vol. 5, pp. 2050–2062, 2017
8© 2002 Multimedia Communications research Laboratory (MCRLab)
Our journey with
Digital Twins
9© 2002 Multimedia Communications research Laboratory (MCRLab)
9
10© 2002 Multimedia Communications research Laboratory (MCRLab)
By placing multiple 3D sensors around the measurement area and tracking simultaneously, we can obtain
a more accurate result by applying trilateration method.
3D Motion Capture
11© 2002 Multimedia Communications research Laboratory (MCRLab)
Depth image accuracy evaluation
Accuracy Distribution – Result : elliptical cone
Lin Yang, Longyu Zhang, Haiwei Dong,
Abdulhameed Alelaiwi and Abdulmotaleb El
Saddik, "Evaluating and improving the depth
accuracy of Kinect for Windows v2," IEEE
Sensors Journal, vol. 15, no. 8, pp. 4275-4285,
2015.
12© 2002 Multimedia Communications research Laboratory (MCRLab)
Experiment Results
Self calibrating Motion Capture
Bowen Yang, Haiwei Dong, and Abdulmotaleb El Saddik, “Development of a Self‐Calibrated Motion Capture System based 
on Nonlinear Trilateration of Multiple Kinect v2”, IEEE Sensors Journal , pp: 2481 – 2491, Vol. 17(8), 2017
13© 2002 Multimedia Communications research Laboratory (MCRLab)
Our sensing device is a consumer-
grade composite sensor, including
Kinect v2 sensor, gyroscope, digital
compass, and accelerometer. The Kinect
v2 sensor is used to capture depth data,
while other sensors are mainly used to
reduce accumulative errors of our
system.
The composite sensor is
fixed on a tripod, and mounted on a
robot , which automatically rotates
around the human subject with
approximate 1-meter radius, to capture
the full-view information.
Scanning Device
Proposed sensing device carried with a robot
Development of an Automatic 3D Human Head Scanning-
Printing System
14© 2002 Multimedia Communications research Laboratory (MCRLab)
Nadia Figueroa, Haiwei Dong and Abdulmotaleb El Saddik, “A combined approach towards consistent reconstructions of indoor
spaces based on 6D RGB-D odometry and KinectFusion,” ACM Transactions on Intelligent Systems and Technology, vol.
6, no. 2, pp. 14:1-10, 2015.
Development of an Automatic 3D Human Head
Scanning-Printing System
15© 2002 Multimedia Communications research Laboratory (MCRLab)
Accuracy Comparison 1: Standard Human Head Model
To validate the capabilities of our
proposed scanning system, a
visualized 3D CAD model of a
standard human head model is
prototyped, 3D printed and
scanned separately by our
proposed scanning system and by
a commercial handheld 3D laser
scanner FastSCAN. Furthermore,
we computed the geometric
differences (represented by
Hausdorff distances) between the
two scanned 3D models and the
ground-truth model separately.
Development of an Automatic 3D Human Head
Scanning-Printing System
Longyu Zhang, Bote Han, Haiwei Dong and Abdulmotaleb El Saddik, “Development of an Automatic 3D Human Head 
Scanning‐Printing System”, Springer Multimedia Tools and Applications (2016). doi:10.1007/s11042‐016‐3949‐2
16© 2002 Multimedia Communications research Laboratory (MCRLab)
Hausdorff distance is the maximum value from Model_1 → Model_2 and Model_2 → Model_1 in the
Euclidean space:
Visualization of Hausdorff distance between scanned models and
the ground-truth model separately. Top Row: Proposed system
result. Bottom Row: FastSCAN scanner result.
Accuracy Comparison 1: Standard Human Head Model
Development of an Automatic 3D Human Head
Scanning-Printing System
17© 2002 Multimedia Communications research Laboratory (MCRLab)
To further validate our
experimental results, we
compared scanned real human
models from our proposed
system with the ones from
commercial Cyberware laser
scanning system on real-human
subjects.
Accuracy Comparison 2: Real Human
Experimental setup for the evaluation of real human
scanning
Development of an Automatic 3D Human Head
Scanning-Printing System
18© 2002 Multimedia Communications research Laboratory (MCRLab)
Male and female subjects' real image, scanned results from our proposed system and Cyberware
separately, and the Hausdorff distance visualization results.
Development of an Automatic 3D
Human Head Scanning-Printing System
Accuracy Comparison 2: Real Human
Experimental results of real human scanning
19© 2002 Multimedia Communications research Laboratory (MCRLab)
1 min scanner
Longyu Zhang, Bote Han, Haiwei Dong and Abdulmotaleb El Saddik, “Development of an Automatic 3D Human Head 
Scanning‐Printing System”, Springer Multimedia Tools and Applications (2016). doi:10.1007/s11042‐016‐3949‐2
20© 2002 Multimedia Communications research Laboratory (MCRLab)
Stiffness Rendering
Original Models
Registered Models
Skull Models
Haptics Rendering
2) Head Stiffness Rendering
21© 2002 Multimedia Communications research Laboratory (MCRLab)
21
2) Head Stiffness Rendering
Facial Landmark Detection and Model Registration
The head mesh and skull meshes are registered through ICP procedure by minimizing the
correspondences between the facial features detected from both meshes.
Features on skull mesh are generated with aesthetic proportions.
1.
22© 2002 Multimedia Communications research Laboratory (MCRLab)
22
Deformed skull mesh of a male subject’s head mesh:
a) is the original skull template mesh and b), c) and d) are the fully deformed skull mesh of
isometric, frontal and profiles view respectively.
2) Head Stiffness Rendering
Fully processed approximation results
2. Hierarchical Region of Interest
Process
23© 2002 Multimedia Communications research Laboratory (MCRLab)
2) Head Stiffness Rendering
Minggao Wei, Yang Liu, Haiwei Dong, and Abdulmotaleb El Saddik “Human Head Stiffness Rendering”, IEEE Transactions 
on Instrumentation & Measurement, Vol 66(8), pp: 2083‐2096, DOI: : 10.1109/TIM.2017.2676258 
24© 2002 Multimedia Communications research Laboratory (MCRLab)
24
As a haptic rendering method applying magnetic
repulsive force to generate tactile sensation in
mid-air
Haptic display :
electromagnet array
driven by DC current
Glove attached with
magnet discs
Visual display
3) Magnetic Rendering
Introducing a new way of haptic volumetric shape rendering
25© 2002 Multimedia Communications research Laboratory (MCRLab)
25
3) Magnetic Rendering
Design of Electromagnet
Design of a powerful electromagnet model
Magnetic Field Concentrate Electromagnet
-3 -2 -1 0 1 2 3
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
X (cm)
MagneticRepellingForce(N)
Force along X among three models for one element at 1cm
designed
concentrated
traditional
3cm
210%
FEM simulation result using COMSOL Multiphysics
Traditional Model
Multi-turn coil
Soft iron core
Magnetic field concentrator
Mu-metal shielding
Concentrated Model
Designed Model
Electromagnet array
26© 2002 Multimedia Communications research Laboratory (MCRLab)
26
3) Magnetic Rendering
Video
Qi Zhang, Haiwei Dong, and Abdulmotaleb El Saddik, “Magnetic Field Control for Haptic Display: System Design and 
Simulation” IEEE Access , Vol 4, 2016, pp 299‐311, DOI: 10.1109/ACCESS.2016.2514978
27© 2002 Multimedia Communications research Laboratory (MCRLab)
Design Requirements
• Frequency of the UPEMF wave (30Hz)
• Shape of the UPEMF wave (Rectangular)
• Intensity of the UPEMF wave (0.12T)
Define the desired waveform
28© 2002 Multimedia Communications research Laboratory (MCRLab)
System Design
• Proposed UPEMF system
29© 2002 Multimedia Communications research Laboratory (MCRLab)
Test
Yuxiang Jiang, Haiwei Dong, Abdulmotaleb El Saddik, “A Unipolar Pulse Electromagnetic Field Apparatus for Magnetic 
Therapy”  IEEE Instrumentation & Measurement Magazine (to appear)
30© 2002 Multimedia Communications research Laboratory (MCRLab)
Why Haptics – Biometrics?
Haptic Systems
Biometrics Systems
The problem with Biometrics
without Haptics (movie)
31© 2002 Multimedia Communications research Laboratory (MCRLab)
Case Study: Identifying Human
Pattern with Haptics
The Experiment
Methodology
Dynamic Time Warping :
+ Nelder-Mead non-linear minimization
Spectral analysis: Fast Fourier Transform
Unsupervised Method: K-Means
   

3
1c
N
1i
2p2
c,i
1
c,i tldMS
Graphic Representation
32© 2002 Multimedia Communications research Laboratory (MCRLab)
Verifying such feasibility
Virtual Check
Virtual Mobile
Phone
Performance of Classifier
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FAR er r or r at e
Virtual Check Maze Virtual Phone
Ambient Intelligent Engine
Performance
El Saddik et al., “A Novel Biometric System for Identification and
Verification of Haptic Users”, IEEE Transactions on
Instrumentation and Measurement, Vol.56, No. 3 (2007), pp: 895
– 906.
33© 2002 Multimedia Communications research Laboratory (MCRLab)
Experimental Results
34© 2002 Multimedia Communications research Laboratory (MCRLab)
Virtual Check
FAR = ~7%
FRR = ~12%
Nizar Sakr, Fawaz Alsulaiman, Julio J. Valdes and Abdulmotaleb El Saddik, “Identity Verification based
on Haptic Handwritten Signatures using Genetic Programming” ACM Transactions on Multimedia
Computing Communications and Applications Vol 9(2), 2013
35© 2002 Multimedia Communications research Laboratory (MCRLab)
Multibiometrics
ECG + Fingerprint
36© 2002 Multimedia Communications research Laboratory (MCRLab)
ECG Biometrics
 We obtained 84.93% for TAR and 1.29% for FAR, with the advantage that the required time to perform
the authentication with our proposed algorithm is 4 seconds only.
• US Patent: US9699182B2 “Electrocardiogram (ECG) biometric authentication” by A. El Saddik, J, Arteaga Falconi & H. Al Osman
• ECG Authentication for Mobile Devices, Juan Sebastian Arteaga-Falconi ; Hussein Al Osman ; Abdulmotaleb El Saddik
• IEEE Transactions on Instrumentation and MeasurementYear: 2016, Volume: 65, Issue: 3, Pages: 591 - 600
37© 2002 Multimedia Communications research Laboratory (MCRLab)
Emotion
What is behind your facial features ?
Picture from: http://edwardpun.blogspot.ca/2006_12_01_archive.html
Is the Medical Field the only place for
HRV analysis ?
What about Affective Computing ?
38© 2002 Multimedia Communications research Laboratory (MCRLab)
Proposed System
One input frame from the video Amplitude mapping Phase mapping
Compared with the red and blue channel, the green channel contains the
strongest color variation due to blood circulation.
39© 2002 Multimedia Communications research Laboratory (MCRLab)
HRV parameters
Parameter Description
Time
Domain
HR The heart rate (bpm)
The mean of RR intervals
SDNN The standard deviation of RR intervals
RMSSD the root mean square of successive RR intervals difference
NN50 Number of RR intervals pairs differing more than 50 ms
pNN50 The division of NN50 over total number of RR intervals (%)
Frequency
Domain
LF The low frequency extracted from RR intervals after applying PSD
HF The high frequency extracted from RR intervals after applying PSD
LF/HF The LF frequency value divided by the HF value
40© 2002 Multimedia Communications research Laboratory (MCRLab)
Capturing Emotions
• Image pre-processing
• CNN training process
– Two-stage fine-tuning
– Center Loss
41© 2002 Multimedia Communications research Laboratory (MCRLab)
Real-time Experiments
42© 2002 Multimedia Communications research Laboratory (MCRLab)
iAware
iAware visual feedback: (a) for natural, (b) happy, (c) sad, (d) love, and (e) fear emotions}
Emoji-based version of the emotion wheel
The iAware emotion monitoring system
43© 2002 Multimedia Communications research Laboratory (MCRLab)
Real-time Emotion (DL) and FeedbackStimuli: Argentina scored the first goalStimuli: Conversations with a friendStimuli: Argentina's player injured
Amani Albraikan, Diana Patricia Tobón Vallejo, and Abdulmotaleb El Saddik, “Toward User‐Independent Emotion 
Recognition using Physiological Signals”, IEEE Sensors (accepted)
44© 2002 Multimedia Communications research Laboratory (MCRLab)
Direct Feedback
45© 2002 Multimedia Communications research Laboratory (MCRLab)
CTV News
Emotional Cities
Neural Network
Pre-processing /
feature extraction
Training and testing
Emotion detection
Geo-tagged tweets
with emotion (PADU)
Aggregation and
visualization
Google Maps API
#hashtagged
geo-location
Social networks
Surveillance
cameras
Smartphones
features /usages
Affective
Data Sources
....
Affective
Data Type
Images
Voice
Video
Physiological
signals
Text
Biofeedback
Sensors
....
46© 2002 Multimedia Communications research Laboratory (MCRLab)
Single City Analysis
Zhongli Li, Shiai Zhu, Huiwen Hong, Yuanyuan Li, and Abdulmotaleb El Saddik “City Digital Pulse: A Cloud Based 
Heterogeneous Data Analysis Platform”, Springer Multimedia Tools and Applications 76 (8), 10893‐10916, 2017
47© 2002 Multimedia Communications research Laboratory (MCRLab)
Hashtag Img and Sentiment Change
48© 2002 Multimedia Communications research Laboratory (MCRLab)
Multiple City Comparison
49© 2002 Multimedia Communications research Laboratory (MCRLab)
Multiple City Comparison
50© 2002 Multimedia Communications research Laboratory (MCRLab)
Champions League Analysis
0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17
TweetsNumber
Months
Negative
Neutral
Positive
Round of 16
“ The long bomb was sick “
Negative words
“ Luis. F***. Suarez. Again ”
51© 2002 Multimedia Communications research Laboratory (MCRLab)
Champions League Analysis
• The Final Game
-5
-4
-3
-2
-1
0
1
2
3
4
5
2 hours before during 2 hours after
Tweetssentiment
Juve
RM
0
200
400
600
800
1000
1200
1400
0'-15' 16'-30' 31'-45' 46'-60' 61'-75 76'-90 91'-120'
TweetsNumber
Minutes during game
RM
Juve
Samah Aloufi; Fatimah Alzamzami; Mohamad Hoda; Abdulmotaleb EI Saddik, “Soccer Fans Sentiment Through 
The Eye of Big Data: The UEFA Champions League as a Case Study”, in Proceedings of the 1st IEEE International 
Conference on Multimedia Information Processing and Retrieval. Venue Pullman Airport Hotel, Miami, FL, USA, 
April 10‐12, 2018
52© 2002 Multimedia Communications research Laboratory (MCRLab)
Human Needs in Affect-Aware City
• Understand the affective states of the citizen
– Provide a form of implicit feedback.
• The interpretation of the analyzed affective states can guide
authorities in improving situational awareness and quality of life.
Actions and Behaviors
Positive , Negative , Neutral
Happy , Sad , Love , Joy , Anger , Fear, …
?
What people are doing?
How they feel ?
Why they are behaving in
certain way?
-Sentiment Analysis
-Opinion Mining
-Automatic Emotion
Identification
-Modeling Crowd Activity
Basic Needs
-Analyzing Basic Needs
Rajwa Alharthi, Benjamin Guthier, Camille Guertin, Abdulmotaleb El Saddik, “A dataset for psychological human needs 
detection from social networks”, IEEE Access, 10.1109/ACCESS.2017.2706084, 2017
53© 2002 Multimedia Communications research Laboratory (MCRLab)
Case Study: Florida Shooting
1st 2nd 3rd 4th
0
10
20
30
40
50
60
70
80
90
100
Wednesday Thursday Friday Saturday
PERCENTAGEOFTWEETS
NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING
Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need
1.#TalkAboutItNow
2.#GunControl
3.#Broward
4.#GunControlNow
5.#LoveisLouder
6.#Prayers
7.#MassShooting
8.#RIP
9.#ThoughtsandPrayer
10.#Condolences
1.#TalkAboutItNow
2.#GunControl
3.#Broward
4.#GunControlNow
5.#LoveisLouder
6.#Prayers
7.#MassShooting
8.#RIP
9.#ThoughtsandPrayer
10.#Condolences
54© 2002 Multimedia Communications research Laboratory (MCRLab)
Florida Shooting
0
10
20
30
40
50
60
70
80
90
100
Wednesday Thursday Friday Saturday
PERCENTAGEOFTWEETS
NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING
Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need
1st 2nd 3rd 4th
1.#GunControl
2.#GunControlNow
3.#Islam
4.#Poor
5.#NRA
6.#PrayForDouglas
7.#America
8.#PolicyandChange
9.#GunReformNow
10.#NRABloodMoney
55© 2002 Multimedia Communications research Laboratory (MCRLab)
Florida Shooting
0
10
20
30
40
50
60
70
80
90
100
Wednesday Thursday Friday Saturday
PERCENTAGEOFTWEETS
NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING
Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need
1st 2nd 3rd 4th
1.#GunControl
2.#FBI
3.#GunReformNow
4.#GunControlNow
5.#MAGA
6.#NikolasCruz
7.#Trump
8.#SecondAmendment
9.#StandYourGround
10. #NRA
56© 2002 Multimedia Communications research Laboratory (MCRLab)
Florida Shooting
0
10
20
30
40
50
60
70
80
90
100
Wednesday Thursday Friday Saturday
PERCENTAGEOFTWEETS
NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING
Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need
1st 2nd 3rd 4th
1.#ThrowThemOut
2.#GunControl
3.#GunReformNow
4.#GunControlNow
5.#NRA
6.#NikolasCruz
7.#GunReform
8.#FBI
9.#StudentsDemandAction
10.#EndGunViolence
57© 2002 Multimedia Communications research Laboratory (MCRLab)
Digital Twin
4
Health and Well-being
58© 2002 Multimedia Communications research Laboratory (MCRLab)
user
Wrapper
X73 Communication
Module
X73 Compliant Digital Twin for
Healthcare Cloud Based System
Visualization and Data Analysis
Module
Non-standardized
health devices
X73 compliant
health devices
X73
Standardized
Communicatio
n
Proprietary
Communication
Health Device Transmitted
Data
Data Storage Module
Health Data and
Profile
Standardized
Communication
following X73
Communicatio
n
Mobile Device
IEEE X73 Platform 4 DT
H. Badawi, F. Lamarti, F. Arafsh, and A. El Saddik, “Standardizing a Shoe Insole as a Personal Health Device (PHD) Based on ISO/IEEE
11073 (X73)” In Proceeding of the 2019 International Conference on Information Technology & Systems - ICITS'19 (Feb. 6-8, 2019) Ecuador
59© 2002 Multimedia Communications research Laboratory (MCRLab)
Physical Activity Advisory System
Mobile cloud-based physical activity advisory system using biofeedback sensorsHF Badawi, H Dong,
A El Saddik, Future Generation Computer Systems 66, 59-70
60© 2002 Multimedia Communications research Laboratory (MCRLab)
Collect data about Mobile usage
5 student-athletes
from the University
of Ottawa install app
on their personal
smartphone
Smartphone usage is
tracked automatically,
remotely, and in real-time
via the mobile app
Participants complete self-report
surveys pertaining to:
a) key psychosocial variables
b) perceived smartphone usage
c) perceived sport performance
Usage data is subjected to
algorithms to extract
detailed statistical
information. All data is
used to create preliminary
participant profiles
15-days
All surveys are collected via
the mobile app
Poppy DesClouds, Fedwa Laamarti, Natalie Durand‐Bush, Abdulmotaleb El Saddik, “Developing and testing an 
application to assess the impact of smartphone usage on well‐being and performance outcomes of student‐athletes”, in 
Proceedings of the 2018 International Conference on Information Technology & Systems
61© 2002 Multimedia Communications research Laboratory (MCRLab)
Results
0
5
10
15
20
25
1 2 3 4 5
SmartphoneUsage(hours)
Participant
Usage Throughout the Day
Morning Usage Afternoon Usage Evening Usage Overnight Usage
Fig. 1. Prevalence of smartphone usage throughout four periods of the day, morning (6am-12pm), afternoon
(12pm-6pm), evening (6pm-12am), and overnight (12am-6am).
• Participants total smartphone usage ranged from 20.5 hours to 119.4 hours
• Average usage of 4.5 hours per day (31.7 hours per week)
62© 2002 Multimedia Communications research Laboratory (MCRLab)
Reconfigurable Transducer Network
• Multiple types of sensors
are developed, such as
pressure sensor, light
sensor, temperature
sensor, accelerometer,
CO-gas sensor, etc.
• The dynamic
condition of a multiple
rooms during a period
of 24 hours is
monitored.
Recommendations
are given by fuzzy
logic.
Basim Hafidh, Hussein Al Osman, Haiwei Dong and Abdulmotaleb El Saddik ,“A framework of reconfigurable transducer
networks and its XML-based communication,” IEEE Embedded Systems Letters, vol. 7, no. 3, pp. 81-84, 2015.
63© 2002 Multimedia Communications research Laboratory (MCRLab)
Backward
Walking
Forward Walking
Smart Insole
64© 2002 Multimedia Communications research Laboratory (MCRLab)
Results
65© 2002 Multimedia Communications research Laboratory (MCRLab)
Results
Faisal Arafsha , Christina Hanna, Ahmed Aboualmagd, Sarah Fraser and Abdulmotaleb El Saddik, “Instrumented 
Wireless SmartInsole System for Mobile Gait Analysis: A Validation Pilot Study with Tekscan Strideway”, J. Sens. 
Actuator Netw. 2018, 7(3), 36; doi:10.3390/jsan7030036
66© 2002 Multimedia Communications research Laboratory (MCRLab)
Post Stroke rehabilitation
- Ali Karime, Hussein Al-Osman, Jihad Mohamad Alja'am, Wail Gueaieb, and Abdulmotaleb El Saddik, “Tele-Wobble: A Tele-Rehabilitation
Wobble Board for Lower Extremity Therapy”, IEEE Transactions on Instrumentation and Measurements, 61 (7), 1816-1824 , 2012
- Atif Alamri, Jongeun Cha, and Abdulmotaleb El Saddik, “AR-REHAB: an Augmented Reality Framework for Post-Stroke Patients
Rehabilitation”, IEEE Transactions on Instrumentation and Measurements, Vol. 59(10), pp: 2554 – 2563, 2010
67© 2002 Multimedia Communications research Laboratory (MCRLab)
Elderly
68© 2002 Multimedia Communications research Laboratory (MCRLab)
Smart gloves for diabetics
69© 2002 Multimedia Communications research Laboratory (MCRLab)
ALS – Eye Gaze, Sensors
A Novel Eye-Gaze-Controlled Wheelchair System for Navigating Unknown Environments: Case Study With a
Person With ALS.MA Eid, N Giakoumidis, A El-Saddik, IEEE Access 4, 558-573
70© 2002 Multimedia Communications research Laboratory (MCRLab)
Final Thoughts
• Digital twin will fit in very well the AI strategy
which every country has.
• Digital twin is democracy of data in its truest
sense.
– It’s going to shake the norms and laws of privacy and we will as a society 
have to revisit what value do we perceive. 
• We need to balance convenience versus privacy
– technology ethics will be the newest branch of ethics that’s going to be 
out there
• Is it ethical to smart surveillance people and know
their emotions or heart rates
71© 2002 Multimedia Communications research Laboratory (MCRLab)
Final Thoughts
• Digital twin can act as a tool to remove the
gender biases we see today in some
domains
– It gives hope for an inclusive society
• It will definitely challenge the existing
power structures .
• Like we have the feminist movement,
– we will soon have anti‐technology movements on a grand 
and serious scale 
72© 2002 Multimedia Communications research Laboratory (MCRLab)
Acknowledgment
73© 2002 Multimedia Communications research Laboratory (MCRLab)
73Thank you for your attention!

More Related Content

PPTX
Digital Twin at-a-glance, Yong @SEMIforte
PPT
Digital Twin: Starting the journey
PPTX
Digital twin
PPTX
Digital twin - Internet of Things
PPTX
Digital twin ppt
PDF
Embedded digital twin
PDF
Digital twin
PDF
Digital Twin: A radical new approach to IoT
Digital Twin at-a-glance, Yong @SEMIforte
Digital Twin: Starting the journey
Digital twin
Digital twin - Internet of Things
Digital twin ppt
Embedded digital twin
Digital twin
Digital Twin: A radical new approach to IoT

What's hot (20)

PPTX
Digital twins
PDF
Necessity of the Digital Twin and Digital Thread
PDF
Next IIoT wave: embedded digital twin for manufacturing
PPTX
Digital twin
PDF
Top Technology Trends in IoT for 2022
PPTX
digital twin seminar 1.pptx
PDF
Digital twin
PPTX
Internet Of Things in Automobile Industry
PPTX
DIGITAL_TWIN_final.pptx
PPTX
Augmented Reality (AR)
PDF
Intermediate: 5G and Extended Reality (XR)
PDF
101 Use Cases for IoT
PPTX
Augmented reality ppt
PDF
Digital Twin - What is it and how can it help us?
PDF
What is the Internet of Things?
PDF
5 g and IoT for healthcare
PPTX
What is a metaverse?
PDF
Seminar report of digital twin
PDF
Digital twins: the power of a virtual visual copy - Unite Copenhagen 2019
PPTX
Digital twins ppt
Digital twins
Necessity of the Digital Twin and Digital Thread
Next IIoT wave: embedded digital twin for manufacturing
Digital twin
Top Technology Trends in IoT for 2022
digital twin seminar 1.pptx
Digital twin
Internet Of Things in Automobile Industry
DIGITAL_TWIN_final.pptx
Augmented Reality (AR)
Intermediate: 5G and Extended Reality (XR)
101 Use Cases for IoT
Augmented reality ppt
Digital Twin - What is it and how can it help us?
What is the Internet of Things?
5 g and IoT for healthcare
What is a metaverse?
Seminar report of digital twin
Digital twins: the power of a virtual visual copy - Unite Copenhagen 2019
Digital twins ppt
Ad

Similar to Digital Twin: convergence of Multimedia Technologies (20)

PDF
Meta-Review on Brain-Computer Interface (BCI) in the Metaverse
PDF
Review on Arduino-Based Face Mask Detection System
PDF
Covid Mask Detection and Social Distancing Using Raspberry pi
PPTX
ML for blind people.pptx
PDF
Next Gen Computational Ophthalmic Imaging for Neurodegenerative Diseases and ...
PDF
Human-machine interactions based on hand gesture recognition using deep learn...
PDF
1918 1923
PDF
1918 1923
PPTX
HUMAN.pptx A robot project which will be act like toy
PDF
3d object detection and recognition : a review
PDF
A Survey Paper on Controlling Computer using Hand Gestures
PDF
Immersive Technologies in 5G-Enabled Applications: Some Technical Challenges ...
PDF
IMMERSIVE TECHNOLOGIES IN 5G-ENABLED APPLICATIONS: SOME TECHNICAL CHALLENGES ...
PDF
DISTRIBUTED SYSTEM FOR 3D REMOTE MONITORING USING KINECT DEPTH CAMERAS
PPTX
Rise of augmented reality : current and future applications
PDF
Generating 3 d model in virtual reality and analyzing its performance
PDF
Visual, navigation and communication aid for visually impaired person
PDF
Edge AI Miramond technical seminCERN.pdf
PDF
AudiNect: An Aid for the Autonomous Navigation of Visually Impaired People, B...
PDF
People Monitoring and Mask Detection using Real-time video analyzing
Meta-Review on Brain-Computer Interface (BCI) in the Metaverse
Review on Arduino-Based Face Mask Detection System
Covid Mask Detection and Social Distancing Using Raspberry pi
ML for blind people.pptx
Next Gen Computational Ophthalmic Imaging for Neurodegenerative Diseases and ...
Human-machine interactions based on hand gesture recognition using deep learn...
1918 1923
1918 1923
HUMAN.pptx A robot project which will be act like toy
3d object detection and recognition : a review
A Survey Paper on Controlling Computer using Hand Gestures
Immersive Technologies in 5G-Enabled Applications: Some Technical Challenges ...
IMMERSIVE TECHNOLOGIES IN 5G-ENABLED APPLICATIONS: SOME TECHNICAL CHALLENGES ...
DISTRIBUTED SYSTEM FOR 3D REMOTE MONITORING USING KINECT DEPTH CAMERAS
Rise of augmented reality : current and future applications
Generating 3 d model in virtual reality and analyzing its performance
Visual, navigation and communication aid for visually impaired person
Edge AI Miramond technical seminCERN.pdf
AudiNect: An Aid for the Autonomous Navigation of Visually Impaired People, B...
People Monitoring and Mask Detection using Real-time video analyzing
Ad

Recently uploaded (20)

PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
Tartificialntelligence_presentation.pptx
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Getting Started with Data Integration: FME Form 101
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Hybrid model detection and classification of lung cancer
PDF
Approach and Philosophy of On baking technology
PPTX
Chapter 5: Probability Theory and Statistics
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
1. Introduction to Computer Programming.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
August Patch Tuesday
PDF
DP Operators-handbook-extract for the Mautical Institute
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Web App vs Mobile App What Should You Build First.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Tartificialntelligence_presentation.pptx
Group 1 Presentation -Planning and Decision Making .pptx
Getting Started with Data Integration: FME Form 101
A comparative analysis of optical character recognition models for extracting...
Hybrid model detection and classification of lung cancer
Approach and Philosophy of On baking technology
Chapter 5: Probability Theory and Statistics
NewMind AI Weekly Chronicles - August'25-Week II
Unlocking AI with Model Context Protocol (MCP)
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Assigned Numbers - 2025 - Bluetooth® Document
1. Introduction to Computer Programming.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
August Patch Tuesday
DP Operators-handbook-extract for the Mautical Institute

Digital Twin: convergence of Multimedia Technologies

  • 1. Digital Twin: the Convergence of Multimedia Technologies Abdulmotaleb El Saddik FIEEE, FCAE, FEIC Abdulmotaleb El Saddik FIEEE, FCAE, FEIC Distinguished Professor & University Research Chair Multimedia Communications Research Lab elsaddik@uottawa.ca © elsaddik@uottawa.ca 2018
  • 2. 2© 2002 Multimedia Communications research Laboratory (MCRLab)
  • 3. 3© 2002 Multimedia Communications research Laboratory (MCRLab) Digital Twin A digital twin is a digital replica of a living or non-living physical entity1. By bridging the physical and the virtual world, data is transmitted seamlessly allowing the virtual entity to exist simultaneously with the physical entity. 1 El Saddik, A. (2018). Digital Twins: The Convergence of Multimedia Technologies. IEEE MultiMedia, 25(2), 87-92.
  • 4. 4© 2002 Multimedia Communications research Laboratory (MCRLab) Why is digital twin important now?• According to Gartner, – Digital Twin is the 4th of the top 10 technological trends for  2019 – More than 50% IoT companies teams have digital twin in  their annual plan as a strategic mandate • According to Market Research Future: – it is expected that the digital twin market will reach $15B by  2023 • Smart Cities becoming the new political mandate
  • 5. 5© 2002 Multimedia Communications research Laboratory (MCRLab) Facts Things and Being are interconnected Demographic data from various parts of city Data from various soft sensors Data from various hard-sensors Data from surveillance cameras Data from the crowd Data from health monitors of citizens Source of data: People, Process, Product BigMM & AI Multimodal Interactions Cybersecurity & Biometrics Massive throughput Massive low latency Massive sensing Massive heterogeneity Fast feedback Massive privacy Security/Trust 5G & Tactile Internet
  • 6. 6© 2002 Multimedia Communications research Laboratory (MCRLab) © 2016, Prof. A. El Saddik, elsaddik@uottawa.ca, reproduce with permission Convergence of MM Tech Cybersecurity (including biometric, privacy) Data IoT Social Networks QoE-powered Communications (BT, Wi-Fi, 4G, 5G, etc.) AI MMI AR/VR Holograms Haptics/ H-Robots Machine Learning Deep Learning Ontology Audio/ Video Rules Cognition FinanceMedical
  • 7. 7© 2002 Multimedia Communications research Laboratory (MCRLab) Digital Twin Topological Structure Plug & Play Transducer Kazi Masudul Alam and Abdulmotaleb El Saddik, “C2PS: A Digital Twin Architecture Reference Model for the Cloud‐ Based Cyber‐Physical Systems”, IEEE Access, vol. 5, pp. 2050–2062, 2017
  • 8. 8© 2002 Multimedia Communications research Laboratory (MCRLab) Our journey with Digital Twins
  • 9. 9© 2002 Multimedia Communications research Laboratory (MCRLab) 9
  • 10. 10© 2002 Multimedia Communications research Laboratory (MCRLab) By placing multiple 3D sensors around the measurement area and tracking simultaneously, we can obtain a more accurate result by applying trilateration method. 3D Motion Capture
  • 11. 11© 2002 Multimedia Communications research Laboratory (MCRLab) Depth image accuracy evaluation Accuracy Distribution – Result : elliptical cone Lin Yang, Longyu Zhang, Haiwei Dong, Abdulhameed Alelaiwi and Abdulmotaleb El Saddik, "Evaluating and improving the depth accuracy of Kinect for Windows v2," IEEE Sensors Journal, vol. 15, no. 8, pp. 4275-4285, 2015.
  • 12. 12© 2002 Multimedia Communications research Laboratory (MCRLab) Experiment Results Self calibrating Motion Capture Bowen Yang, Haiwei Dong, and Abdulmotaleb El Saddik, “Development of a Self‐Calibrated Motion Capture System based  on Nonlinear Trilateration of Multiple Kinect v2”, IEEE Sensors Journal , pp: 2481 – 2491, Vol. 17(8), 2017
  • 13. 13© 2002 Multimedia Communications research Laboratory (MCRLab) Our sensing device is a consumer- grade composite sensor, including Kinect v2 sensor, gyroscope, digital compass, and accelerometer. The Kinect v2 sensor is used to capture depth data, while other sensors are mainly used to reduce accumulative errors of our system. The composite sensor is fixed on a tripod, and mounted on a robot , which automatically rotates around the human subject with approximate 1-meter radius, to capture the full-view information. Scanning Device Proposed sensing device carried with a robot Development of an Automatic 3D Human Head Scanning- Printing System
  • 14. 14© 2002 Multimedia Communications research Laboratory (MCRLab) Nadia Figueroa, Haiwei Dong and Abdulmotaleb El Saddik, “A combined approach towards consistent reconstructions of indoor spaces based on 6D RGB-D odometry and KinectFusion,” ACM Transactions on Intelligent Systems and Technology, vol. 6, no. 2, pp. 14:1-10, 2015. Development of an Automatic 3D Human Head Scanning-Printing System
  • 15. 15© 2002 Multimedia Communications research Laboratory (MCRLab) Accuracy Comparison 1: Standard Human Head Model To validate the capabilities of our proposed scanning system, a visualized 3D CAD model of a standard human head model is prototyped, 3D printed and scanned separately by our proposed scanning system and by a commercial handheld 3D laser scanner FastSCAN. Furthermore, we computed the geometric differences (represented by Hausdorff distances) between the two scanned 3D models and the ground-truth model separately. Development of an Automatic 3D Human Head Scanning-Printing System Longyu Zhang, Bote Han, Haiwei Dong and Abdulmotaleb El Saddik, “Development of an Automatic 3D Human Head  Scanning‐Printing System”, Springer Multimedia Tools and Applications (2016). doi:10.1007/s11042‐016‐3949‐2
  • 16. 16© 2002 Multimedia Communications research Laboratory (MCRLab) Hausdorff distance is the maximum value from Model_1 → Model_2 and Model_2 → Model_1 in the Euclidean space: Visualization of Hausdorff distance between scanned models and the ground-truth model separately. Top Row: Proposed system result. Bottom Row: FastSCAN scanner result. Accuracy Comparison 1: Standard Human Head Model Development of an Automatic 3D Human Head Scanning-Printing System
  • 17. 17© 2002 Multimedia Communications research Laboratory (MCRLab) To further validate our experimental results, we compared scanned real human models from our proposed system with the ones from commercial Cyberware laser scanning system on real-human subjects. Accuracy Comparison 2: Real Human Experimental setup for the evaluation of real human scanning Development of an Automatic 3D Human Head Scanning-Printing System
  • 18. 18© 2002 Multimedia Communications research Laboratory (MCRLab) Male and female subjects' real image, scanned results from our proposed system and Cyberware separately, and the Hausdorff distance visualization results. Development of an Automatic 3D Human Head Scanning-Printing System Accuracy Comparison 2: Real Human Experimental results of real human scanning
  • 19. 19© 2002 Multimedia Communications research Laboratory (MCRLab) 1 min scanner Longyu Zhang, Bote Han, Haiwei Dong and Abdulmotaleb El Saddik, “Development of an Automatic 3D Human Head  Scanning‐Printing System”, Springer Multimedia Tools and Applications (2016). doi:10.1007/s11042‐016‐3949‐2
  • 20. 20© 2002 Multimedia Communications research Laboratory (MCRLab) Stiffness Rendering Original Models Registered Models Skull Models Haptics Rendering 2) Head Stiffness Rendering
  • 21. 21© 2002 Multimedia Communications research Laboratory (MCRLab) 21 2) Head Stiffness Rendering Facial Landmark Detection and Model Registration The head mesh and skull meshes are registered through ICP procedure by minimizing the correspondences between the facial features detected from both meshes. Features on skull mesh are generated with aesthetic proportions. 1.
  • 22. 22© 2002 Multimedia Communications research Laboratory (MCRLab) 22 Deformed skull mesh of a male subject’s head mesh: a) is the original skull template mesh and b), c) and d) are the fully deformed skull mesh of isometric, frontal and profiles view respectively. 2) Head Stiffness Rendering Fully processed approximation results 2. Hierarchical Region of Interest Process
  • 23. 23© 2002 Multimedia Communications research Laboratory (MCRLab) 2) Head Stiffness Rendering Minggao Wei, Yang Liu, Haiwei Dong, and Abdulmotaleb El Saddik “Human Head Stiffness Rendering”, IEEE Transactions  on Instrumentation & Measurement, Vol 66(8), pp: 2083‐2096, DOI: : 10.1109/TIM.2017.2676258 
  • 24. 24© 2002 Multimedia Communications research Laboratory (MCRLab) 24 As a haptic rendering method applying magnetic repulsive force to generate tactile sensation in mid-air Haptic display : electromagnet array driven by DC current Glove attached with magnet discs Visual display 3) Magnetic Rendering Introducing a new way of haptic volumetric shape rendering
  • 25. 25© 2002 Multimedia Communications research Laboratory (MCRLab) 25 3) Magnetic Rendering Design of Electromagnet Design of a powerful electromagnet model Magnetic Field Concentrate Electromagnet -3 -2 -1 0 1 2 3 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 X (cm) MagneticRepellingForce(N) Force along X among three models for one element at 1cm designed concentrated traditional 3cm 210% FEM simulation result using COMSOL Multiphysics Traditional Model Multi-turn coil Soft iron core Magnetic field concentrator Mu-metal shielding Concentrated Model Designed Model Electromagnet array
  • 26. 26© 2002 Multimedia Communications research Laboratory (MCRLab) 26 3) Magnetic Rendering Video Qi Zhang, Haiwei Dong, and Abdulmotaleb El Saddik, “Magnetic Field Control for Haptic Display: System Design and  Simulation” IEEE Access , Vol 4, 2016, pp 299‐311, DOI: 10.1109/ACCESS.2016.2514978
  • 27. 27© 2002 Multimedia Communications research Laboratory (MCRLab) Design Requirements • Frequency of the UPEMF wave (30Hz) • Shape of the UPEMF wave (Rectangular) • Intensity of the UPEMF wave (0.12T) Define the desired waveform
  • 28. 28© 2002 Multimedia Communications research Laboratory (MCRLab) System Design • Proposed UPEMF system
  • 29. 29© 2002 Multimedia Communications research Laboratory (MCRLab) Test Yuxiang Jiang, Haiwei Dong, Abdulmotaleb El Saddik, “A Unipolar Pulse Electromagnetic Field Apparatus for Magnetic  Therapy”  IEEE Instrumentation & Measurement Magazine (to appear)
  • 30. 30© 2002 Multimedia Communications research Laboratory (MCRLab) Why Haptics – Biometrics? Haptic Systems Biometrics Systems The problem with Biometrics without Haptics (movie)
  • 31. 31© 2002 Multimedia Communications research Laboratory (MCRLab) Case Study: Identifying Human Pattern with Haptics The Experiment Methodology Dynamic Time Warping : + Nelder-Mead non-linear minimization Spectral analysis: Fast Fourier Transform Unsupervised Method: K-Means      3 1c N 1i 2p2 c,i 1 c,i tldMS Graphic Representation
  • 32. 32© 2002 Multimedia Communications research Laboratory (MCRLab) Verifying such feasibility Virtual Check Virtual Mobile Phone Performance of Classifier 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 FAR er r or r at e Virtual Check Maze Virtual Phone Ambient Intelligent Engine Performance El Saddik et al., “A Novel Biometric System for Identification and Verification of Haptic Users”, IEEE Transactions on Instrumentation and Measurement, Vol.56, No. 3 (2007), pp: 895 – 906.
  • 33. 33© 2002 Multimedia Communications research Laboratory (MCRLab) Experimental Results
  • 34. 34© 2002 Multimedia Communications research Laboratory (MCRLab) Virtual Check FAR = ~7% FRR = ~12% Nizar Sakr, Fawaz Alsulaiman, Julio J. Valdes and Abdulmotaleb El Saddik, “Identity Verification based on Haptic Handwritten Signatures using Genetic Programming” ACM Transactions on Multimedia Computing Communications and Applications Vol 9(2), 2013
  • 35. 35© 2002 Multimedia Communications research Laboratory (MCRLab) Multibiometrics ECG + Fingerprint
  • 36. 36© 2002 Multimedia Communications research Laboratory (MCRLab) ECG Biometrics  We obtained 84.93% for TAR and 1.29% for FAR, with the advantage that the required time to perform the authentication with our proposed algorithm is 4 seconds only. • US Patent: US9699182B2 “Electrocardiogram (ECG) biometric authentication” by A. El Saddik, J, Arteaga Falconi & H. Al Osman • ECG Authentication for Mobile Devices, Juan Sebastian Arteaga-Falconi ; Hussein Al Osman ; Abdulmotaleb El Saddik • IEEE Transactions on Instrumentation and MeasurementYear: 2016, Volume: 65, Issue: 3, Pages: 591 - 600
  • 37. 37© 2002 Multimedia Communications research Laboratory (MCRLab) Emotion What is behind your facial features ? Picture from: http://edwardpun.blogspot.ca/2006_12_01_archive.html Is the Medical Field the only place for HRV analysis ? What about Affective Computing ?
  • 38. 38© 2002 Multimedia Communications research Laboratory (MCRLab) Proposed System One input frame from the video Amplitude mapping Phase mapping Compared with the red and blue channel, the green channel contains the strongest color variation due to blood circulation.
  • 39. 39© 2002 Multimedia Communications research Laboratory (MCRLab) HRV parameters Parameter Description Time Domain HR The heart rate (bpm) The mean of RR intervals SDNN The standard deviation of RR intervals RMSSD the root mean square of successive RR intervals difference NN50 Number of RR intervals pairs differing more than 50 ms pNN50 The division of NN50 over total number of RR intervals (%) Frequency Domain LF The low frequency extracted from RR intervals after applying PSD HF The high frequency extracted from RR intervals after applying PSD LF/HF The LF frequency value divided by the HF value
  • 40. 40© 2002 Multimedia Communications research Laboratory (MCRLab) Capturing Emotions • Image pre-processing • CNN training process – Two-stage fine-tuning – Center Loss
  • 41. 41© 2002 Multimedia Communications research Laboratory (MCRLab) Real-time Experiments
  • 42. 42© 2002 Multimedia Communications research Laboratory (MCRLab) iAware iAware visual feedback: (a) for natural, (b) happy, (c) sad, (d) love, and (e) fear emotions} Emoji-based version of the emotion wheel The iAware emotion monitoring system
  • 43. 43© 2002 Multimedia Communications research Laboratory (MCRLab) Real-time Emotion (DL) and FeedbackStimuli: Argentina scored the first goalStimuli: Conversations with a friendStimuli: Argentina's player injured Amani Albraikan, Diana Patricia Tobón Vallejo, and Abdulmotaleb El Saddik, “Toward User‐Independent Emotion  Recognition using Physiological Signals”, IEEE Sensors (accepted)
  • 44. 44© 2002 Multimedia Communications research Laboratory (MCRLab) Direct Feedback
  • 45. 45© 2002 Multimedia Communications research Laboratory (MCRLab) CTV News Emotional Cities Neural Network Pre-processing / feature extraction Training and testing Emotion detection Geo-tagged tweets with emotion (PADU) Aggregation and visualization Google Maps API #hashtagged geo-location Social networks Surveillance cameras Smartphones features /usages Affective Data Sources .... Affective Data Type Images Voice Video Physiological signals Text Biofeedback Sensors ....
  • 46. 46© 2002 Multimedia Communications research Laboratory (MCRLab) Single City Analysis Zhongli Li, Shiai Zhu, Huiwen Hong, Yuanyuan Li, and Abdulmotaleb El Saddik “City Digital Pulse: A Cloud Based  Heterogeneous Data Analysis Platform”, Springer Multimedia Tools and Applications 76 (8), 10893‐10916, 2017
  • 47. 47© 2002 Multimedia Communications research Laboratory (MCRLab) Hashtag Img and Sentiment Change
  • 48. 48© 2002 Multimedia Communications research Laboratory (MCRLab) Multiple City Comparison
  • 49. 49© 2002 Multimedia Communications research Laboratory (MCRLab) Multiple City Comparison
  • 50. 50© 2002 Multimedia Communications research Laboratory (MCRLab) Champions League Analysis 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17 TweetsNumber Months Negative Neutral Positive Round of 16 “ The long bomb was sick “ Negative words “ Luis. F***. Suarez. Again ”
  • 51. 51© 2002 Multimedia Communications research Laboratory (MCRLab) Champions League Analysis • The Final Game -5 -4 -3 -2 -1 0 1 2 3 4 5 2 hours before during 2 hours after Tweetssentiment Juve RM 0 200 400 600 800 1000 1200 1400 0'-15' 16'-30' 31'-45' 46'-60' 61'-75 76'-90 91'-120' TweetsNumber Minutes during game RM Juve Samah Aloufi; Fatimah Alzamzami; Mohamad Hoda; Abdulmotaleb EI Saddik, “Soccer Fans Sentiment Through  The Eye of Big Data: The UEFA Champions League as a Case Study”, in Proceedings of the 1st IEEE International  Conference on Multimedia Information Processing and Retrieval. Venue Pullman Airport Hotel, Miami, FL, USA,  April 10‐12, 2018
  • 52. 52© 2002 Multimedia Communications research Laboratory (MCRLab) Human Needs in Affect-Aware City • Understand the affective states of the citizen – Provide a form of implicit feedback. • The interpretation of the analyzed affective states can guide authorities in improving situational awareness and quality of life. Actions and Behaviors Positive , Negative , Neutral Happy , Sad , Love , Joy , Anger , Fear, … ? What people are doing? How they feel ? Why they are behaving in certain way? -Sentiment Analysis -Opinion Mining -Automatic Emotion Identification -Modeling Crowd Activity Basic Needs -Analyzing Basic Needs Rajwa Alharthi, Benjamin Guthier, Camille Guertin, Abdulmotaleb El Saddik, “A dataset for psychological human needs  detection from social networks”, IEEE Access, 10.1109/ACCESS.2017.2706084, 2017
  • 53. 53© 2002 Multimedia Communications research Laboratory (MCRLab) Case Study: Florida Shooting 1st 2nd 3rd 4th 0 10 20 30 40 50 60 70 80 90 100 Wednesday Thursday Friday Saturday PERCENTAGEOFTWEETS NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need 1.#TalkAboutItNow 2.#GunControl 3.#Broward 4.#GunControlNow 5.#LoveisLouder 6.#Prayers 7.#MassShooting 8.#RIP 9.#ThoughtsandPrayer 10.#Condolences 1.#TalkAboutItNow 2.#GunControl 3.#Broward 4.#GunControlNow 5.#LoveisLouder 6.#Prayers 7.#MassShooting 8.#RIP 9.#ThoughtsandPrayer 10.#Condolences
  • 54. 54© 2002 Multimedia Communications research Laboratory (MCRLab) Florida Shooting 0 10 20 30 40 50 60 70 80 90 100 Wednesday Thursday Friday Saturday PERCENTAGEOFTWEETS NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need 1st 2nd 3rd 4th 1.#GunControl 2.#GunControlNow 3.#Islam 4.#Poor 5.#NRA 6.#PrayForDouglas 7.#America 8.#PolicyandChange 9.#GunReformNow 10.#NRABloodMoney
  • 55. 55© 2002 Multimedia Communications research Laboratory (MCRLab) Florida Shooting 0 10 20 30 40 50 60 70 80 90 100 Wednesday Thursday Friday Saturday PERCENTAGEOFTWEETS NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need 1st 2nd 3rd 4th 1.#GunControl 2.#FBI 3.#GunReformNow 4.#GunControlNow 5.#MAGA 6.#NikolasCruz 7.#Trump 8.#SecondAmendment 9.#StandYourGround 10. #NRA
  • 56. 56© 2002 Multimedia Communications research Laboratory (MCRLab) Florida Shooting 0 10 20 30 40 50 60 70 80 90 100 Wednesday Thursday Friday Saturday PERCENTAGEOFTWEETS NEED SATISFACTION LEVELCHANGES DURING FLORIDA SHOOTING Satisfied Relatednees Need Dissatisfied Relatednees Need Satisfied Autonomy Need Dissatisfied Autonomy Need 1st 2nd 3rd 4th 1.#ThrowThemOut 2.#GunControl 3.#GunReformNow 4.#GunControlNow 5.#NRA 6.#NikolasCruz 7.#GunReform 8.#FBI 9.#StudentsDemandAction 10.#EndGunViolence
  • 57. 57© 2002 Multimedia Communications research Laboratory (MCRLab) Digital Twin 4 Health and Well-being
  • 58. 58© 2002 Multimedia Communications research Laboratory (MCRLab) user Wrapper X73 Communication Module X73 Compliant Digital Twin for Healthcare Cloud Based System Visualization and Data Analysis Module Non-standardized health devices X73 compliant health devices X73 Standardized Communicatio n Proprietary Communication Health Device Transmitted Data Data Storage Module Health Data and Profile Standardized Communication following X73 Communicatio n Mobile Device IEEE X73 Platform 4 DT H. Badawi, F. Lamarti, F. Arafsh, and A. El Saddik, “Standardizing a Shoe Insole as a Personal Health Device (PHD) Based on ISO/IEEE 11073 (X73)” In Proceeding of the 2019 International Conference on Information Technology & Systems - ICITS'19 (Feb. 6-8, 2019) Ecuador
  • 59. 59© 2002 Multimedia Communications research Laboratory (MCRLab) Physical Activity Advisory System Mobile cloud-based physical activity advisory system using biofeedback sensorsHF Badawi, H Dong, A El Saddik, Future Generation Computer Systems 66, 59-70
  • 60. 60© 2002 Multimedia Communications research Laboratory (MCRLab) Collect data about Mobile usage 5 student-athletes from the University of Ottawa install app on their personal smartphone Smartphone usage is tracked automatically, remotely, and in real-time via the mobile app Participants complete self-report surveys pertaining to: a) key psychosocial variables b) perceived smartphone usage c) perceived sport performance Usage data is subjected to algorithms to extract detailed statistical information. All data is used to create preliminary participant profiles 15-days All surveys are collected via the mobile app Poppy DesClouds, Fedwa Laamarti, Natalie Durand‐Bush, Abdulmotaleb El Saddik, “Developing and testing an  application to assess the impact of smartphone usage on well‐being and performance outcomes of student‐athletes”, in  Proceedings of the 2018 International Conference on Information Technology & Systems
  • 61. 61© 2002 Multimedia Communications research Laboratory (MCRLab) Results 0 5 10 15 20 25 1 2 3 4 5 SmartphoneUsage(hours) Participant Usage Throughout the Day Morning Usage Afternoon Usage Evening Usage Overnight Usage Fig. 1. Prevalence of smartphone usage throughout four periods of the day, morning (6am-12pm), afternoon (12pm-6pm), evening (6pm-12am), and overnight (12am-6am). • Participants total smartphone usage ranged from 20.5 hours to 119.4 hours • Average usage of 4.5 hours per day (31.7 hours per week)
  • 62. 62© 2002 Multimedia Communications research Laboratory (MCRLab) Reconfigurable Transducer Network • Multiple types of sensors are developed, such as pressure sensor, light sensor, temperature sensor, accelerometer, CO-gas sensor, etc. • The dynamic condition of a multiple rooms during a period of 24 hours is monitored. Recommendations are given by fuzzy logic. Basim Hafidh, Hussein Al Osman, Haiwei Dong and Abdulmotaleb El Saddik ,“A framework of reconfigurable transducer networks and its XML-based communication,” IEEE Embedded Systems Letters, vol. 7, no. 3, pp. 81-84, 2015.
  • 63. 63© 2002 Multimedia Communications research Laboratory (MCRLab) Backward Walking Forward Walking Smart Insole
  • 64. 64© 2002 Multimedia Communications research Laboratory (MCRLab) Results
  • 65. 65© 2002 Multimedia Communications research Laboratory (MCRLab) Results Faisal Arafsha , Christina Hanna, Ahmed Aboualmagd, Sarah Fraser and Abdulmotaleb El Saddik, “Instrumented  Wireless SmartInsole System for Mobile Gait Analysis: A Validation Pilot Study with Tekscan Strideway”, J. Sens.  Actuator Netw. 2018, 7(3), 36; doi:10.3390/jsan7030036
  • 66. 66© 2002 Multimedia Communications research Laboratory (MCRLab) Post Stroke rehabilitation - Ali Karime, Hussein Al-Osman, Jihad Mohamad Alja'am, Wail Gueaieb, and Abdulmotaleb El Saddik, “Tele-Wobble: A Tele-Rehabilitation Wobble Board for Lower Extremity Therapy”, IEEE Transactions on Instrumentation and Measurements, 61 (7), 1816-1824 , 2012 - Atif Alamri, Jongeun Cha, and Abdulmotaleb El Saddik, “AR-REHAB: an Augmented Reality Framework for Post-Stroke Patients Rehabilitation”, IEEE Transactions on Instrumentation and Measurements, Vol. 59(10), pp: 2554 – 2563, 2010
  • 67. 67© 2002 Multimedia Communications research Laboratory (MCRLab) Elderly
  • 68. 68© 2002 Multimedia Communications research Laboratory (MCRLab) Smart gloves for diabetics
  • 69. 69© 2002 Multimedia Communications research Laboratory (MCRLab) ALS – Eye Gaze, Sensors A Novel Eye-Gaze-Controlled Wheelchair System for Navigating Unknown Environments: Case Study With a Person With ALS.MA Eid, N Giakoumidis, A El-Saddik, IEEE Access 4, 558-573
  • 70. 70© 2002 Multimedia Communications research Laboratory (MCRLab) Final Thoughts • Digital twin will fit in very well the AI strategy which every country has. • Digital twin is democracy of data in its truest sense. – It’s going to shake the norms and laws of privacy and we will as a society  have to revisit what value do we perceive.  • We need to balance convenience versus privacy – technology ethics will be the newest branch of ethics that’s going to be  out there • Is it ethical to smart surveillance people and know their emotions or heart rates
  • 71. 71© 2002 Multimedia Communications research Laboratory (MCRLab) Final Thoughts • Digital twin can act as a tool to remove the gender biases we see today in some domains – It gives hope for an inclusive society • It will definitely challenge the existing power structures . • Like we have the feminist movement, – we will soon have anti‐technology movements on a grand  and serious scale 
  • 72. 72© 2002 Multimedia Communications research Laboratory (MCRLab) Acknowledgment
  • 73. 73© 2002 Multimedia Communications research Laboratory (MCRLab) 73Thank you for your attention!