SlideShare a Scribd company logo
1
Discrete-Time signals
and systems
2
Introduction
 Signal: A signal can be defined as a function that conveys
information, generally about the state or behavior of a physical
system.
 Continuous-time signal: Continuous-time signals are defined
along a continuum of times and thus are represented by a
continuous independent variable. Continuous-time signals are often
referred to as analog signals.
 Discrete time signal: Discrete-time signals are defined at discrete
times and thus the independent variable has discrete values; i.e.,
discrete-time signals are represented as sequences of number.
3
Analog: Linear time invariant
system
f(t) g(t)
input impulse response output
How to retrieve h(t):
δ(t)
h(t)
h(t) h(t)
Impulse Out put will be same as h(t)
4
How to define δ(t) ?
 δ(t)=
And


 
Others
t
0
0








1
)
( dt
t
5
How to define System Output
g(t)?
 g(t)=
 Or g(t)=
 And there is another a
form like
g(t)=h(t)*f(t)
Here * is the commutative
property of convolution




 

 d
t
f
h )
(
).
(




 

 d
t
h
f )
(
).
(
6
Frequency domain:
 In frequency domain system output
G(ω)=
G(ω)=H(ω) x F(ω)
dt
e
t
g t
j




 )
(
7
Definition: Important functions
in Discrete Time Signal
 Unit impulse function:
δ(n) =
Unit step function:
U(n)=
Here “n” is an integer





0
,
0
0
,
1
n
for
n
for





0
,
0
0
,
1
n
for
n
for
8
Relationship between δ(n) and
U(n)
 U(n)=
 U(n)=
 δ(n) = U(n)-U(n-1)




n
k
k)
(





0
)
(
k
k
n
9
Discrete time invariant system
x(n) y(n)
input impulse response output
Output y(n) =
Or y(n) =
How to retrieve h(n)?
δ(n)






i
i
i
n
x
i
h )
(
)
(
h(n)






i
i
i
n
h
i
x )
(
)
(
h(n) h(n)
Impulse Out put will be same as h(n)
10
Definitions:
 FIR (Finite Impulse Response): A finite impulse response
(FIR) filter is a type of a digital filter. The impulse response, the
filter's response to a Kronecker delta input, is 'finite' because it
settles to zero in a finite number of sample intervals.
 IIR(Infinite Impulse Response): They have an impulse
response function which is non-zero over an infinite length of time.
 Casual System: If h(n)=0 for n<0; then this system is called
casual system.
11
Follow graph(FIR digital
filter,IIR digital filter):
 x(n)

D D D D
x
x
a0
X0
a1
X(n-1)
x
a2
X(n-2)
x
a3
X(n-3)
x
an
X(n-N)
FIR Digital Filter:
It is also known as difference
equation.
IIR Digital Filter:
+
)
(
1 n
y n
y
D
D
D
x
x
x b1
b(m-1)
bm


 





m
j
j
N
i
i
n j
n
y
b
i
n
x
a
y
1
0
)
(
)
(




N
i
i
n i
n
x
a
y
0
)
(
12
The System Output h(n)
δ(n)
)
1
(
)
1
(
)
( 1
1
0 




 n
h
b
n
a
n
a
D
x
x
x
+
D
h(n)
b1
a0 a1
h(n)=
n=0 then h(0)=
n=1 then h(1)=
n=2 then h(2)=
n=3 then h(3)=
h(n)= it is general
solution for the system output h(n)
0
a
0
1
1 a
b
a 
)
( 0
1
1
1 a
b
a
b 
)
( 0
1
1
2
1 a
b
a
b 
)
( 0
1
1
1
1 a
b
a
bn


13
The energy of a sequence:
E= 



n
n
x 2
|
)
(
|
Any discrete sequence can be shown by δ(n) :
General equation: x(n)= 





k
k
n
k
x )
(
)
(
Example:
X(n)=0.5δ(n+3)+ δ(n+2)-0.5δ(n+1)-0.5 δ(n)+0.5 δ(n-1)-0.3δ(n-2)
0
-1
-2
-3 1
2
0.5
0.5
1
-0.5 -0.5
-0.3
14
Definition: Different System
The ideal delay system:
X(n)
Moving Average: The moving average system output
y(n)=
Accumulator (Acc) : y(n)=






2
1
)
(
1
2
1
1 m
m
k
k
n
x
m
m
D D D
X(n-1) X(n-2)
X(n-N)=y(n)
The ideal delay system output would be y(n)=x(n-N)



n
k
n
x )
(
So the impulse response of the accumulator is same as
the u(n)
δ(n) u(n)
h(n)
15
Linear Shift Invariant System
)]
(
)
(
[ 2
2
1
1
/
n
x
a
n
x
a
T
y 

]]
[
]
[ 2
2
1
1
//
x
T
a
x
T
a
y 

+
a2
a1
[ T[.] ]
x
x
X2(n)
x1(n)
X2(n)
x1(n)
T [.]
T [.]
y1(n)
y2(n)
a2
a1
x
x
+
If y’ = y’’
then system is linear
16
Linear Shift Invariant System
(Cont...)
)]
(
[
/
k
n
x
T
y 

)
(
//
k
n
y
y 

X(n)
x(n)
k-sample
T [.]
x(n-k)
y(n)
T [.]
k-sample
)
(
//
k
n
y
y 

If = T[x(n-k)] then the system is shift invariant
17
Discrete Convolution
 In LSI system
x(n)=
So, y(n)=T[ ]
If the system is linear then
y(n) =






k
k
n
k
x )
(
)
(
x(n)
T [.]
y(n)=T[x(n)]






k
k
n
k
x )
(
)
(






k
k
n
k T
x ]
[ )
(
)
(
18
Discrete Convolution (Cont...)
 If the system is LSI
So we can write
y(n)=
Again if the system is SI: and
if LSI: y(n)= ,it is known as discrete convolution
We can also write as y(n)=
)
( k
n

T [.]
)
(n
hk




k
n
k
k h
x )
(
)
(
]
[ )
(
)
( k
n
k
n x
T
y 
  )
(
)
( k
n
n
k h
h 






k
k
n
k
k h
x )
(
)
(





k
k
n
k
k x
h )
(
)
(
19
Compressor: Down Sampling :Decimator
 The compressor output y(n)=x(M.n) where M is a integer
greater than 1
If M=2;
)
(n
x
Compressor
)
(n
y
0 2 3 4
1
x(n)
0 2
1
y(n)
Discarding M-1 in between samples
A compressor is not SI:
x1(n)=x(n-n0)
y1(n)=x1(mN)=x(Mn-n0)
y(n-n0)=x[M(n-n0)]=x(Mn-Mn0)
Here, x(Mn-n0)!=x(Mn-Mn0)
So, a compressor not SI
n
n
20
Expander : Up Sampling :Interpolation
 The expander output y(n)=x(n/L); where L>1
 If L=2;
)
(n
x
Expander
)
(n
y
0 1 2
2
4
3
4
3
1
0
n
y(n)
x(n)
n
21
The system output y(n) in different
cases
 h(n)=
x(n)=U(n) - U(n-N)
y(n)=?
We know that system output for LSI: y(n)=
1. For n<0 then y(n)=0
2. For 0<=n<N then y(n)=
3. For n>=N-1 then y(n)=
)
(n
x
h(n)
)
(n
y


 

0
,
0
,
0
n
for
a
n
for
n





k
k
n
k h
x )
(
)
(
1
)
1
(
0
0 1
1










 
 a
a
a
a
a
a
n
n
n
k
k
n
n
k
k
n
1
1
0 1
1








 a
a
a
a
N
n
N
k
k
n
22
Definition:
 Stability of a system: A stable system produces finite output when the
input is finite.
For LSI system: and |x(n)|<M<∞
So, |y(n)|<
Causality: A system is casual when for N=n0; the output of the system
depending on input x(n) only for n<=n0
If the system is LSI and h(n)=0 for n<0 then it is causal


 



 |
|
|
)
(
| )
(
k
k
n
k x
h
n
y




 






 k
k
k
k h
h
M |
|
|
| )
(
)
(
N=n0
n
x(n) y(n)
N=n0
Example: s= 







 0
|
|
|
)
(
|
n
n
n
a
n
h
1.|a|<1;S=1/1-|a|;Stable
2.a=1 and a>1; s=∞ then
not stable
23
Impulse response for different
delay
Ideal Delay:
Impulse response for ideal delay h(n)=δ(n-m)
Moving average:
h(n)=
Accumulator: h(n)=u(n)=
)
(n
x
M-Sample
)
(
)
( m
n
x
y n 



 













n
m
n
m
n
for
k
n
m
m
m
m
otherwise
m
m
k
2
1
,
)
(
1
2
1
1 1
2
1
1
0
2
1










0
0
1
0
)
(
n
n
n
k
k
24
Forward difference:
 Difference eqation = x(n+1)-x(n)
 Impulse response = δ(n+1)-δ(n)
)
1
( 
n
x
D
)
(n
x -
y(n)
0
-1
-1
1
25
Backward Difference
 Difference equation= y(n)=x(n)-x(n-1)
 Impulse response h(n)=δ(n+1)-δ(n)
)
1
( 
n
x
D
)
(n
x -
y(n)
1
0
-1
1
26
Stability:
 For a LSI
 For Ideal Delay, Moving Average, Backward
Difference and Forward Difference; if s<∞ then
it is stable
But for Accumulator
s= goes to ∞ then it is not stable


 



n
n
h
s |
)
(
|



0
)
(
n
n
U
27
Accumulator
 Difference equation
y(n)=x(n)+y(n-1)
h(n)=U(n)

This IIR digital filter
D
)
(n
x
+
y(n)
D
)
(n
x
+
y(n)
x
a
Difference equation
y(n)=x(n)+ay(n-1)
Impulse response h(n)=an
u(n)
Stability checking
Condition check: if |a|<1
Result: Stable
 




|
|
1
1
|
|
a
a
s n
28
Other properties of LSI
F.D
)
(n
x y(n)
D
1-sample
h(n)=[δ(n+1)-δ(n)]*δ(n-1)
h(n)=δ(n)- δ(n-1) ; In case of
forward delay, if we add a 1-sample
delay then it will convert to B.D
29
Inverse of a system

Example:
h(n)
)
(n
x x(n)
h(n)
h-1
(n)
Acc
)
(n
x x(n)
y(n)
B.D
h(n)=δ(n)
h1(n)=U(n) h2(n)= δ(n)- δ(n-1) h(n)=h1(n)*h2(n)
h(n)=U(n)*[δ(n)- δ(n-1)]=U(n)-
U(n-1)= δ(n)
)
(n
x y(n)=x(n)
B.D
+
D
-
D
F.D
B.D is inverse system of ACC
30
Inverse of system: Engineering
application
 1. T.V.ghost canceling
 2. Channel multi-path canceling
 3. Equalization in communications channel
31
Frequency domain representation of
discrete time signals and system
 Frequency response of the
system:
H(ejω
)=
k
j
k
e
k
h 




 )
(
Example:
n=0 N-1
h(n)
n






 1
0
,
0
1
0
)
(
N
n
elsewhere
n
h
h(n)=U(n)-U(n-N)
H(ejω
)=
=



j
N
j
N
k
k
j
e
e
e
k
h 







 1
1
)
(
1
0



2
1
)
2
sin(
)
2
sin( 

N
j
e
N
0
|H(ejω
)|
For linear phase
H(ejω
)
32
Inverse Fourier transform:
h(n)=
Example: In the ideal low pass filter








d
e
e
H n
j
j
)
(
2
1







0
0
|
|
|
|
1
0
)
(
c
c
j
e
H






ω
0
-ωc0 ωc0
-π π
|
)
(
| 
j
e
h
n
n
d
e
n
h co
N
j
c
c 





 )
sin(
2
1
)
(
0
0

 

-5
-4 -3 -2
-1 0 1
2
3 4
-1/5π
-1/3π
1/2
1/3π
33
Proof the inverse Fourier transform









d
e
e
x
x n
j
j
n )
(
2
1







n
n
j
n
j
e
x
e
x 

)
(
)
(
:
ˆ that
such
x 





d
e
e
x
n
x n
j
m
m
j
m
 





 )
(
2
1
)
(
ˆ )
(
interchanging the order of integral and summation
 












m
m
n
j
m d
e
x
n
x





)
(
)
(
2
1
.
)
(
ˆ
34






m
m
n
m
x
n
x )
(
)
(
)
(
ˆ 
)
(
)
(
ˆ n
x
n
x 
 












n
m
for
n
m
n
j
m
n
m
n
d
e
,
1
0
)
(
)
(
)
(
sin
2
1








We have,
=δ(n)
Proof the inverse Fourier transform cont..
35
Sampling theorem:
)
1
....(
..........
)
(
)
( dt
e
t
x
x t
j
c
c








Analog signal xc(t)
Xc(t)
T(sampling period)
x(nt)
FT:
IFT: )
2
........(
..........
)
(
2
1
)
( 

 



 d
e
x
t
x t
j
c
c

Fourier transform for discrete time signal:
Digital freq: ω=Ω.T……………………………………..(3)
36
)
4
..(
..........
)
(
)
(
)
( T
jn
n
n
jn
j
e
nT
x
e
nT
x
e
x 









 
 

)
5
....(
..........
..........
)
(
2
1
)
( 

 



d
e
x
nT
x nT
j
c


From eq.(2) for t=n.T
On the other hand we had before:
)
6
.....(
..........
..........
)
(
2
1
)
( 









d
e
e
x
nT
x n
j
j
37
)
7
.....(
..........
]
)
(
2
1
)
(  












n
jn
nT
j
c
j
e
d
e
x
e
x 


Putting (5) into (4)
Interchanging ∑ with integral
)
8
.....(
..........
)
(
2
1
)
( )
(








  








d
e
x
e
x
n
T
jn
c
j 


38
)
9
....(
..........
)
2
(
2
)
(















k
n
T
jn
T
k
T
T
e




But we have:
Then from (8) and (9) :












  







d
T
k
T
T
x
e
x
k
c
j
)
2
(
2
).
(
2
1
)
(





)
10
.........(
)
2
(
)
(
1
)
(  














k
c
j
d
T
k
T
x
T
e
x



39






k
c
j
T
k
T
x
T
e
x )
2
(
1
)
(



T



)
11
......(
..........
)
2
(
1
)
( 






k
c
j
T
k
x
T
e
x


Then
Since,
Then is a periodic function of Ω=ω/T with period of 2π/T
)
( 
j
e
x
Ω
0
-ω/T
-2π/T
1/T
ω/T 2π/T
)
( 
j
e
x
40
spectrum
Ana
x log
:
)
(
s
s
f
T







2
0
-Ω0 Ω0
-π/T π/T
Ω
Nyquist rate for maximum frequency Ω0 is sampling rate in order
not to have aliasing effect
if


 


41








k
c
c
kT
t
T
kT
t
T
kt
x
t
x
)]
(
[
)]
(
sin[
)
(
)
(








T
T
t
j
c
c d
e
x
t
x
/
/
)
(
2
1
)
(



In this case we can recover the analog signal from its sample as follows:
This formal is obtained as follows:
T
T






42
)
(
1
)
(
)
( 

 c
T
j
j
x
T
e
x
e
x 


 


 d
e
e
x
T
t
x t
j
T
T
j
c
/
/
)
(
.
2
1
)
(













k
Tk
j
T
j
j
e
kT
x
e
x
e
x )
(
)
(
)
( 







 






  d
e
e
kT
x
T
t
x t
j
T
T
k
Tk
j
c
/
/
)
(
2
)
(



43














k
c
kT
t
T
kT
t
T
kT
x
t
x
)
)(
(
)
)(
(
sin
)
(
)
(


 














k
T
T
kT
t
j
c d
e
T
kT
x
t
x
/
/
)
(
2
)
(
)
(



To recover analog signal from its sample
44
Fourier transform properties
x(n) X(ejω
)
1. Time shift: x(n-M)
2. Frequency shift X(ej(ω-ω0)
)
3. Time reversal: x(-n) X(e-jω
)
if x(n) is a real sequence then:
x(-n) X.(ejω
)
ƒ
ƒ
e-jωM
X(ejω
)
ejω
0
n
x(n)
ƒ
ƒ
ƒ
45
Fourier transform properties
contd..
4. Differentiations in frequency domain:
n.x(n)
5. Convolution theorem:
y(n)=
Y(ejω
)=
X(ejω
) . H (ejω
)


d
e
dx
j
j
)
(





k
k
n
h
k
x )
(
)
(
46
Fourier transform properties
contd..
6. Parseval’s Theorem (Energy)
E=
7. The modulation or windowing
theorem:
 





n
j
d
e
x
n
x 




2
2
|
)
(
|
2
1
|
)
(
|
X(n)
y(n)=w(n) . x(n)








d
e
w
e
X
e
Y j
j
j
)
(
.
)
(
2
1
)
( )
( 



47
Z-Transform
 X(z)=
z: complex variable in z-plane
Similar to Laplace transform
Convergency of Z-transfer should be check
Example 1. x(n)=an
U(n)
X(z)=





n
n
z
n
x ).
(









0
1
0
)
(
n
n
n
n
n
az
z
a From the geometric series if we have |az-1
|<1=>|z|>|a|
x(z)=1/1-az-1
48
Example
 x(n)=a|n|
|a|<1
X(z)=
=
 








1 0
n
n
n
n
n
n
z
a
z
a








0
1 n
n
n
n
n
n
z
a
z
a
1 2
1- convergent for |az|<1
2-convergent for |az-1
|<1
where |a|<|z|<1/|a|
a>1
a<1
Don’t shape
49
Example contd…
So,
X(z)=
)
1
)(
1
(
1
)
(
1
1
1
1
1









az
az
a
z
Z
az
az
az
z
50
Example
 Example 2:
x(n)=δ(n)
X(z)=1
x(n)=δ(n-m)
X(z)=z-m
Example 3: x(n)=an
sin(ω0n)U(n)
x(z)= 2
2
1
0
1
0
cos
2
1
)
sin(




 z
a
z
a
z
a


51
Example
 Example 4
x(n)=nan
U(n)
X(z)=



0
n
n
n
z
na
With a little change in above summation














 







 1
1
1
0
1
1
1
1
)
(
az
dz
d
z
z
a
dz
d
z
z
X
n
n
n
 2
1
1
1
)
(




az
az
z
X
52
Properties of z-transform
 1. Linearity: a1x1(n)+a2x2(n)
 2. Shift: x(n k) Z k
X(z)
 3 Convolution: y(n)=
Y(Z)=h(Z).X(Z)





k
k
n
x
k
h )
(
)
(
Z-trans
a1X1(z)+a2X2(z)
 
53
The relation between Z transform to
Fourier transform
 X(z)= 




n
n
z
n
x )
(
If we put: z=ejω
then Z.T F.T
For more general case Z=rejω
So,  







n
n
j
n
j
e
r
n
x
re
X 

)
(
)
(
54
z-transform derived from Laplace
transform
Consider a discrete-time signal x(t) below sampled every T sec
x(t) = x0 δ (t) + x1δ (t −T) + x2 δ (t − 2T) + x3 δ (t − 3T) +.....
The Laplace transform of x(t) is therefore:
X (s) = x0 + x1 e−sT
+ x2 e−s 2T
+ x3 e−s 3T
+.....
55
Range of convergency (ROC)
 x(n)=u(n)
in case z=ejω
not convergent
in case z=rejω
for r>1 then convergent because























0
|
|
|
)
(
|
|
)
(
|
n
n
n
n
n
n
r
r
n
u
r
n
x
56
ROC Contd….
 Step function u(n) has z-transform for ROC: |z|>1
If ROC includes the unit circle then z=ejω
and the sequence has
Fourier Transform
There is possibility that two sequences are different but they may
have a similar algebraic form of their z-transform, however their
ROC’s are different


57
Table of z-transform
58
Table of z-transform
59
The properties of ROC
 ROC has a ring form or a disc form
 The Fourier transform of x(n) has Fourier transform if and only if that
its z-transform’s ROC includes unit circle
 ROC cannot contain any pole
 If the sequence x(n) has finite length then ROC contains all z-plane
(excluding z=0 or z=∞)
 If x(n) is right-sided, then ROC is located outside of the largest pole.
 If x(n) is left sided then ROC is located inside of the smallest pole.
 If the sequence x(n) is both-sided then the ROC has ring shape
which is limited to inside and outside poles and there is no pole in
ROC.
 ROC must be a connected area.
60
Calculation of inverse Z-transform



c
n
dz
z
z
x
j
n
x 1
)
(
2
1
)
(

1
5
.
0
1
1
)
( 


z
z
X
1
5
.
0
1
1
)
( 


z
z
X
C is a closed curve
Example:
|z|>0.5
=1+0.5z-1
+0.25z-2
+0.125z-3







0
....
..........
..........
..........
..........
125
.
0
,
25
.
0
,
5
.
0
,
1
)
(
n
n
x
0 n<0
=>x(n)=(0.5)n
u(n)
61
Inverse z-transform
 If the Z transform can be expanded out as a series in powers of z, then the coefficients
of each term of the series constitutes the inverse. In the following expression, the
inverse would be the coefficients in blue
 Consider a Z transform which can be expanded as in the expression below
 Then the inverse is the coefficients in blue and can be written as follows.
62

More Related Content

PPT
df_lesson_01.ppt
PDF
introduction to digital signal proessing.pdf
PPTX
IARE_DSP_PPT.pptx
PDF
Digital Signal Processing[ECEG-3171]-Ch1_L03
PPTX
discrete-timesignalsandsystems1-150402120032-conversion-gate01.pptx
PPTX
discrete time signals and systems
PPTX
discrete time signals and systems
PDF
chapter 2.pdf
df_lesson_01.ppt
introduction to digital signal proessing.pdf
IARE_DSP_PPT.pptx
Digital Signal Processing[ECEG-3171]-Ch1_L03
discrete-timesignalsandsystems1-150402120032-conversion-gate01.pptx
discrete time signals and systems
discrete time signals and systems
chapter 2.pdf

Similar to Discrete-time singnal system lecture.ppt (20)

PPTX
lecture3 Discereye time signals and systems.pptx
PPTX
DTSP UNIT I - INTRODUCTION.pptx
PPTX
Digital signal processing
PDF
Dsp 2marks
PDF
Convolution discrete and continuous time-difference equaion and system proper...
PDF
Brief summary of signals
PDF
2-Discrete-Time Systems.pdf sdfasdfasfdasdfasdfasdfasfd
PPT
unit 11.ppt
PPTX
Digital Signal Processing module 1 ppt.pptx
PDF
Digital Signal Processing : Topic 1: Discrete Time Systems (std).pdf
PDF
adspchap1.pdf
PDF
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
PDF
Digital Signal Processing
PDF
Basics of Digital Filters
PPT
Chap 2 discrete_time_signal_and_systems
PPT
Tdm fdm
PPTX
Basic concepts
PDF
Lecture 3 Signals & Systems.pdf
PPTX
Dsp class 3
lecture3 Discereye time signals and systems.pptx
DTSP UNIT I - INTRODUCTION.pptx
Digital signal processing
Dsp 2marks
Convolution discrete and continuous time-difference equaion and system proper...
Brief summary of signals
2-Discrete-Time Systems.pdf sdfasdfasfdasdfasdfasdfasfd
unit 11.ppt
Digital Signal Processing module 1 ppt.pptx
Digital Signal Processing : Topic 1: Discrete Time Systems (std).pdf
adspchap1.pdf
DSP Lab Manual (10ECL57) - VTU Syllabus (KSSEM)
Digital Signal Processing
Basics of Digital Filters
Chap 2 discrete_time_signal_and_systems
Tdm fdm
Basic concepts
Lecture 3 Signals & Systems.pdf
Dsp class 3
Ad

Recently uploaded (20)

PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
additive manufacturing of ss316l using mig welding
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
DOCX
573137875-Attendance-Management-System-original
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
Sustainable Sites - Green Building Construction
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
composite construction of structures.pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Geodesy 1.pptx...............................................
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
additive manufacturing of ss316l using mig welding
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
573137875-Attendance-Management-System-original
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
bas. eng. economics group 4 presentation 1.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Sustainable Sites - Green Building Construction
UNIT 4 Total Quality Management .pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Model Code of Practice - Construction Work - 21102022 .pdf
composite construction of structures.pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Geodesy 1.pptx...............................................
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Ad

Discrete-time singnal system lecture.ppt

  • 2. 2 Introduction  Signal: A signal can be defined as a function that conveys information, generally about the state or behavior of a physical system.  Continuous-time signal: Continuous-time signals are defined along a continuum of times and thus are represented by a continuous independent variable. Continuous-time signals are often referred to as analog signals.  Discrete time signal: Discrete-time signals are defined at discrete times and thus the independent variable has discrete values; i.e., discrete-time signals are represented as sequences of number.
  • 3. 3 Analog: Linear time invariant system f(t) g(t) input impulse response output How to retrieve h(t): δ(t) h(t) h(t) h(t) Impulse Out put will be same as h(t)
  • 4. 4 How to define δ(t) ?  δ(t)= And     Others t 0 0         1 ) ( dt t
  • 5. 5 How to define System Output g(t)?  g(t)=  Or g(t)=  And there is another a form like g(t)=h(t)*f(t) Here * is the commutative property of convolution         d t f h ) ( ). (         d t h f ) ( ). (
  • 6. 6 Frequency domain:  In frequency domain system output G(ω)= G(ω)=H(ω) x F(ω) dt e t g t j      ) (
  • 7. 7 Definition: Important functions in Discrete Time Signal  Unit impulse function: δ(n) = Unit step function: U(n)= Here “n” is an integer      0 , 0 0 , 1 n for n for      0 , 0 0 , 1 n for n for
  • 8. 8 Relationship between δ(n) and U(n)  U(n)=  U(n)=  δ(n) = U(n)-U(n-1)     n k k) (      0 ) ( k k n
  • 9. 9 Discrete time invariant system x(n) y(n) input impulse response output Output y(n) = Or y(n) = How to retrieve h(n)? δ(n)       i i i n x i h ) ( ) ( h(n)       i i i n h i x ) ( ) ( h(n) h(n) Impulse Out put will be same as h(n)
  • 10. 10 Definitions:  FIR (Finite Impulse Response): A finite impulse response (FIR) filter is a type of a digital filter. The impulse response, the filter's response to a Kronecker delta input, is 'finite' because it settles to zero in a finite number of sample intervals.  IIR(Infinite Impulse Response): They have an impulse response function which is non-zero over an infinite length of time.  Casual System: If h(n)=0 for n<0; then this system is called casual system.
  • 11. 11 Follow graph(FIR digital filter,IIR digital filter):  x(n)  D D D D x x a0 X0 a1 X(n-1) x a2 X(n-2) x a3 X(n-3) x an X(n-N) FIR Digital Filter: It is also known as difference equation. IIR Digital Filter: + ) ( 1 n y n y D D D x x x b1 b(m-1) bm          m j j N i i n j n y b i n x a y 1 0 ) ( ) (     N i i n i n x a y 0 ) (
  • 12. 12 The System Output h(n) δ(n) ) 1 ( ) 1 ( ) ( 1 1 0       n h b n a n a D x x x + D h(n) b1 a0 a1 h(n)= n=0 then h(0)= n=1 then h(1)= n=2 then h(2)= n=3 then h(3)= h(n)= it is general solution for the system output h(n) 0 a 0 1 1 a b a  ) ( 0 1 1 1 a b a b  ) ( 0 1 1 2 1 a b a b  ) ( 0 1 1 1 1 a b a bn  
  • 13. 13 The energy of a sequence: E=     n n x 2 | ) ( | Any discrete sequence can be shown by δ(n) : General equation: x(n)=       k k n k x ) ( ) ( Example: X(n)=0.5δ(n+3)+ δ(n+2)-0.5δ(n+1)-0.5 δ(n)+0.5 δ(n-1)-0.3δ(n-2) 0 -1 -2 -3 1 2 0.5 0.5 1 -0.5 -0.5 -0.3
  • 14. 14 Definition: Different System The ideal delay system: X(n) Moving Average: The moving average system output y(n)= Accumulator (Acc) : y(n)=       2 1 ) ( 1 2 1 1 m m k k n x m m D D D X(n-1) X(n-2) X(n-N)=y(n) The ideal delay system output would be y(n)=x(n-N)    n k n x ) ( So the impulse response of the accumulator is same as the u(n) δ(n) u(n) h(n)
  • 15. 15 Linear Shift Invariant System )] ( ) ( [ 2 2 1 1 / n x a n x a T y   ]] [ ] [ 2 2 1 1 // x T a x T a y   + a2 a1 [ T[.] ] x x X2(n) x1(n) X2(n) x1(n) T [.] T [.] y1(n) y2(n) a2 a1 x x + If y’ = y’’ then system is linear
  • 16. 16 Linear Shift Invariant System (Cont...) )] ( [ / k n x T y   ) ( // k n y y   X(n) x(n) k-sample T [.] x(n-k) y(n) T [.] k-sample ) ( // k n y y   If = T[x(n-k)] then the system is shift invariant
  • 17. 17 Discrete Convolution  In LSI system x(n)= So, y(n)=T[ ] If the system is linear then y(n) =       k k n k x ) ( ) ( x(n) T [.] y(n)=T[x(n)]       k k n k x ) ( ) (       k k n k T x ] [ ) ( ) (
  • 18. 18 Discrete Convolution (Cont...)  If the system is LSI So we can write y(n)= Again if the system is SI: and if LSI: y(n)= ,it is known as discrete convolution We can also write as y(n)= ) ( k n  T [.] ) (n hk     k n k k h x ) ( ) ( ] [ ) ( ) ( k n k n x T y    ) ( ) ( k n n k h h        k k n k k h x ) ( ) (      k k n k k x h ) ( ) (
  • 19. 19 Compressor: Down Sampling :Decimator  The compressor output y(n)=x(M.n) where M is a integer greater than 1 If M=2; ) (n x Compressor ) (n y 0 2 3 4 1 x(n) 0 2 1 y(n) Discarding M-1 in between samples A compressor is not SI: x1(n)=x(n-n0) y1(n)=x1(mN)=x(Mn-n0) y(n-n0)=x[M(n-n0)]=x(Mn-Mn0) Here, x(Mn-n0)!=x(Mn-Mn0) So, a compressor not SI n n
  • 20. 20 Expander : Up Sampling :Interpolation  The expander output y(n)=x(n/L); where L>1  If L=2; ) (n x Expander ) (n y 0 1 2 2 4 3 4 3 1 0 n y(n) x(n) n
  • 21. 21 The system output y(n) in different cases  h(n)= x(n)=U(n) - U(n-N) y(n)=? We know that system output for LSI: y(n)= 1. For n<0 then y(n)=0 2. For 0<=n<N then y(n)= 3. For n>=N-1 then y(n)= ) (n x h(n) ) (n y      0 , 0 , 0 n for a n for n      k k n k h x ) ( ) ( 1 ) 1 ( 0 0 1 1              a a a a a a n n n k k n n k k n 1 1 0 1 1          a a a a N n N k k n
  • 22. 22 Definition:  Stability of a system: A stable system produces finite output when the input is finite. For LSI system: and |x(n)|<M<∞ So, |y(n)|< Causality: A system is casual when for N=n0; the output of the system depending on input x(n) only for n<=n0 If the system is LSI and h(n)=0 for n<0 then it is causal         | | | ) ( | ) ( k k n k x h n y              k k k k h h M | | | | ) ( ) ( N=n0 n x(n) y(n) N=n0 Example: s=          0 | | | ) ( | n n n a n h 1.|a|<1;S=1/1-|a|;Stable 2.a=1 and a>1; s=∞ then not stable
  • 23. 23 Impulse response for different delay Ideal Delay: Impulse response for ideal delay h(n)=δ(n-m) Moving average: h(n)= Accumulator: h(n)=u(n)= ) (n x M-Sample ) ( ) ( m n x y n                    n m n m n for k n m m m m otherwise m m k 2 1 , ) ( 1 2 1 1 1 2 1 1 0 2 1           0 0 1 0 ) ( n n n k k
  • 24. 24 Forward difference:  Difference eqation = x(n+1)-x(n)  Impulse response = δ(n+1)-δ(n) ) 1 (  n x D ) (n x - y(n) 0 -1 -1 1
  • 25. 25 Backward Difference  Difference equation= y(n)=x(n)-x(n-1)  Impulse response h(n)=δ(n+1)-δ(n) ) 1 (  n x D ) (n x - y(n) 1 0 -1 1
  • 26. 26 Stability:  For a LSI  For Ideal Delay, Moving Average, Backward Difference and Forward Difference; if s<∞ then it is stable But for Accumulator s= goes to ∞ then it is not stable        n n h s | ) ( |    0 ) ( n n U
  • 27. 27 Accumulator  Difference equation y(n)=x(n)+y(n-1) h(n)=U(n)  This IIR digital filter D ) (n x + y(n) D ) (n x + y(n) x a Difference equation y(n)=x(n)+ay(n-1) Impulse response h(n)=an u(n) Stability checking Condition check: if |a|<1 Result: Stable       | | 1 1 | | a a s n
  • 28. 28 Other properties of LSI F.D ) (n x y(n) D 1-sample h(n)=[δ(n+1)-δ(n)]*δ(n-1) h(n)=δ(n)- δ(n-1) ; In case of forward delay, if we add a 1-sample delay then it will convert to B.D
  • 29. 29 Inverse of a system  Example: h(n) ) (n x x(n) h(n) h-1 (n) Acc ) (n x x(n) y(n) B.D h(n)=δ(n) h1(n)=U(n) h2(n)= δ(n)- δ(n-1) h(n)=h1(n)*h2(n) h(n)=U(n)*[δ(n)- δ(n-1)]=U(n)- U(n-1)= δ(n) ) (n x y(n)=x(n) B.D + D - D F.D B.D is inverse system of ACC
  • 30. 30 Inverse of system: Engineering application  1. T.V.ghost canceling  2. Channel multi-path canceling  3. Equalization in communications channel
  • 31. 31 Frequency domain representation of discrete time signals and system  Frequency response of the system: H(ejω )= k j k e k h       ) ( Example: n=0 N-1 h(n) n        1 0 , 0 1 0 ) ( N n elsewhere n h h(n)=U(n)-U(n-N) H(ejω )= =    j N j N k k j e e e k h          1 1 ) ( 1 0    2 1 ) 2 sin( ) 2 sin(   N j e N 0 |H(ejω )| For linear phase H(ejω )
  • 32. 32 Inverse Fourier transform: h(n)= Example: In the ideal low pass filter         d e e H n j j ) ( 2 1        0 0 | | | | 1 0 ) ( c c j e H       ω 0 -ωc0 ωc0 -π π | ) ( |  j e h n n d e n h co N j c c        ) sin( 2 1 ) ( 0 0     -5 -4 -3 -2 -1 0 1 2 3 4 -1/5π -1/3π 1/2 1/3π
  • 33. 33 Proof the inverse Fourier transform          d e e x x n j j n ) ( 2 1        n n j n j e x e x   ) ( ) ( : ˆ that such x       d e e x n x n j m m j m         ) ( 2 1 ) ( ˆ ) ( interchanging the order of integral and summation               m m n j m d e x n x      ) ( ) ( 2 1 . ) ( ˆ
  • 34. 34       m m n m x n x ) ( ) ( ) ( ˆ  ) ( ) ( ˆ n x n x                n m for n m n j m n m n d e , 1 0 ) ( ) ( ) ( sin 2 1         We have, =δ(n) Proof the inverse Fourier transform cont..
  • 35. 35 Sampling theorem: ) 1 ....( .......... ) ( ) ( dt e t x x t j c c         Analog signal xc(t) Xc(t) T(sampling period) x(nt) FT: IFT: ) 2 ........( .......... ) ( 2 1 ) (         d e x t x t j c c  Fourier transform for discrete time signal: Digital freq: ω=Ω.T……………………………………..(3)
  • 36. 36 ) 4 ..( .......... ) ( ) ( ) ( T jn n n jn j e nT x e nT x e x                ) 5 ....( .......... .......... ) ( 2 1 ) (        d e x nT x nT j c   From eq.(2) for t=n.T On the other hand we had before: ) 6 .....( .......... .......... ) ( 2 1 ) (           d e e x nT x n j j
  • 37. 37 ) 7 .....( .......... ] ) ( 2 1 ) (               n jn nT j c j e d e x e x    Putting (5) into (4) Interchanging ∑ with integral ) 8 .....( .......... ) ( 2 1 ) ( ) (                    d e x e x n T jn c j   
  • 38. 38 ) 9 ....( .......... ) 2 ( 2 ) (                k n T jn T k T T e     But we have: Then from (8) and (9) :                       d T k T T x e x k c j ) 2 ( 2 ). ( 2 1 ) (      ) 10 .........( ) 2 ( ) ( 1 ) (                 k c j d T k T x T e x   
  • 40. 40 spectrum Ana x log : ) ( s s f T        2 0 -Ω0 Ω0 -π/T π/T Ω Nyquist rate for maximum frequency Ω0 is sampling rate in order not to have aliasing effect if      
  • 41. 41         k c c kT t T kT t T kt x t x )] ( [ )] ( sin[ ) ( ) (         T T t j c c d e x t x / / ) ( 2 1 ) (    In this case we can recover the analog signal from its sample as follows: This formal is obtained as follows: T T      
  • 42. 42 ) ( 1 ) ( ) (    c T j j x T e x e x         d e e x T t x t j T T j c / / ) ( . 2 1 ) (              k Tk j T j j e kT x e x e x ) ( ) ( ) (                   d e e kT x T t x t j T T k Tk j c / / ) ( 2 ) (   
  • 44. 44 Fourier transform properties x(n) X(ejω ) 1. Time shift: x(n-M) 2. Frequency shift X(ej(ω-ω0) ) 3. Time reversal: x(-n) X(e-jω ) if x(n) is a real sequence then: x(-n) X.(ejω ) ƒ ƒ e-jωM X(ejω ) ejω 0 n x(n) ƒ ƒ ƒ
  • 45. 45 Fourier transform properties contd.. 4. Differentiations in frequency domain: n.x(n) 5. Convolution theorem: y(n)= Y(ejω )= X(ejω ) . H (ejω )   d e dx j j ) (      k k n h k x ) ( ) (
  • 46. 46 Fourier transform properties contd.. 6. Parseval’s Theorem (Energy) E= 7. The modulation or windowing theorem:        n j d e x n x      2 2 | ) ( | 2 1 | ) ( | X(n) y(n)=w(n) . x(n)         d e w e X e Y j j j ) ( . ) ( 2 1 ) ( ) (    
  • 47. 47 Z-Transform  X(z)= z: complex variable in z-plane Similar to Laplace transform Convergency of Z-transfer should be check Example 1. x(n)=an U(n) X(z)=      n n z n x ). (          0 1 0 ) ( n n n n n az z a From the geometric series if we have |az-1 |<1=>|z|>|a| x(z)=1/1-az-1
  • 48. 48 Example  x(n)=a|n| |a|<1 X(z)= =           1 0 n n n n n n z a z a         0 1 n n n n n n z a z a 1 2 1- convergent for |az|<1 2-convergent for |az-1 |<1 where |a|<|z|<1/|a| a>1 a<1 Don’t shape
  • 50. 50 Example  Example 2: x(n)=δ(n) X(z)=1 x(n)=δ(n-m) X(z)=z-m Example 3: x(n)=an sin(ω0n)U(n) x(z)= 2 2 1 0 1 0 cos 2 1 ) sin(      z a z a z a  
  • 51. 51 Example  Example 4 x(n)=nan U(n) X(z)=    0 n n n z na With a little change in above summation                         1 1 1 0 1 1 1 1 ) ( az dz d z z a dz d z z X n n n  2 1 1 1 ) (     az az z X
  • 52. 52 Properties of z-transform  1. Linearity: a1x1(n)+a2x2(n)  2. Shift: x(n k) Z k X(z)  3 Convolution: y(n)= Y(Z)=h(Z).X(Z)      k k n x k h ) ( ) ( Z-trans a1X1(z)+a2X2(z)  
  • 53. 53 The relation between Z transform to Fourier transform  X(z)=      n n z n x ) ( If we put: z=ejω then Z.T F.T For more general case Z=rejω So,          n n j n j e r n x re X   ) ( ) (
  • 54. 54 z-transform derived from Laplace transform Consider a discrete-time signal x(t) below sampled every T sec x(t) = x0 δ (t) + x1δ (t −T) + x2 δ (t − 2T) + x3 δ (t − 3T) +..... The Laplace transform of x(t) is therefore: X (s) = x0 + x1 e−sT + x2 e−s 2T + x3 e−s 3T +.....
  • 55. 55 Range of convergency (ROC)  x(n)=u(n) in case z=ejω not convergent in case z=rejω for r>1 then convergent because                        0 | | | ) ( | | ) ( | n n n n n n r r n u r n x
  • 56. 56 ROC Contd….  Step function u(n) has z-transform for ROC: |z|>1 If ROC includes the unit circle then z=ejω and the sequence has Fourier Transform There is possibility that two sequences are different but they may have a similar algebraic form of their z-transform, however their ROC’s are different  
  • 59. 59 The properties of ROC  ROC has a ring form or a disc form  The Fourier transform of x(n) has Fourier transform if and only if that its z-transform’s ROC includes unit circle  ROC cannot contain any pole  If the sequence x(n) has finite length then ROC contains all z-plane (excluding z=0 or z=∞)  If x(n) is right-sided, then ROC is located outside of the largest pole.  If x(n) is left sided then ROC is located inside of the smallest pole.  If the sequence x(n) is both-sided then the ROC has ring shape which is limited to inside and outside poles and there is no pole in ROC.  ROC must be a connected area.
  • 60. 60 Calculation of inverse Z-transform    c n dz z z x j n x 1 ) ( 2 1 ) (  1 5 . 0 1 1 ) (    z z X 1 5 . 0 1 1 ) (    z z X C is a closed curve Example: |z|>0.5 =1+0.5z-1 +0.25z-2 +0.125z-3        0 .... .......... .......... .......... .......... 125 . 0 , 25 . 0 , 5 . 0 , 1 ) ( n n x 0 n<0 =>x(n)=(0.5)n u(n)
  • 61. 61 Inverse z-transform  If the Z transform can be expanded out as a series in powers of z, then the coefficients of each term of the series constitutes the inverse. In the following expression, the inverse would be the coefficients in blue  Consider a Z transform which can be expanded as in the expression below  Then the inverse is the coefficients in blue and can be written as follows.
  • 62. 62