SlideShare a Scribd company logo
Infrastructure for
the work of Data Scientists
Dmitry Spodarets
Who am I
Dmitry Spodarets
• CEO and Founder at FlyElephant
• Lecturer at Odessa Polytechnic
University
• Organizer of technical
conferences about AI, BigData,
HPC, JS, FOSS …
Agenda
• In production
• Database
• Notebook / IDE
• Software
• Deep Learning Tools
• Programming Languages
• Visualization
• Computing power
• Architecture
• Docker
• Cloud Services
• FlyElephant
Data Science
Data Science: people
EngineerDevOps
BusinessData Scientist
In production
Trained Model Deployed Model
Live Data
Historical Data Result
In production
Trained Model Deployed Model
Live Data
Historical Data Result
Training phase
In production
Trained Model Deployed Model
Live Data
Historical Data Result
ProductionTraining phase
Database
Notebook / IDE
Jupyter Notebook
Jupyter Lab
Jupyter Lab
JupyterLab
• JupyterLab is the natural evolution of the Jupyter Notebook user
interface
• JupyterLab is an IDE: Interactive Development Environment
• Flexible user interface for assembling the fundamental building
blocks of interactive computing
• Modernized JavaScript architecture based on npm/webpack,
plugin system, model/view separation
• Built using PhosphorJS (http://phosphorjs.github.io/)
• Design-driven development process
https://github.com/jupyter/jupyterlab
http://blog.jupyter.org/2016/07/14/jupyter-lab-alpha/
Software
http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
Software
New (in this poll) tools that received at least 1% share votes in
2016 were:
• Anaconda, 16%
• Microsoft other ML/Data Science tools, 1.6%
• SAP HANA, 1.2%
• XLMiner, 1.2%
http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
Software
• Tools with the highest growth (among tools with at least 15
users in 2015) were
http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
(turi)
Deep Learning Tools
• Tensorflow, 6.8%
• Theano ecosystem (including Pylearn2), 5.1%
• Caffe, 2.3%
• MATLAB Deep Learning Toolbox, 2.0%
• Deeplearning4j, 1.7%
• Torch, 1.0%
• Microsoft CNTK, 0.9%
• Cuda-convnet, 0.8%
• mxnet, 0.6%
• Convnet.js, 0.3%
• darch, 0.1%
• Nervana, 0.1%
• Veles, 0.1%
• Other Deep Learning Tools, 3.7%
http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
Programming Languages
• R, 49.0 % share (was 46.9), 4.5% increase
• Python, 45.8% share (was 30.3%), 51% increase
• Java, 16.8% share (was 14.1%), 19% increase
• Unix shell/awk/gawk 10.4% share (was 8.0%), 30% increase
• C/C++, 7.3% share (was 9.4%), 23% decrease
• Other programming/data languages, 6.8% share (was 5.1%), 34.1%
increase
• Scala, 6.2% share (was 3.5%), 79% increase
• Perl, 2.3% share (was 2.9%), 19% decrease
• Julia, 1.1% share (was 1.1%), 1.6% decrease
• F#, 0.4% share (was 0.7%), 41.8% decrease
• Clojure, 0.4% share (was 0.5%), 19.4% decrease
• Lisp, 0.2% share (was 0.4%), 33.3% decrease
http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
Visualization
• Tableau
• Zoomdata
• Qlik
• Plotly
• Matplotlib 2.0 (for Python)
• Ggplot2 (for R)
• D3.js
Computing power
Computing power
NVIDIA	DGX-1	Deep Learning Supercomputer
170/3	TFLOPS	(GPU	FP16	/	CPU	FP32)	
intel xeon phi processor
nvidia tesla p100
~5 TeraFLOPS
~3	TeraFLOPS
Computing power (NVIDIA)
18
ПРОДУКТЫ TESLA ДЛЯ ЛЮБЫХ ЗАДАЧ
СМЕШАННЫЕ
ВЫЧИСЛЕНИЯ
Tesla P100 PCIE
МАСШТАБИРУЕМЫЕ
ВЫЧИСЛЕНИЯ
Tesla P100 SXM2
СУПЕРКОМПЬЮТЕР ДЛЯ
DEEP LEARNING
DGX-1
Полностью интегрированное
решение для DL
Вычислительные центры для
приложений которые хорошо
масштабируются на GPU
Вычислительные центры
имеющие CPU и GPU
приложения
HYPERSCALE
ВЫЧИЛСЕНИЯ
Tesla P4, P40
Создание DL-сервисов,
обработка видео и
изображений, обучение
нейросетей
9
40x Efficient vs CPU, 8x Efficient vs FPGA
0
50
100
150
200
AlexNet
CPU FPGA 1x M4 (FP32) 1x P4 (INT8)
Images/Sec/Watt
Максимальная эффективность для
масштабируемых серверов
P4
# of CUDA Cores 2560
Peak Single Precision 5.5 TeraFLOPS
Peak INT8 22 TOPS
Low Precision
4x 8-bit vector dot product
with 32-bit accumulate
Video Engines 1x decode engine, 2x encode engine
GDDR5 Memory 8 GB @ 192 GB/s
Power 50W & 75 W
AlexNet, batch size = 128, CPU: Intel E5-2690v4 using Intel MKL 2017, FPGA is Arria10-115
1x M4/P4 in node, P4 board power at 56W, P4 GPU power at 36W, M4 board power at 57W, M4 GPU power at 39W, Perf/W chart using GPU power
TESLA P4
Computing power (NVIDIA)
10
TESLA P40
P40
# of CUDA Cores 3840
Peak Single Precision 12 TeraFLOPS
Peak INT8 47 TOPS
Low Precision
4x 8-bit vector dot product
with 32-bit accumulate
Video Engines 1x decode engine, 2x encode engines
GDDR5 Memory 24 GB @ 346 GB/s
Power 250W
0
20 000
40 000
60 000
80 000
100 000
GoogLeNet AlexNet
8x M40 (FP32) 8x P40 (INT8)
Images/Sec
4x Boost in Less than One Year
GoogLeNet, AlexNet, batch size = 128, CPU: Dual Socket Intel E5-2697v4
Максимальная пропускная способность для
масштабируемых серверов
Computing power (NVIDIA)
Computing power (NVIDIA)
Computing power (NVIDIA)
20
P100 ДЛЯ САМОГО БЫСТРОГО ОБУЧЕНИЯ
0,0x
0,5x
1,0x
1,5x
2,0x
2,5x
AlexnetOWT GoogLenet VGG-D Incep v3 ResNet-50
8x K80 8x M40 8x P40 8x P100 PCIE DGX-1
Deepmark test with NVCaffe. AlexnetOWT/GoogLenet use batch 128, VGG-D uses batch 64, Incep-v3/ResNet-50 use batch 32, weak scaling
K80/M40/P100/DGX-1 are measured, P40 is projected, software optimization in progress, CUDA8/cuDNN5.1, Ubuntu 14.04
Speedup
Img/sec
7172 2194 578 526 661
FP32 Training
Computing power (NVIDIA)
21
NVLINK: ЛИНЕЙНОЕ МАСШТАБИРОВАНИЕ
1,0x
2,0x
3,0x
4,0x
5,0x
6,0x
7,0x
8,0x
1GPU 2GPU 4GPU 8GPU
AlexnetOWT
DGX-1
P100 PCIE
Deepmark test with NVCaffe. AlexnetOWT use batch 128, Incep-v3/ResNet-50 use batch 32, weak scaling,
P100 and DGX-1 are measured, FP32 training, software optimization in progress, CUDA8/cuDNN5.1, Ubuntu 14.04
1,0x
2,0x
3,0x
4,0x
5,0x
6,0x
7,0x
8,0x
1GPU 2GPU 4GPU 8GPU
Incep-v3
DGX-1
P100 PCIE
1,0x
2,0x
3,0x
4,0x
5,0x
6,0x
7,0x
8,0x
1GPU 2GPU 4GPU 8GPU
ResNet-50
DGX-1
P100 PCIE
Коэффициент
ускорения
2.3x
1.3x
1.5x
Computing power (NVIDIA)
NVIDIA Deep Learning SDK
Computing power (NVIDIA)
25
Jetson TX1
JETSON TX1
GPU 1 TFLOP/s 256-core Maxwell
CPU 64-bit ARM A57 CPUs
Memory 4 GB LPDDR4 | 25.6 GB/s
Video decode 4K 60Hz
Video encode 4K 30Hz
CSI Up to 6 cameras | 1400 Mpix/s
Display 2x DSI, 1x eDP 1.4, 1x DP 1.2/HDMI
Wifi 802.11 2x2 ac
Networking 1 Gigabit Ethernet
PCIE Gen 2 1x1 + 1x4
Storage 16 GB eMMC, SDIO, SATA
Other 3x UART, 3x SPI, 4x I2C, 4x I2S, GPIOs
Computing power (Intel)
Computing power (Intel)
Computing power (Intel)
Computing power (Intel)
• Intel Math Kernel Library (Intel MKL)
Natively supports C, C++ and Fortran Development.
Cross-language compatible with Java, C#, Python and other languages.
• Intel Data Analytics Acceleration Library (Intel DAAL)
Includes Python, C++, and Java APIs and connectors to popular data
sources including Spark and Hadoop.
• Intel MPI Library
Natively supports C,C++ and Fortran development
Architecture
Docker
Cloud Services
Amazon Machine Learning
Azure Machine Learning
Google Machine Learning
Your Home for High Performance Computing
Compute ● Collaborate ● Manage
Solutions for
Data Science Engineering
Simulation
Rendering Academia
FlyElephant Platform
• Computing resources. You can get quick access to
different Clouds or HPC clusters from one place.
• Ready-computing infrastructure. With one click you get
your software calculation infrastructure and the
computing resources that you need.
• Collaboration & Sharing. Create projects, invite
colleagues to join them and share the calculation results
within the projects.
• Fast Deployment. Deploy your computing tasks as APIs
without engineering or DevOps.
• Expert Community. Our partner companies and individual
experts will help solve any of your issues very quickly.
Cloud computing
Tools
Computing on a HPC cluster
Support of Docker
Jupyter Notebooks
Storage
Community
Projects
Dmitry Spodarets_Infrastructure for the work of data scientists
Roadmap
(November)
• FlyElephant Box (Closed Beta Preview)
• AWS
• OpenStack
• Your Docker images
• MPI cluster
• Hadoop/Spark cluster
www.flyelephant.net
slack.flyelephant.net
We are looking for partners
Dmitry Spodarets
d.spodarets@flyelephant.net
www.flyelephant.net

More Related Content

PDF
Вебинар: Инструменты для работы Data Scientist
PDF
sparklyr - Jeff Allen
PDF
Snorkel: Dark Data and Machine Learning with Christopher Ré
PDF
TensorFlow 101
PPTX
What the Bleep is Big Data? A Holistic View of Data and Algorithms
PDF
Bringing Deep Learning into production
PPTX
.net interactive for notebooks and for your data job
PDF
H2O World - Benchmarking Open Source ML Platforms - Szilard Pafka
Вебинар: Инструменты для работы Data Scientist
sparklyr - Jeff Allen
Snorkel: Dark Data and Machine Learning with Christopher Ré
TensorFlow 101
What the Bleep is Big Data? A Holistic View of Data and Algorithms
Bringing Deep Learning into production
.net interactive for notebooks and for your data job
H2O World - Benchmarking Open Source ML Platforms - Szilard Pafka

Viewers also liked (9)

PDF
Jupyter Brand Guide Book v7
PDF
Вебинар: Основы распараллеливания С++ программ при помощи OpenMP
PDF
Вебинар: Введение в машинное обучение
PDF
Infrastructure for the work of Data Scientists
ODP
GRID-технологии в физическом эксперименте (Введение)
ODP
Spodarets Pereslavl 2009
PDF
Environment for training models
PDF
[Impact Lab] IT инструменты для проекта
PDF
Containers for Science and High-Performance Computing
Jupyter Brand Guide Book v7
Вебинар: Основы распараллеливания С++ программ при помощи OpenMP
Вебинар: Введение в машинное обучение
Infrastructure for the work of Data Scientists
GRID-технологии в физическом эксперименте (Введение)
Spodarets Pereslavl 2009
Environment for training models
[Impact Lab] IT инструменты для проекта
Containers for Science and High-Performance Computing
Ad

Similar to Dmitry Spodarets_Infrastructure for the work of data scientists (20)

PDF
Tesla Accelerated Computing Platform
PDF
Enabling a hardware accelerated deep learning data science experience for Apa...
PDF
Infrastructure and Tooling - Full Stack Deep Learning
PDF
infoShare AI Roadshow 2018 - Tomasz Kopacz (Microsoft) - jakie możliwości daj...
PDF
Ai Forum at Computex 2017 - Keynote Slides by Jensen Huang
PPTX
AI Hardware Landscape 2021
PDF
Nvidia at SEMICon, Munich
PDF
GTC 2016 Opening Keynote
PDF
Deep Learning Update May 2016
PDF
Enabling Artificial Intelligence - Alison B. Lowndes
PDF
Nvidia SC16: The Greatest Challenges Can't Wait
PPTX
BigDL Deep Learning in Apache Spark - AWS re:invent 2017
PPTX
2018 03 25 system ml ai and openpower meetup
PDF
Accelerated Computing: The Path Forward
PDF
Harnessing AI for the Benefit of All.
PDF
Hardware & Software Platforms for HPC, AI and ML
PPTX
Innovation with ai at scale on the edge vt sept 2019 v0
PDF
NVIDIA CEO Jensen Huang Presentation at Supercomputing 2019
PDF
NVIDIA DGX-1 超級電腦與人工智慧及深度學習
PDF
Monitoring of GPU Usage with Tensorflow Models Using Prometheus
Tesla Accelerated Computing Platform
Enabling a hardware accelerated deep learning data science experience for Apa...
Infrastructure and Tooling - Full Stack Deep Learning
infoShare AI Roadshow 2018 - Tomasz Kopacz (Microsoft) - jakie możliwości daj...
Ai Forum at Computex 2017 - Keynote Slides by Jensen Huang
AI Hardware Landscape 2021
Nvidia at SEMICon, Munich
GTC 2016 Opening Keynote
Deep Learning Update May 2016
Enabling Artificial Intelligence - Alison B. Lowndes
Nvidia SC16: The Greatest Challenges Can't Wait
BigDL Deep Learning in Apache Spark - AWS re:invent 2017
2018 03 25 system ml ai and openpower meetup
Accelerated Computing: The Path Forward
Harnessing AI for the Benefit of All.
Hardware & Software Platforms for HPC, AI and ML
Innovation with ai at scale on the edge vt sept 2019 v0
NVIDIA CEO Jensen Huang Presentation at Supercomputing 2019
NVIDIA DGX-1 超級電腦與人工智慧及深度學習
Monitoring of GPU Usage with Tensorflow Models Using Prometheus
Ad

Recently uploaded (20)

PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
project resource management chapter-09.pdf
PPTX
cloud_computing_Infrastucture_as_cloud_p
PPTX
A Presentation on Touch Screen Technology
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
Hindi spoken digit analysis for native and non-native speakers
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
DP Operators-handbook-extract for the Mautical Institute
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Mushroom cultivation and it's methods.pdf
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Getting Started with Data Integration: FME Form 101
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
project resource management chapter-09.pdf
cloud_computing_Infrastucture_as_cloud_p
A Presentation on Touch Screen Technology
WOOl fibre morphology and structure.pdf for textiles
Hindi spoken digit analysis for native and non-native speakers
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
DP Operators-handbook-extract for the Mautical Institute
Group 1 Presentation -Planning and Decision Making .pptx
TLE Review Electricity (Electricity).pptx
Mushroom cultivation and it's methods.pdf
A comparative analysis of optical character recognition models for extracting...
Building Integrated photovoltaic BIPV_UPV.pdf
Zenith AI: Advanced Artificial Intelligence
Getting Started with Data Integration: FME Form 101
Enhancing emotion recognition model for a student engagement use case through...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
1 - Historical Antecedents, Social Consideration.pdf
Digital-Transformation-Roadmap-for-Companies.pptx

Dmitry Spodarets_Infrastructure for the work of data scientists

  • 1. Infrastructure for the work of Data Scientists Dmitry Spodarets
  • 2. Who am I Dmitry Spodarets • CEO and Founder at FlyElephant • Lecturer at Odessa Polytechnic University • Organizer of technical conferences about AI, BigData, HPC, JS, FOSS …
  • 3. Agenda • In production • Database • Notebook / IDE • Software • Deep Learning Tools • Programming Languages • Visualization • Computing power • Architecture • Docker • Cloud Services • FlyElephant
  • 6. In production Trained Model Deployed Model Live Data Historical Data Result
  • 7. In production Trained Model Deployed Model Live Data Historical Data Result Training phase
  • 8. In production Trained Model Deployed Model Live Data Historical Data Result ProductionTraining phase
  • 13. Jupyter Lab JupyterLab • JupyterLab is the natural evolution of the Jupyter Notebook user interface • JupyterLab is an IDE: Interactive Development Environment • Flexible user interface for assembling the fundamental building blocks of interactive computing • Modernized JavaScript architecture based on npm/webpack, plugin system, model/view separation • Built using PhosphorJS (http://phosphorjs.github.io/) • Design-driven development process https://github.com/jupyter/jupyterlab http://blog.jupyter.org/2016/07/14/jupyter-lab-alpha/
  • 15. Software New (in this poll) tools that received at least 1% share votes in 2016 were: • Anaconda, 16% • Microsoft other ML/Data Science tools, 1.6% • SAP HANA, 1.2% • XLMiner, 1.2% http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
  • 16. Software • Tools with the highest growth (among tools with at least 15 users in 2015) were http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html (turi)
  • 17. Deep Learning Tools • Tensorflow, 6.8% • Theano ecosystem (including Pylearn2), 5.1% • Caffe, 2.3% • MATLAB Deep Learning Toolbox, 2.0% • Deeplearning4j, 1.7% • Torch, 1.0% • Microsoft CNTK, 0.9% • Cuda-convnet, 0.8% • mxnet, 0.6% • Convnet.js, 0.3% • darch, 0.1% • Nervana, 0.1% • Veles, 0.1% • Other Deep Learning Tools, 3.7% http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
  • 18. Programming Languages • R, 49.0 % share (was 46.9), 4.5% increase • Python, 45.8% share (was 30.3%), 51% increase • Java, 16.8% share (was 14.1%), 19% increase • Unix shell/awk/gawk 10.4% share (was 8.0%), 30% increase • C/C++, 7.3% share (was 9.4%), 23% decrease • Other programming/data languages, 6.8% share (was 5.1%), 34.1% increase • Scala, 6.2% share (was 3.5%), 79% increase • Perl, 2.3% share (was 2.9%), 19% decrease • Julia, 1.1% share (was 1.1%), 1.6% decrease • F#, 0.4% share (was 0.7%), 41.8% decrease • Clojure, 0.4% share (was 0.5%), 19.4% decrease • Lisp, 0.2% share (was 0.4%), 33.3% decrease http://www.kdnuggets.com/2016/06/r-python-top-analytics-data-mining-data-science-software.html
  • 19. Visualization • Tableau • Zoomdata • Qlik • Plotly • Matplotlib 2.0 (for Python) • Ggplot2 (for R) • D3.js
  • 21. Computing power NVIDIA DGX-1 Deep Learning Supercomputer 170/3 TFLOPS (GPU FP16 / CPU FP32) intel xeon phi processor nvidia tesla p100 ~5 TeraFLOPS ~3 TeraFLOPS
  • 22. Computing power (NVIDIA) 18 ПРОДУКТЫ TESLA ДЛЯ ЛЮБЫХ ЗАДАЧ СМЕШАННЫЕ ВЫЧИСЛЕНИЯ Tesla P100 PCIE МАСШТАБИРУЕМЫЕ ВЫЧИСЛЕНИЯ Tesla P100 SXM2 СУПЕРКОМПЬЮТЕР ДЛЯ DEEP LEARNING DGX-1 Полностью интегрированное решение для DL Вычислительные центры для приложений которые хорошо масштабируются на GPU Вычислительные центры имеющие CPU и GPU приложения HYPERSCALE ВЫЧИЛСЕНИЯ Tesla P4, P40 Создание DL-сервисов, обработка видео и изображений, обучение нейросетей
  • 23. 9 40x Efficient vs CPU, 8x Efficient vs FPGA 0 50 100 150 200 AlexNet CPU FPGA 1x M4 (FP32) 1x P4 (INT8) Images/Sec/Watt Максимальная эффективность для масштабируемых серверов P4 # of CUDA Cores 2560 Peak Single Precision 5.5 TeraFLOPS Peak INT8 22 TOPS Low Precision 4x 8-bit vector dot product with 32-bit accumulate Video Engines 1x decode engine, 2x encode engine GDDR5 Memory 8 GB @ 192 GB/s Power 50W & 75 W AlexNet, batch size = 128, CPU: Intel E5-2690v4 using Intel MKL 2017, FPGA is Arria10-115 1x M4/P4 in node, P4 board power at 56W, P4 GPU power at 36W, M4 board power at 57W, M4 GPU power at 39W, Perf/W chart using GPU power TESLA P4 Computing power (NVIDIA)
  • 24. 10 TESLA P40 P40 # of CUDA Cores 3840 Peak Single Precision 12 TeraFLOPS Peak INT8 47 TOPS Low Precision 4x 8-bit vector dot product with 32-bit accumulate Video Engines 1x decode engine, 2x encode engines GDDR5 Memory 24 GB @ 346 GB/s Power 250W 0 20 000 40 000 60 000 80 000 100 000 GoogLeNet AlexNet 8x M40 (FP32) 8x P40 (INT8) Images/Sec 4x Boost in Less than One Year GoogLeNet, AlexNet, batch size = 128, CPU: Dual Socket Intel E5-2697v4 Максимальная пропускная способность для масштабируемых серверов Computing power (NVIDIA)
  • 27. 20 P100 ДЛЯ САМОГО БЫСТРОГО ОБУЧЕНИЯ 0,0x 0,5x 1,0x 1,5x 2,0x 2,5x AlexnetOWT GoogLenet VGG-D Incep v3 ResNet-50 8x K80 8x M40 8x P40 8x P100 PCIE DGX-1 Deepmark test with NVCaffe. AlexnetOWT/GoogLenet use batch 128, VGG-D uses batch 64, Incep-v3/ResNet-50 use batch 32, weak scaling K80/M40/P100/DGX-1 are measured, P40 is projected, software optimization in progress, CUDA8/cuDNN5.1, Ubuntu 14.04 Speedup Img/sec 7172 2194 578 526 661 FP32 Training Computing power (NVIDIA)
  • 28. 21 NVLINK: ЛИНЕЙНОЕ МАСШТАБИРОВАНИЕ 1,0x 2,0x 3,0x 4,0x 5,0x 6,0x 7,0x 8,0x 1GPU 2GPU 4GPU 8GPU AlexnetOWT DGX-1 P100 PCIE Deepmark test with NVCaffe. AlexnetOWT use batch 128, Incep-v3/ResNet-50 use batch 32, weak scaling, P100 and DGX-1 are measured, FP32 training, software optimization in progress, CUDA8/cuDNN5.1, Ubuntu 14.04 1,0x 2,0x 3,0x 4,0x 5,0x 6,0x 7,0x 8,0x 1GPU 2GPU 4GPU 8GPU Incep-v3 DGX-1 P100 PCIE 1,0x 2,0x 3,0x 4,0x 5,0x 6,0x 7,0x 8,0x 1GPU 2GPU 4GPU 8GPU ResNet-50 DGX-1 P100 PCIE Коэффициент ускорения 2.3x 1.3x 1.5x Computing power (NVIDIA)
  • 30. Computing power (NVIDIA) 25 Jetson TX1 JETSON TX1 GPU 1 TFLOP/s 256-core Maxwell CPU 64-bit ARM A57 CPUs Memory 4 GB LPDDR4 | 25.6 GB/s Video decode 4K 60Hz Video encode 4K 30Hz CSI Up to 6 cameras | 1400 Mpix/s Display 2x DSI, 1x eDP 1.4, 1x DP 1.2/HDMI Wifi 802.11 2x2 ac Networking 1 Gigabit Ethernet PCIE Gen 2 1x1 + 1x4 Storage 16 GB eMMC, SDIO, SATA Other 3x UART, 3x SPI, 4x I2C, 4x I2S, GPIOs
  • 34. Computing power (Intel) • Intel Math Kernel Library (Intel MKL) Natively supports C, C++ and Fortran Development. Cross-language compatible with Java, C#, Python and other languages. • Intel Data Analytics Acceleration Library (Intel DAAL) Includes Python, C++, and Java APIs and connectors to popular data sources including Spark and Hadoop. • Intel MPI Library Natively supports C,C++ and Fortran development
  • 37. Cloud Services Amazon Machine Learning Azure Machine Learning Google Machine Learning
  • 38. Your Home for High Performance Computing Compute ● Collaborate ● Manage
  • 39. Solutions for Data Science Engineering Simulation Rendering Academia
  • 40. FlyElephant Platform • Computing resources. You can get quick access to different Clouds or HPC clusters from one place. • Ready-computing infrastructure. With one click you get your software calculation infrastructure and the computing resources that you need. • Collaboration & Sharing. Create projects, invite colleagues to join them and share the calculation results within the projects. • Fast Deployment. Deploy your computing tasks as APIs without engineering or DevOps. • Expert Community. Our partner companies and individual experts will help solve any of your issues very quickly.
  • 42. Tools
  • 43. Computing on a HPC cluster
  • 50. Roadmap (November) • FlyElephant Box (Closed Beta Preview) • AWS • OpenStack • Your Docker images • MPI cluster • Hadoop/Spark cluster
  • 53. We are looking for partners