SlideShare a Scribd company logo
SMACK
Microservices meet Fast Data on Azure
@joerg_schad
© 2017 Mesosphere, Inc. All Rights Reserved. 2
Jörg Schad
Distributed Systems Engineer
@joerg_schad
[DO16] Mesosphere : Microservices meet Fast Data on Azure
Video
© 2017 Mesosphere, Inc. All Rights Reserved.
Hardware
Operating System
Application
5
Applications
© 2017 Mesosphere, Inc. All Rights Reserved.
noun | ˈmīkrō/ /ˈsərvəs/ :
an approach to application development in which a
large application is built as a suite of modular services.
Each module supports a specific business goal and uses
a simple, well-defined interface to communicate with
other modules.*
Microservices are designed to be flexible, resilient,
efficient, robust, and individually scalable.
*From whatis.com
OVERVIEW
© 2017 Mesosphere, Inc. All Rights Reserved.
Operating System Operating System Operating System
ServiceApp ServiceServiceAppApp
7
MICROSERVICES
Polyglot
Single Responsibility
Smaller Teams
Utilization
Machine types/groups
Dependency hell
Machine
Infrastructure
Machine Machine
ServiceService ServiceServiceServiceService
© Gerard Julien/AFP
Run everything in containers!
© 2017 Mesosphere, Inc. All Rights Reserved.
Container Internals
© 2017 Mesosphere, Inc. All Rights Reserved.
Container Internals
© 2017 Mesosphere, Inc. All Rights Reserved. 11
MapReduce is crunching
Data
Meanwhile...
© 2016 Mesosphere, Inc. All Rights Reserved. 12
But then business
demanded
FAST DATA
We need to turn faster!
Today...
© 2016 Mesosphere, Inc. All Rights Reserved. 13
Fast Data
Batch Event ProcessingMicro-Batch
Days Hours Minutes Seconds Microseconds
Solves problems using predictive and prescriptive analyticsReports what has happened using descriptive analytics
Predictive User InterfaceReal-time Pricing and Routing Real-time AdvertisingBilling, Chargeback Product recommendations
© 2016 Mesosphere, Inc. All Rights Reserved. 14
The SMACK Stack
EVENTS
Ubiquitous data streams
from connected devices
INGEST
Apache Kafka
STORE
Apache Spark
ANALYZE
Apache Cassandra
ACT
Akka
Ingest millions of events
per second
Distributed & highly scalable
database
Real-time and batch
process data
Visualize data and build
data driven applications
Mesos/ DC/OS
Sensors
Devices
Clients
© 2017 Mesosphere, Inc. All Rights Reserved. 15
Datacenter
© 2017 Mesosphere, Inc. All Rights Reserved. 16
NAIVE APPROACH
Typical Datacenter
siloed, over-provisioned servers,
low utilization
Industry Average
12-15% utilization
mySQL
microservice
Cassandra
Spark/Hadoop
Kafka
© 2017 Mesosphere, Inc. All Rights Reserved. 17
© 2017 Mesosphere, Inc. All Rights Reserved. 18
MULTIPLEXING OF DATA, SERVICES, USERS, ENVIRONMENTS
Typical Datacenter
siloed, over-provisioned servers,
low utilization
Mesos/ DC/OS
automated schedulers, workload multiplexing onto the
same machines
mySQL
microservice
Cassandra
Spark/Hadoop
Kafka
© 2017 Mesosphere, Inc. All Rights Reserved.
• A top-level Apache project
• A cluster resource negotiator
• Scalable to 10,000s of nodes
• Fault-tolerant, battle-tested
• An SDK for distributed apps
• Native Docker support
19
Apache Mesos
© 2016 Mesosphere, Inc. All Rights Reserved. 20
Use: The primary resource manager and
negotiator
Why Mesos?
● 2-level scheduling
● Fault-tolerant, battle-tested
● Scalable to 10,000+ nodes
● Created by Mesosphere founder @ UC
Berkeley; used in production by 100+ web-
scale companies [1]
[1] http://mesos.apache.org/documentation/latest/powered-by-mesos/
APACHE MESOS
© 2016 Mesosphere, Inc. All Rights Reserved. 21
MESOS: FUNDAMENTAL ARCHITECTURE
Mesos
Master
Mesos
Master
Mesos
Master
Mesos AgentMesos Agent Service
Cassandra
Executor
Cassandra
Task
Cassandra
Scheduler
Container
Scheduler
Spark
Scheduler
Spark
Executor
Spark
Task
Mesos AgentMesos Agent Service
Docker
Executor
Docker
Task
Spark
Executor
Spark
Task
Two-level Scheduling
1. Agents advertise resources to Master
2. Master offers resources to Framework
3. Framework rejects / uses resources
4. Agent reports task status to Master
© 2017 Mesosphere, Inc. All Rights Reserved. 22
Datacenter Operating System (DC/OS)
Distributed Systems Kernel (Mesos)
DC/OS ENABLES MODERN DISTRIBUTED APPS
Big Data + Analytics EnginesMicroservices (in containers)
Streaming
Batch
Machine Learning
Analytics
Functions &
Logic
Search
Time Series
SQL / NoSQL
Databases
Modern App Components
Any Infrastructure (Physical, Virtual, Cloud)
23
24
THE
BASICS
DC/OS is …
● 100% open source (ASL2.0)
+ A big, diverse community
● An umbrella for ~30 OSS projects
+ Roadmap and designs
+ Docs and tutorials
● Not limited in any way
● Familiar, with more features
+ Networking, Security, CLI, UI, Service
Discovery, Load Balancing, Packages,
SMACK Stack
© 2016 Mesosphere, Inc. All Rights Reserved. 26
SMACK Stack
EVENTS
Ubiquitous data streams
from connected devices
INGEST
Apache Kafka
STORE
Apache Spark
ANALYZE
Apache Cassandra
ACT
Akka
Ingest millions of events
per second
Distributed & highly scalable
database
Real-time and batch
process data
Visualize data and build
data driven applications
DC/OS
Sensors
Devices
Clients
© 2016 Mesosphere, Inc. All Rights Reserved. 27
Apache Kafka
ØMQ, RabbitMQ, Disque (Redis-
based), etc.
fluentd, Logstash, Flume
Akka streams
cloud-only: AWS SQS, Google Cloud
Pub/Sub
see also queues.io
MESSAGE QUEUES
© 2016 Mesosphere, Inc. All Rights Reserved. 28
High-throughput, distributed,
persistent publish-subscribe
messaging system
Originates from LinkedIn
Typically used as buffer/de-
coupling layer in online
stream processing
APACHE KAFKA
© 2016 Mesosphere, Inc. All Rights Reserved. 29
At most once—Messages may be lost
but are never redelivered.
At least once—Messages are never lost
but may be redelivered.
Exactly once—this is what people
actually want, each message is
delivered once and only once.
DELIVERY GUARANTEES
Murphy’s Law of Distributed
Systems:
Anything that can
go wrong, will go
wrong … partially!
© 2016 Mesosphere, Inc. All Rights Reserved. 30
SMACK Stack
EVENTS
Ubiquitous data streams
from connected devices
INGEST
Apache Kafka
STORE
Apache Spark
ANALYZE
Apache Cassandra
ACT
Akka
Ingest millions of events
per second
Distributed & highly scalable
database
Real-time and batch
process data
Visualize data and build
data driven applications
DC/OS
Sensors
Devices
Clients
© 2016 Mesosphere, Inc. All Rights Reserved. 31
Apache Storm
Apache Spark
Apache Samza
Apache Flink
Apache Apex
Concord
cloud-only: AWS Kinesis,
Google Cloud Dataflow
STREAM PROCESSING
© 2016 Mesosphere, Inc. All Rights Reserved. 32
APACHE SPARK
© 2016 Mesosphere, Inc. All Rights Reserved. 33
Typical Use: distributed, large-scale data
processing; micro-batching
Why Spark Streaming?
● Micro-batching creates very low latency,
which can be faster
● Well defined role means it fits in well
with other pieces of the pipeline
APACHE SPARK (STREAMING)
© 2016 Mesosphere, Inc. All Rights Reserved. 34
Micro-Batching
EXECUTION MODEL
Native Streaming
© 2016 Mesosphere, Inc. All Rights Reserved. 35
EXAMPLE:
REAL-TIME
TRACKING
© 2016 Mesosphere, Inc. All Rights Reserved. 36
GEO-ENABLED IoT
© 2016 Mesosphere, Inc. All Rights Reserved. 37
DATA FLOW
© 2016 Mesosphere, Inc. All Rights Reserved. 38
DEMO
© 2016 Mesosphere, Inc. All Rights Reserved. 39
SMACK stack
EVENTS
Ubiquitous data streams
from connected devices
INGEST
Apache Kafka
STORE
Apache Spark
ANALYZE
Apache Cassandra
ACT
Akka
Ingest millions of events
per second
Distributed & highly scalable
database
Real-time and batch
process data
Visualize data and build
data driven applications
DC/OS
Sensors
Devices
Clients
© 2017 Mesosphere, Inc. All Rights Reserved. 40
Keep it running!
© 2016 Mesosphere, Inc. All Rights Reserved. 41
SERVICE OPERATIONS
● Configuration Updates (ex: Scaling, re-configuration)
● Binary Upgrades
● Cluster Maintenance (ex: Backup, Restore, Restart)
● Monitor progress of operations
● Debug any runtime blockages
© 2017 Microsoft Corporation. All rights reserved.
本情報の内容(添付文書、リンク先などを含む)は、作成日時点でのものであり、予告なく変更される場合があります。
@dcos
users@dcos.io
/groups/8295652
/dcos
/dcos/examples
/dcos/demos
chat.dcos.io
@joerg_schad

More Related Content

PPTX
Visual Studio Team Services を使った Serverless のための継続的デリバリ
PDF
Azure Design Review Checklist Availabilityの巻
PDF
Containers on Microsoft Azure
PPTX
Securing an Azure full-PaaS architecture - Data saturday #0001 Pordenone
PPTX
Empower Your Hybrid Cloud With Azure Stack
PDF
いそがしいひとのための Microsoft Ignite 2018 + 最新情報 Data & AI 編
PPTX
20171003 ignite17 dal
PPTX
いそがしいひとのための Microsoft Ignite 2018 最新情報 Data 編
Visual Studio Team Services を使った Serverless のための継続的デリバリ
Azure Design Review Checklist Availabilityの巻
Containers on Microsoft Azure
Securing an Azure full-PaaS architecture - Data saturday #0001 Pordenone
Empower Your Hybrid Cloud With Azure Stack
いそがしいひとのための Microsoft Ignite 2018 + 最新情報 Data & AI 編
20171003 ignite17 dal
いそがしいひとのための Microsoft Ignite 2018 最新情報 Data 編

What's hot (20)

PPTX
Soluções de IoT no Microsoft Azure
PDF
OSS DB on Azure
PPTX
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
PDF
GitOps with Amazon EKS Anywhere by Dan Budris
PDF
[Docker Tokyo - DockerCon Recap] Updates from Microsoft
PDF
[「RDB技術者のためのNoSQLガイド」出版記念セミナー] Azure DocumentDB
PPTX
Microsoft Azure - Extending your Datacenter - thinkASG University Series
PPTX
Getting Started with Azure Stack Azure Bootcamp Colombo 2019
PPTX
SQL_HA_DR_Azure
PDF
우아한 모노리스
PDF
ContainerDays NYC 2016: "Containers in Azure: Understanding the Microsoft Con...
PDF
Kubernetes Visualization-and-Monitoring-using-Weave-scope
PDF
Microsoft Build2021で登場したハイブリッドクラウド関連情報をまとめてお届け!
PDF
インフラ野郎 Azureチーム 博多夏祭り
PPTX
The Experience of Java on Kubernetes with Microservices from HackFest
PDF
04_Azure Kubernetes Service: Basic Practices for Developers_GAB2019
PDF
Using Azure Compute with VMSS, Kubernetes, and Service Fabric
PPTX
Gab 2015 aymeric weinbach azure iot
PDF
Infrastructure as Code for Azure: ARM or Terraform?
PDF
20200809_2020年から始める Azure Cosmos DB 入門 with Azure Synapse Link recap
Soluções de IoT no Microsoft Azure
OSS DB on Azure
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
GitOps with Amazon EKS Anywhere by Dan Budris
[Docker Tokyo - DockerCon Recap] Updates from Microsoft
[「RDB技術者のためのNoSQLガイド」出版記念セミナー] Azure DocumentDB
Microsoft Azure - Extending your Datacenter - thinkASG University Series
Getting Started with Azure Stack Azure Bootcamp Colombo 2019
SQL_HA_DR_Azure
우아한 모노리스
ContainerDays NYC 2016: "Containers in Azure: Understanding the Microsoft Con...
Kubernetes Visualization-and-Monitoring-using-Weave-scope
Microsoft Build2021で登場したハイブリッドクラウド関連情報をまとめてお届け!
インフラ野郎 Azureチーム 博多夏祭り
The Experience of Java on Kubernetes with Microservices from HackFest
04_Azure Kubernetes Service: Basic Practices for Developers_GAB2019
Using Azure Compute with VMSS, Kubernetes, and Service Fabric
Gab 2015 aymeric weinbach azure iot
Infrastructure as Code for Azure: ARM or Terraform?
20200809_2020年から始める Azure Cosmos DB 入門 with Azure Synapse Link recap
Ad

Similar to [DO16] Mesosphere : Microservices meet Fast Data on Azure (20)

PDF
DOD 2016 - Jörg Schad - How Fast Data and Microservices Change the Datacenter.
PDF
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
PDF
Smack Stack and Beyond—Building Fast Data Pipelines with Jorg Schad
PDF
Webinar - Big Data: Let's SMACK - Jorg Schad
PDF
Downtime is not an option - day 2 operations - Jörg Schad
PDF
SMACK stack and beyond
PDF
Elastic data services on Apache Mesos via Mesosphere’s DCOS
PPTX
DevOps in Age of Kubernetes
PDF
OSDC 2018 | From batch to pipelines – why Apache Mesos and DC/OS are a soluti...
PDF
DevOps vs. Site Reliability Engineering (SRE) in Age of Kubernetes
PDF
Mesos and the Architecture of the New Datacenter
PDF
Introduction to DC/OS
PDF
Introduction to DC/OS
PDF
Mesos, DC/OS and the Architecture of the New Datacenter
PDF
Introduction to Apache Mesos and DC/OS
PPTX
Doing Dropbox the Native Cloud Native Way
PPTX
Journey to the Modern App with Containers, Microservices and Big Data
PDF
Journey to the Modern App with Containers, Microservices and Big Data
PDF
Modern Container Orchestration (Without Breaking the Bank)
PDF
Easy Docker Deployments with Mesosphere DCOS on Azure
DOD 2016 - Jörg Schad - How Fast Data and Microservices Change the Datacenter.
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Smack Stack and Beyond—Building Fast Data Pipelines with Jorg Schad
Webinar - Big Data: Let's SMACK - Jorg Schad
Downtime is not an option - day 2 operations - Jörg Schad
SMACK stack and beyond
Elastic data services on Apache Mesos via Mesosphere’s DCOS
DevOps in Age of Kubernetes
OSDC 2018 | From batch to pipelines – why Apache Mesos and DC/OS are a soluti...
DevOps vs. Site Reliability Engineering (SRE) in Age of Kubernetes
Mesos and the Architecture of the New Datacenter
Introduction to DC/OS
Introduction to DC/OS
Mesos, DC/OS and the Architecture of the New Datacenter
Introduction to Apache Mesos and DC/OS
Doing Dropbox the Native Cloud Native Way
Journey to the Modern App with Containers, Microservices and Big Data
Journey to the Modern App with Containers, Microservices and Big Data
Modern Container Orchestration (Without Breaking the Bank)
Easy Docker Deployments with Mesosphere DCOS on Azure
Ad

More from de:code 2017 (20)

PDF
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
PDF
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
PDF
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
PDF
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
PDF
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
PDF
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
PDF
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
PDF
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
PDF
[SP04] これからのエンジニアに必要な「マネジメント」の考え方
PDF
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
PDF
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
PDF
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
PDF
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
PDF
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
PDF
[DO05] システムの信頼性を上げるための新しい考え方 SRE ( Site Reliability Engineering ) in Azure, o...
PDF
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
PDF
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
PDF
[SP03] 「怠惰の美徳~言語デザイナーの視点から」
PDF
[SP02] Developing autonomous vehicles with AirSim
PDF
[SP01] CTO が語る! 今注目すべきテクノロジー
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
[SP04] これからのエンジニアに必要な「マネジメント」の考え方
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
[DO05] システムの信頼性を上げるための新しい考え方 SRE ( Site Reliability Engineering ) in Azure, o...
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
[SP03] 「怠惰の美徳~言語デザイナーの視点から」
[SP02] Developing autonomous vehicles with AirSim
[SP01] CTO が語る! 今注目すべきテクノロジー

Recently uploaded (20)

PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Encapsulation theory and applications.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Approach and Philosophy of On baking technology
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PPTX
Big Data Technologies - Introduction.pptx
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Encapsulation_ Review paper, used for researhc scholars
Reach Out and Touch Someone: Haptics and Empathic Computing
Dropbox Q2 2025 Financial Results & Investor Presentation
Encapsulation theory and applications.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
Approach and Philosophy of On baking technology
Understanding_Digital_Forensics_Presentation.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
“AI and Expert System Decision Support & Business Intelligence Systems”
The AUB Centre for AI in Media Proposal.docx
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Review of recent advances in non-invasive hemoglobin estimation
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
MYSQL Presentation for SQL database connectivity
Building Integrated photovoltaic BIPV_UPV.pdf
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
Big Data Technologies - Introduction.pptx
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Mobile App Security Testing_ A Comprehensive Guide.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf

[DO16] Mesosphere : Microservices meet Fast Data on Azure

  • 1. SMACK Microservices meet Fast Data on Azure @joerg_schad
  • 2. © 2017 Mesosphere, Inc. All Rights Reserved. 2 Jörg Schad Distributed Systems Engineer @joerg_schad
  • 5. © 2017 Mesosphere, Inc. All Rights Reserved. Hardware Operating System Application 5 Applications
  • 6. © 2017 Mesosphere, Inc. All Rights Reserved. noun | ˈmīkrō/ /ˈsərvəs/ : an approach to application development in which a large application is built as a suite of modular services. Each module supports a specific business goal and uses a simple, well-defined interface to communicate with other modules.* Microservices are designed to be flexible, resilient, efficient, robust, and individually scalable. *From whatis.com OVERVIEW
  • 7. © 2017 Mesosphere, Inc. All Rights Reserved. Operating System Operating System Operating System ServiceApp ServiceServiceAppApp 7 MICROSERVICES Polyglot Single Responsibility Smaller Teams Utilization Machine types/groups Dependency hell Machine Infrastructure Machine Machine ServiceService ServiceServiceServiceService
  • 8. © Gerard Julien/AFP Run everything in containers!
  • 9. © 2017 Mesosphere, Inc. All Rights Reserved. Container Internals
  • 10. © 2017 Mesosphere, Inc. All Rights Reserved. Container Internals
  • 11. © 2017 Mesosphere, Inc. All Rights Reserved. 11 MapReduce is crunching Data Meanwhile...
  • 12. © 2016 Mesosphere, Inc. All Rights Reserved. 12 But then business demanded FAST DATA We need to turn faster! Today...
  • 13. © 2016 Mesosphere, Inc. All Rights Reserved. 13 Fast Data Batch Event ProcessingMicro-Batch Days Hours Minutes Seconds Microseconds Solves problems using predictive and prescriptive analyticsReports what has happened using descriptive analytics Predictive User InterfaceReal-time Pricing and Routing Real-time AdvertisingBilling, Chargeback Product recommendations
  • 14. © 2016 Mesosphere, Inc. All Rights Reserved. 14 The SMACK Stack EVENTS Ubiquitous data streams from connected devices INGEST Apache Kafka STORE Apache Spark ANALYZE Apache Cassandra ACT Akka Ingest millions of events per second Distributed & highly scalable database Real-time and batch process data Visualize data and build data driven applications Mesos/ DC/OS Sensors Devices Clients
  • 15. © 2017 Mesosphere, Inc. All Rights Reserved. 15 Datacenter
  • 16. © 2017 Mesosphere, Inc. All Rights Reserved. 16 NAIVE APPROACH Typical Datacenter siloed, over-provisioned servers, low utilization Industry Average 12-15% utilization mySQL microservice Cassandra Spark/Hadoop Kafka
  • 17. © 2017 Mesosphere, Inc. All Rights Reserved. 17
  • 18. © 2017 Mesosphere, Inc. All Rights Reserved. 18 MULTIPLEXING OF DATA, SERVICES, USERS, ENVIRONMENTS Typical Datacenter siloed, over-provisioned servers, low utilization Mesos/ DC/OS automated schedulers, workload multiplexing onto the same machines mySQL microservice Cassandra Spark/Hadoop Kafka
  • 19. © 2017 Mesosphere, Inc. All Rights Reserved. • A top-level Apache project • A cluster resource negotiator • Scalable to 10,000s of nodes • Fault-tolerant, battle-tested • An SDK for distributed apps • Native Docker support 19 Apache Mesos
  • 20. © 2016 Mesosphere, Inc. All Rights Reserved. 20 Use: The primary resource manager and negotiator Why Mesos? ● 2-level scheduling ● Fault-tolerant, battle-tested ● Scalable to 10,000+ nodes ● Created by Mesosphere founder @ UC Berkeley; used in production by 100+ web- scale companies [1] [1] http://mesos.apache.org/documentation/latest/powered-by-mesos/ APACHE MESOS
  • 21. © 2016 Mesosphere, Inc. All Rights Reserved. 21 MESOS: FUNDAMENTAL ARCHITECTURE Mesos Master Mesos Master Mesos Master Mesos AgentMesos Agent Service Cassandra Executor Cassandra Task Cassandra Scheduler Container Scheduler Spark Scheduler Spark Executor Spark Task Mesos AgentMesos Agent Service Docker Executor Docker Task Spark Executor Spark Task Two-level Scheduling 1. Agents advertise resources to Master 2. Master offers resources to Framework 3. Framework rejects / uses resources 4. Agent reports task status to Master
  • 22. © 2017 Mesosphere, Inc. All Rights Reserved. 22
  • 23. Datacenter Operating System (DC/OS) Distributed Systems Kernel (Mesos) DC/OS ENABLES MODERN DISTRIBUTED APPS Big Data + Analytics EnginesMicroservices (in containers) Streaming Batch Machine Learning Analytics Functions & Logic Search Time Series SQL / NoSQL Databases Modern App Components Any Infrastructure (Physical, Virtual, Cloud) 23
  • 24. 24 THE BASICS DC/OS is … ● 100% open source (ASL2.0) + A big, diverse community ● An umbrella for ~30 OSS projects + Roadmap and designs + Docs and tutorials ● Not limited in any way ● Familiar, with more features + Networking, Security, CLI, UI, Service Discovery, Load Balancing, Packages,
  • 26. © 2016 Mesosphere, Inc. All Rights Reserved. 26 SMACK Stack EVENTS Ubiquitous data streams from connected devices INGEST Apache Kafka STORE Apache Spark ANALYZE Apache Cassandra ACT Akka Ingest millions of events per second Distributed & highly scalable database Real-time and batch process data Visualize data and build data driven applications DC/OS Sensors Devices Clients
  • 27. © 2016 Mesosphere, Inc. All Rights Reserved. 27 Apache Kafka ØMQ, RabbitMQ, Disque (Redis- based), etc. fluentd, Logstash, Flume Akka streams cloud-only: AWS SQS, Google Cloud Pub/Sub see also queues.io MESSAGE QUEUES
  • 28. © 2016 Mesosphere, Inc. All Rights Reserved. 28 High-throughput, distributed, persistent publish-subscribe messaging system Originates from LinkedIn Typically used as buffer/de- coupling layer in online stream processing APACHE KAFKA
  • 29. © 2016 Mesosphere, Inc. All Rights Reserved. 29 At most once—Messages may be lost but are never redelivered. At least once—Messages are never lost but may be redelivered. Exactly once—this is what people actually want, each message is delivered once and only once. DELIVERY GUARANTEES Murphy’s Law of Distributed Systems: Anything that can go wrong, will go wrong … partially!
  • 30. © 2016 Mesosphere, Inc. All Rights Reserved. 30 SMACK Stack EVENTS Ubiquitous data streams from connected devices INGEST Apache Kafka STORE Apache Spark ANALYZE Apache Cassandra ACT Akka Ingest millions of events per second Distributed & highly scalable database Real-time and batch process data Visualize data and build data driven applications DC/OS Sensors Devices Clients
  • 31. © 2016 Mesosphere, Inc. All Rights Reserved. 31 Apache Storm Apache Spark Apache Samza Apache Flink Apache Apex Concord cloud-only: AWS Kinesis, Google Cloud Dataflow STREAM PROCESSING
  • 32. © 2016 Mesosphere, Inc. All Rights Reserved. 32 APACHE SPARK
  • 33. © 2016 Mesosphere, Inc. All Rights Reserved. 33 Typical Use: distributed, large-scale data processing; micro-batching Why Spark Streaming? ● Micro-batching creates very low latency, which can be faster ● Well defined role means it fits in well with other pieces of the pipeline APACHE SPARK (STREAMING)
  • 34. © 2016 Mesosphere, Inc. All Rights Reserved. 34 Micro-Batching EXECUTION MODEL Native Streaming
  • 35. © 2016 Mesosphere, Inc. All Rights Reserved. 35 EXAMPLE: REAL-TIME TRACKING
  • 36. © 2016 Mesosphere, Inc. All Rights Reserved. 36 GEO-ENABLED IoT
  • 37. © 2016 Mesosphere, Inc. All Rights Reserved. 37 DATA FLOW
  • 38. © 2016 Mesosphere, Inc. All Rights Reserved. 38 DEMO
  • 39. © 2016 Mesosphere, Inc. All Rights Reserved. 39 SMACK stack EVENTS Ubiquitous data streams from connected devices INGEST Apache Kafka STORE Apache Spark ANALYZE Apache Cassandra ACT Akka Ingest millions of events per second Distributed & highly scalable database Real-time and batch process data Visualize data and build data driven applications DC/OS Sensors Devices Clients
  • 40. © 2017 Mesosphere, Inc. All Rights Reserved. 40 Keep it running!
  • 41. © 2016 Mesosphere, Inc. All Rights Reserved. 41 SERVICE OPERATIONS ● Configuration Updates (ex: Scaling, re-configuration) ● Binary Upgrades ● Cluster Maintenance (ex: Backup, Restore, Restart) ● Monitor progress of operations ● Debug any runtime blockages
  • 42. © 2017 Microsoft Corporation. All rights reserved. 本情報の内容(添付文書、リンク先などを含む)は、作成日時点でのものであり、予告なく変更される場合があります。 @dcos users@dcos.io /groups/8295652 /dcos /dcos/examples /dcos/demos chat.dcos.io @joerg_schad