SlideShare a Scribd company logo
Reading Wikipedia to Answer
Open-Domain Questions (DrQA)
Danqi Chen, Adam Fisch, Jason Weston & Antoine Bordes
(Standford Univ. & Facebook AI Research)
ACL 2017 - Poster
์„œ๊ฐ•๋Œ€ํ•™๊ต ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ์—ฐ๊ตฌ์‹ค
2017-08-23
ํ—ˆ๊ด‘ํ˜ธ
1
2
Abstract
โ€ข To tackle open-domain question answering
โ€ข using Wikipedia as the unique knowledge source.
โ€ข MRS: โ€œMachine reading at scaleโ€
1) Document Retriever (relevant articles ์ฐพ๊ธฐ) ์ •๋ณด ๊ฒ€์ƒ‰
โ€ข Search component (Bigram hashing + TF-IDF matching)
2) Document Reader (identifying the answer from articles) ์ •๋ณด ์ถ”์ถœ
โ€ข Answer detection (multi-layer RNN)
โ€ข Multitask learning + Distant supervision ๊ธฐ๋ฒ•์œผ๋กœ Full system์„ฑ๋Šฅ ํ–ฅ์ƒ
3
Introduction
โ€ข Wikipedia as a knowledge base (KB)
- A constantly evolving source of detailed information that could facilitate intelligent
machines.
- Contains up-to-date knowledge that humans are interested in.
- However, Wikipedia is designed for humans to read (not machines).
4
Introduction - ๋ณธ ์—ฐ๊ตฌ์˜ ํŠน์ง•
โ€ข 1) Wikipedia article๋งŒ ์‚ฌ์šฉํ•˜๊ณ  graph structure ๋“ฑ meta ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ.
โ€ข Genericํ•œ ํŠน์ง• โ€“ KB๋ฅผ ๊ธฐํƒ€ documents, books, daily updated newspapers ๋กœ ์‰ฝ๊ฒŒ ๋ณ€ํ™˜ ๊ฐ€๋Šฅ.
โ€ข 2) Wikipedia๋งŒ KB๋กœ ์‚ฌ์šฉ
โ€ข IBM์˜ DeepQA ๋Š” ์—ฌ๋Ÿฌ KB๋ฅผ ์ค‘๋ณต์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ Information redundancy๋ฅผ ์‚ฌ์šฉํ•จ.
โ€ข ๋ฌธ์ œ๋Š” ๋ฌธ์„œ์— Evidence๊ฐ€ ํ•œ๋ฒˆ๋งŒ ๋‚˜ํƒ€๋‚œ ๊ฒฝ์šฐ, Answer๋ฅผ ์ •ํ™•(precise)ํ•˜๊ฒŒ ์ฐพ์•„๋‚ด๊ธฐ ์–ด๋ ค์›€.
โ€ข 3) ๊ฒ€์ƒ‰ ๊ธฐ๋Šฅ์„ ํ†ตํ•ฉํ•œ ์˜คํ”ˆ ๋„๋ฉ”์ธ Q&A ์‹œ์Šคํ…œ
โ€ข ์ผ๋ฐ˜์ ์œผ๋กœ QA ์‹œ์Šคํ…œ์€ โ€œQuestionโ€๊ณผ โ€œAnswer๊ฐ€ ํฌํ•จ๋œ short textโ€ ์ž…๋ ฅ์œผ๋กœ ์ฃผ๊ณ 
๊ทธ short text ์ค‘์—์„œ Answer ๋ถ€๋ถ„์˜ ์‹œ์ž‘, ๋ ์œ„์น˜๋ฅผ ์ฐ์–ด์ฃผ๋Š” ๋ฌธ์ œ์ž„.
(Machine comprehension of text, or Information extraction)
โ€ข ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ Open-domain QA ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ๋น„ ํ˜„์‹ค์ ์ž„.
5
Related Work (1/2)
โ€ข KB ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ KB-based QA ์‹œ์Šคํ…œ๋“ค์ด ์ œ์•ˆ๋จ.
โ€ข WebQuestion (Berant et al., 2013)
โ€ข SimpleQuestions (Bordes et al., 2015)
โ€ข KB: Freebase KB, OpenIE triples and NELL
โ€ข KB์˜ ๋ฌธ์ œ์  (incompleteness, fixed schemas)๋“ค ๋•Œ๋ฌธ์—
โ€ข ๋‹ค์‹œ raw text์—์„œ answer๋ฅผ ์ฐพ์•„๋‚ด๋Š” original ๋ฐฉ์‹์œผ๋กœ ๋Œ์•„ ๊ฐ.
โ€ข ๋˜ ๋‹ค๋ฅธ ์ด์œ ๋Š” deep learning์œผ๋กœ ์ธํ•œ machine comprehension of text ์„ฑ๋Šฅ ํ–ฅ์ƒ.
โ€ข ๋ชจ๋ธ (Attention-based and Memory neural networks.) ๊ณผ
โ€ข ์ฝ”ํผ์Šค (QuizBowl, CNN/Daily Mail, SQuAD and WikiReading)
6
Related Work (2/2)
Several highly developed full pipeline QA ์‹œ์Šคํ…œ
โ€ข ์›น ๊ธฐ๋ฐ˜
โ€ข QuASE (Sun et al., 2015)
โ€ข Wikipedia ๊ธฐ๋ฐ˜
โ€ข Microsoftโ€™s AskMSR (Brill et al., 2002)
โ€ข ๊ฒ€์ƒ‰์—”์ง„ ๊ธฐ๋ฐ˜ QA ์‹œ์Šคํ…œ, linguistic analysis ์—†์ด data redundancy๋งŒ ์ด์šฉ.
โ€ข IBMโ€™s DeepQA (Ferrucci et al., 2010)
โ€ข ์„ธ๋ จ๋œ(Sophisticated) QA ์‹œ์Šคํ…œ
โ€ข ๋น„์ •ํ˜• ๋ฌธ์„œ, KB, Databases, Ontology ์ด์šฉ.
โ€ข YodaQA (Baudis, 2015) โ€“ ์˜คํ”ˆ ์†Œ์Šค!!
โ€ข Websites, ์ •๋ณด์ถ”์ถœ, Databases, Wikipedia ์ด์šฉ.
โ€ข ๋…ผ๋ฌธ ์‹คํ—˜์˜ ์„ฑ๋Šฅ๋น„๊ต์— ์‚ฌ์šฉํ•จ
7
Proposed System: DrQA
8
์ถœ์ฒ˜: Reading Wikipedia to Answer Open-Domain Questions
1933๋…„์— ํด๋ž€๋“œ์–ด๋ฅผ ๊ตฌ์‚ฌํ•˜๋Š” ๋ฐ”๋ฅด์ƒค๋ฐ” ์ฃผ๋ฏผ ์ˆ˜๋Š” ์–ผ๋งˆ์ž…๋‹ˆ๊นŒ?
Document Retriever
โ€ข A simple inverted index + term vector model scoring (TF-IDF)
โ€ข Articles์™€ Question์„ TF-IDF weighted BoW๋กœ ์—ฐ๊ด€ ๋ฌธ์„œ๋ฅผ ๊ฒ€์ƒ‰.
โ€ข ์ถ”๊ฐ€๋กœ Word order๊ฐ€ ๊ณ ๋ คํ•˜์—ฌ Bi-gram feature ์‚ฌ์šฉ
โ€ข ์†๋„์™€ ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•˜์—ฌ
โ€ข (Weinberger et al., 2009) ์ œ์•ˆํ•œ murmur3 hash ๋ฐฉ๋ฒ• ์‚ฌ์šฉ
โ€ข Question์ด ์ž…๋ ฅ๋˜๋ฉด Wikipedia์—์„œ ์—ฐ๊ด€์„ฑ์ด ๊ฐ€์žฅ ๋†’์€
Articles 5๊ฐœ๋ฅผ ๊ฒ€์ƒ‰ํ•ด๋‚ธ ํ›„ Document Reader์— ๋„˜๊น€.
9
Document Reader
โ€ข Paragraph encoding
โ€ข Question encoding
โ€ข Prediction
โ€ข ๋ฌธ์„œ ๋‚ด์—์„œ Answer ์œ„์น˜ ๊ฒฐ์ •
10
Document Reader
โ€ข Inspired by AttentiveReader (Hermann et al., 2015; Chen et al., 2016)
โ€ข Notations
โ€ข A question( ๐‘ž ) - ๐‘™ ๊ฐœ token์œผ๋กœ ๊ตฌ์„ฑ: ๐‘ž1, ๐‘ž2, โ€ฆ ๐‘ž๐‘™
โ€ข A document or a single paragraph ( ๐‘ ) - ๐‘š๊ฐœ token์œผ๋กœ ๊ตฌ์„ฑ: ๐‘1, ๐‘2, โ€ฆ ๐‘ ๐‘š
โ€ข Paragraph encoding
โ€ข ๋ฌธ๋‹จ ๋‚ด ๋ชจ๋“  token ๐‘๐‘– ๋ฅผ feature vector ๋กœ ๋ณ€ํ™˜ (๋‹ค์Œ ์Šฌ๋ผ์ด๋“œ์—์„œ ์„ค๋ช…)
โ€ข Feature vector๋ฅผ RNN์— ์ž…๋ ฅํ•˜์—ฌ ๊ฐ token ๐‘๐‘– ์˜ ์ฃผ๋ณ€ context ์ •๋ณด๋ฅผ ๋‹ด์€ ๐ฉ๐ข ๋ฅผ ์–ป์Œ.
โ€ข RNN โ†’ multi-layer bidirectional LSTM
11
Feature vector เทคpi Representation (1/2)
โ€ข เทคpi comprised of 4 parts
โ€ข 1. Word embeddings โ€“
โ€ข 300์ฐจ์› GloVe vector trained from 840B Web crawl data.
โ€ข ๋Œ€๋ถ€๋ถ„ word embeddings์€ keep fixed, 1000 most freq. token์€ fine-tuning
โ†’โ€œwhat, how, which, manyโ€ ์ด๋Ÿฌํ•œ ๋‹จ์–ด๋“ค์€ QA ์‹œ์Šคํ…œ์—์„œ ์‚ฌ์šฉ ์ค‘์š”ํ•  ์ˆ˜ ์žˆ์Œ
โ€ข 2. Exact match โ€“
โ€ข 3 binary features: token ๐‘๐‘– ๊ฐ€ question ๐‘ž ๋‹จ์–ด๋“ค์˜
โ€ข original, lower-case, lemma form์— exactly matching ์—ฌ๋ถ€
โ€ข * Extremely helpful !
12
Feature vector เทคpi Representation (2/2)
โ€ข เทคpi comprised of 4 parts
โ€ข 3. Token features โ€“
โ€ข 4. Aligned question embedding โ€“
โ€ข Weighted sum of Attention score: ๐‘Ž๐‘–,๐‘—
โ€ข Exact match feature์™€ ๋น„๊ตํ•  ๋•Œ ์œ ์‚ฌํ•œ ๋‹จ์–ด ์‚ฌ์ด soft alignment ๊ฐ€๋Šฅ.
โ€ข ์˜ˆ: car and vehicle
13
โ†’ softmax of ๐‘๐‘– over ๐‘ž ๐‘—
Document Reader
โ€ข Question encoding
โ€ข ๐‘ž = ๐‘ž1, ๐‘ž2, โ€ฆ ๐‘ž๐‘™ word embedding โ†’ ๐ช1, ๐ช2, โ€ฆ ๐ช๐‘™ โ†’ ๐ช
โ€ข Question encoding
โ€ข Weighted sum, ๐‘๐‘— ๋Š” ๊ฐ question word์˜ ์ค‘์š”๋„๋ฅผ encoding ํ•œ๋‹ค.
โ€ข Prediction
โ€ข Train 2 classifiers independently,
โ€ข Find ๐‘– and ๐‘–โ€ฒ such that
14
where ๐ฐ is a weight vector to learn.
is maximized
โ†’
Data (1/2)
โ€ข Wikipedia (Knowledge Source)
โ€ข โ‰ˆ5M articles, โ‰ˆ 9M unique uncased token
โ€ข SQuAD (Rajpukar et a., 2016) QA ํ•ต์‹ฌ Dataset !!
โ€ข Training 87k, Development 10k
โ€ข ๋ฐ์ดํ„ฐ ํ˜•์‹ A human generated Question + A paragraph contains answer span.
โ€ข Document Reader๋ฅผ ํ›ˆ๋ จํ•จ
โ€ข Open-domain QA ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ Datasets
โ€ข CuratedTREC โ€“ (Baudis and Sedivy 2015) (2,180 questions from TREC 1999~2004)
โ€ข WebQuestions - (Berant et al., 2013)
โ€ข WikiMovies โ€“ (Miller et al., 2016) (96k question-answer pairs in domain of movies)
15
Data (2/2)
โ€ข Distantly Supervised Data
โ€ข ์•ž์„œ ์†Œ๊ฐœํ•œ Dataset ์ค‘, CuratedTREC, WebQuestions, WikiMovies๋Š”
โ€ข Question-answer pair๋งŒ ์žˆ๊ณ , ๊ด€๋ จ document๋‚˜ paragraph๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์Œ.
โ€ข ๋”ฐ๋ผ์„œ Document Reader์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ
โ€ข Distant Supervision ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ Wikipedia์—์„œ ์—ฐ๊ด€์„ฑ ๋ฌธ์„œ๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ
โ€ข Weakly tagged training data๋ฅผ ๊ตฌ์„ฑํ•จ. (Detail ์ƒ๋žต, ๋…ผ๋ฌธ ์ฐธ๊ณ )
16
Experiments (1/3)
โ€ข Document Retriever ์„ฑ๋Šฅ
โ€ข Wikipedia ๊ฒ€์ƒ‰์—”์ง„ โ€“ ElasticSearch ์™€ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ
17
Question์œผ๋กœ 5๊ฐœ Document๋ฅผ ๊ฒ€์ƒ‰ํ–ˆ์„ ๋•Œ
Answer span์ด Top-5์— ํฌํ•จ๋œ ๋น„์œจ
Experiments (2/3)
โ€ข Document Reader ์„ฑ๋Šฅ
18
SQuAD Dataset์—์„œ์˜ ์„ฑ๋Šฅ
Paragraph encoding feature ๋“ค์— ๋Œ€ํ•œ
Ablation analysis (์‚ญ๋งˆ)๋ถ„์„ ๊ฒฐ๊ณผ
Experiments (3/3)
โ€ข Full Wikipedia QA ์„ฑ๋Šฅ
19
Conclusion
โ€ข Wikipedia ๋ฌธ์žฅ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ QA ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•.
โ€ข MRS is a challenging task for researchers to focus on.
โ€ข MRS (Machine reading at scale)
โ€ข Search, Distant supervision, and Multitask learning ๋“ฑ ๊ธฐ๋ฒ•์„ ํ†ตํ•ฉํ•˜์—ฌ Open-Domain
QA ์‹œ์Šคํ…œ์„ ์ œ์•ˆ.
20
Future work
โ€ข DrQA ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๊ณ ๋ฏผ.
โ€ข (i) ํ›ˆ๋ จ ๊ณผ์ •์—์„œ Document Reader๊ฐ€ paragraphs์™€ documents์—์„œ
๋ˆ„์ ํ•œ Fact๋ฅผ ์ด์šฉ. (Triples??)
โ€ข (ii) ๊ธฐ์กด Document Retriever์™€ Document Reader์˜ Pipeline ๊ตฌ์กฐ์—์„œ
End-to-End Training์„ ํ•ด๋ณด๊ณ ์ž ํ•จ
21
Distant supervision
โ€ข Most machine learning techniques require a set of training data. A traditional approach for
collecting training data is to have humans label a set of documents. For example, for the
marriage relation, human annotators may label the pair "Bill Clinton" and "Hillary Clinton" as a
positive training example. This approach is expensive in terms of both time and money, and if
our corpus is large, will not yield enough data for our algorithms to work with. And because
humans make errors, the resulting training data will most likely be noisy.
โ€ข An alternative approach to generating training data is distant supervision. In distant
supervision, we make use of an already existing database, such as Freebase or a domain-specific
database, to collect examples for the relation we want to extract. We then use these examples
to automatically generate our training data. For example, Freebase contains the fact that Barack
Obama and Michelle Obama are married. We take this fact, and then label each pair of "Barack
Obama" and "Michelle Obama" that appear in the same sentence as a positive example for our
marriage relation. This way we can easily generate a large amount of (possibly noisy) training
data. Applying distant supervision to get positive examples for a particular relation is easy,
but generating negative examples is more of an art than a science.
22

More Related Content

PDF
๊ณ ๋ ค๋Œ€ํ•™๊ต ์ปดํ“จํ„ฐํ•™๊ณผ ํŠน๊ฐ• - ๋Œ€ํ•™์ƒ ๋•Œ ์•Œ์•˜๋”๋ผ๋ฉด ์ข‹์•˜์„ ๊ฒƒ๋“ค
PDF
[214] Ai Serving Platform: ํ•˜๋ฃจ ์ˆ˜ ์–ต ๊ฑด์˜ ์ธํผ๋Ÿฐ์Šค๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ๊ณ ๊ตฐ๋ถ„ํˆฌ๊ธฐ
PDF
Data Engineering 101
PDF
[216]แ„‚แ…ฆแ„‹แ…ตแ„‡แ…ฅ แ„€แ…ฅแ†ทแ„‰แ…ขแ†จ แ„‰แ…กแ„‹แ…ญแ†ผแ„Œแ…กแ„…แ…ณแ†ฏ แ„†แ…กแ†ซแ„Œแ…ฉแ†จแ„‰แ…ตแ„แ…งแ„…แ…ก! แ„‹แ…ดแ„ƒแ…ฉแ„‘แ…กแ„‹แ…กแ†จแ„€แ…ช แ„‹แ…ดแ„†แ…ตแ„€แ…ฅแ†ทแ„‰แ…ขแ†จ
PDF
Fin bert paper review !
PDF
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท
PPTX
PDF
แ„ƒแ…ขแ„‹แ…ญแ†ผแ„…แ…ฃแ†ผ แ„…แ…ฉแ„€แ…ณแ„‡แ…ฎแ†ซแ„‰แ…ฅแ†จ Bigqueryแ„…แ…ฉ แ„€แ…กแ†ซแ„ƒแ…กแ†ซแ„’แ…ต แ„‰แ…กแ„‹แ…ญแ†ผแ„’แ…กแ„€แ…ต (20170215 T์•„์นด๋ฐ๋ฏธ)
๊ณ ๋ ค๋Œ€ํ•™๊ต ์ปดํ“จํ„ฐํ•™๊ณผ ํŠน๊ฐ• - ๋Œ€ํ•™์ƒ ๋•Œ ์•Œ์•˜๋”๋ผ๋ฉด ์ข‹์•˜์„ ๊ฒƒ๋“ค
[214] Ai Serving Platform: ํ•˜๋ฃจ ์ˆ˜ ์–ต ๊ฑด์˜ ์ธํผ๋Ÿฐ์Šค๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ๊ณ ๊ตฐ๋ถ„ํˆฌ๊ธฐ
Data Engineering 101
[216]แ„‚แ…ฆแ„‹แ…ตแ„‡แ…ฅ แ„€แ…ฅแ†ทแ„‰แ…ขแ†จ แ„‰แ…กแ„‹แ…ญแ†ผแ„Œแ…กแ„…แ…ณแ†ฏ แ„†แ…กแ†ซแ„Œแ…ฉแ†จแ„‰แ…ตแ„แ…งแ„…แ…ก! แ„‹แ…ดแ„ƒแ…ฉแ„‘แ…กแ„‹แ…กแ†จแ„€แ…ช แ„‹แ…ดแ„†แ…ตแ„€แ…ฅแ†ทแ„‰แ…ขแ†จ
Fin bert paper review !
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท
แ„ƒแ…ขแ„‹แ…ญแ†ผแ„…แ…ฃแ†ผ แ„…แ…ฉแ„€แ…ณแ„‡แ…ฎแ†ซแ„‰แ…ฅแ†จ Bigqueryแ„…แ…ฉ แ„€แ…กแ†ซแ„ƒแ…กแ†ซแ„’แ…ต แ„‰แ…กแ„‹แ…ญแ†ผแ„’แ…กแ„€แ…ต (20170215 T์•„์นด๋ฐ๋ฏธ)

What's hot (20)

PDF
๊ฐ์ฒด์ง€ํ–ฅ ๊ฐœ๋… (์ซŒ ์•„๋Š”์ฒด ํ•˜๊ธฐ)
PDF
์„œ๋น„์Šค ๊ธฐํš์ž๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„ ์‹œ์ž‘ํ•˜๊ธฐ
PDF
Spark ์˜ ํ•ต์‹ฌ์€ ๋ฌด์—‡์ธ๊ฐ€? RDD! (RDD paper review)
PDF
๋ฐ์ดํ„ฐ๊ฐ€ ํ๋ฅด๋Š” ์กฐ์ง ๋งŒ๋“ค๊ธฐ - ๋งˆ์ด๋ฆฌ์–ผํŠธ๋ฆฝ
PDF
ํ™”์„ฑ์—์„œ ์˜จ ๊ฐœ๋ฐœ์ž, ๊ธˆ์„ฑ์—์„œ ์˜จ ๊ธฐํš์ž
PDF
Evaluation in IR system (๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ํ‰๊ฐ€)
PPTX
๋กœ๊ทธ ๊ธฐ๊น”๋‚˜๊ฒŒ ์ž˜ ๋””์ž์ธํ•˜๋Š” ๋ฒ•
PDF
Meta-Prod2Vec: Simple Product Embeddings with Side-Information
PDF
ํ™์„ฑ์šฐ, ๊ฒŒ์ž„ ์„œ๋ฒ„์˜ ๋ชฉ์ฐจ - ์‹œ์ž‘๋ถ€ํ„ฐ ์ถœ์‹œ๊นŒ์ง€, NDC2019
PPTX
์˜ˆ์™ธ์ฒ˜๋ฆฌ๊ฐ€์ด๋“œ
PDF
[MLOps KR ํ–‰์‚ฌ] MLOps ์ถ˜์ถ” ์ „๊ตญ ์‹œ๋Œ€ ์ •๋ฆฌ(210605)
PPTX
๋”ฅ๋Ÿฌ๋‹์„ ์ด์šฉํ•œ ์‚ฌ์šฉ์ž ์„ ํ˜ธ๋„ ๊ธฐ๋ฐ˜ ์˜์ƒ ์ถ”์ฒœ ์•Œ๊ณ ๋ฆฌ์ฆ˜ Ppt ์„ ์ˆ˜๊ฐ•
PDF
Windows Registered I/O (RIO) vs IOCP
PPT
SPARQL Tutorial
PDF
How to build massive service for advance
PPTX
KorQuAD v2.0 ์†Œ๊ฐœ
PDF
Data Science. Intro
PDF
[์‹ธ์ด๊ทธ๋žจ์ฆˆ 2018] ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ๋กœ ์‹œ์ž‘ํ•˜๋Š” NLP
PDF
[Pgday.Seoul 2017] 2. PostgreSQL์„ ์œ„ํ•œ ๋ฆฌ๋ˆ…์Šค ์ปค๋„ ์ตœ์ ํ™” - ๊น€์ƒ์šฑ
PPTX
Mongo DB ์„ฑ๋Šฅ์ตœ์ ํ™” ์ „๋žต
๊ฐ์ฒด์ง€ํ–ฅ ๊ฐœ๋… (์ซŒ ์•„๋Š”์ฒด ํ•˜๊ธฐ)
์„œ๋น„์Šค ๊ธฐํš์ž๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋ถ„์„ ์‹œ์ž‘ํ•˜๊ธฐ
Spark ์˜ ํ•ต์‹ฌ์€ ๋ฌด์—‡์ธ๊ฐ€? RDD! (RDD paper review)
๋ฐ์ดํ„ฐ๊ฐ€ ํ๋ฅด๋Š” ์กฐ์ง ๋งŒ๋“ค๊ธฐ - ๋งˆ์ด๋ฆฌ์–ผํŠธ๋ฆฝ
ํ™”์„ฑ์—์„œ ์˜จ ๊ฐœ๋ฐœ์ž, ๊ธˆ์„ฑ์—์„œ ์˜จ ๊ธฐํš์ž
Evaluation in IR system (๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์˜ ํ‰๊ฐ€)
๋กœ๊ทธ ๊ธฐ๊น”๋‚˜๊ฒŒ ์ž˜ ๋””์ž์ธํ•˜๋Š” ๋ฒ•
Meta-Prod2Vec: Simple Product Embeddings with Side-Information
ํ™์„ฑ์šฐ, ๊ฒŒ์ž„ ์„œ๋ฒ„์˜ ๋ชฉ์ฐจ - ์‹œ์ž‘๋ถ€ํ„ฐ ์ถœ์‹œ๊นŒ์ง€, NDC2019
์˜ˆ์™ธ์ฒ˜๋ฆฌ๊ฐ€์ด๋“œ
[MLOps KR ํ–‰์‚ฌ] MLOps ์ถ˜์ถ” ์ „๊ตญ ์‹œ๋Œ€ ์ •๋ฆฌ(210605)
๋”ฅ๋Ÿฌ๋‹์„ ์ด์šฉํ•œ ์‚ฌ์šฉ์ž ์„ ํ˜ธ๋„ ๊ธฐ๋ฐ˜ ์˜์ƒ ์ถ”์ฒœ ์•Œ๊ณ ๋ฆฌ์ฆ˜ Ppt ์„ ์ˆ˜๊ฐ•
Windows Registered I/O (RIO) vs IOCP
SPARQL Tutorial
How to build massive service for advance
KorQuAD v2.0 ์†Œ๊ฐœ
Data Science. Intro
[์‹ธ์ด๊ทธ๋žจ์ฆˆ 2018] ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ๋กœ ์‹œ์ž‘ํ•˜๋Š” NLP
[Pgday.Seoul 2017] 2. PostgreSQL์„ ์œ„ํ•œ ๋ฆฌ๋ˆ…์Šค ์ปค๋„ ์ตœ์ ํ™” - ๊น€์ƒ์šฑ
Mongo DB ์„ฑ๋Šฅ์ตœ์ ํ™” ์ „๋žต
Ad

Similar to Lab Seminar - Reading Wikipedia to Answer Open-Domain Questions (DrQA) (20)

PDF
2016๋…„ ์ธ๋ฌธ์ •๋ณดํ•™ Sql์„ธ๋ฏธ๋‚˜ 1/3
PDF
Linked Open Data
PDF
De text a deep text ranking framework with bert
PDF
์ง‘๋‹จ ์ง€์„ฑ (Programming collective intelligence) ์Šคํ„ฐ๋””: Chapter 4 - Searching & Ranking
PDF
Apache Hive: for business intelligence use and real-time I/O use (Korean)
PDF
Prepo
PPTX
Elastic Search Performance Optimization - Deview 2014
ย 
PPTX
DeView2013 Big Data Platform Architecture with Hadoop - Hyeong-jun Kim
ย 
PDF
B6 ๋ฌธ๋งฅ์ธ์‹๊ธฐ์ˆ ํ™œ์šฉ
PDF
Infiniflux introduction
PPTX
Dynamic Word Cloud Using Word2Vec - 2nd Presentation
PDF
Elastic Stack & Data pipeline (1์žฅ)
PPT
Big Data Overview
PDF
AWS ๊ธฐ๋ฐ˜์˜ ๋งˆ์ดํฌ๋กœ ์„œ๋น„์Šค ์•„ํ‚คํ…์ณ ๊ตฌํ˜„ ๋ฐฉ์•ˆ :: ๊น€ํ•„์ค‘ :: AWS Summit Seoul 20
PDF
Spark + S3 + R3๋ฅผ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„ ์‹œ์Šคํ…œ ๋งŒ๋“ค๊ธฐ
PDF
100% Serverless big data scale production Deep Learning System
PDF
Case Study๋ฅผ ํ†ตํ•ด ๋ณธ ๋ฐ์ดํ„ฐ์‚ฌ์ด์–ธ์Šค ํ˜‘์—… ํ”Œ๋žซํผ์˜ ํ•„์š”์„ฑ (์˜ฅ์ฃผ์˜ ์ปจ์„คํ„ดํŠธ, Hancom MDS) :: AWS Techforum ...
PDF
แ„Œแ…ฅแ†ผแ„‡แ…ฉแ„€แ…ฅแ†ทแ„‰แ…ขแ†จแ„€แ…ช Elasticsearch (ํฌ๋ชฝ)
PDF
MultiModal Embedding integrates various data types, like images, text, and au...
PDF
2018 06-11-active-question-answering
2016๋…„ ์ธ๋ฌธ์ •๋ณดํ•™ Sql์„ธ๋ฏธ๋‚˜ 1/3
Linked Open Data
De text a deep text ranking framework with bert
์ง‘๋‹จ ์ง€์„ฑ (Programming collective intelligence) ์Šคํ„ฐ๋””: Chapter 4 - Searching & Ranking
Apache Hive: for business intelligence use and real-time I/O use (Korean)
Prepo
Elastic Search Performance Optimization - Deview 2014
ย 
DeView2013 Big Data Platform Architecture with Hadoop - Hyeong-jun Kim
ย 
B6 ๋ฌธ๋งฅ์ธ์‹๊ธฐ์ˆ ํ™œ์šฉ
Infiniflux introduction
Dynamic Word Cloud Using Word2Vec - 2nd Presentation
Elastic Stack & Data pipeline (1์žฅ)
Big Data Overview
AWS ๊ธฐ๋ฐ˜์˜ ๋งˆ์ดํฌ๋กœ ์„œ๋น„์Šค ์•„ํ‚คํ…์ณ ๊ตฌํ˜„ ๋ฐฉ์•ˆ :: ๊น€ํ•„์ค‘ :: AWS Summit Seoul 20
Spark + S3 + R3๋ฅผ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„ ์‹œ์Šคํ…œ ๋งŒ๋“ค๊ธฐ
100% Serverless big data scale production Deep Learning System
Case Study๋ฅผ ํ†ตํ•ด ๋ณธ ๋ฐ์ดํ„ฐ์‚ฌ์ด์–ธ์Šค ํ˜‘์—… ํ”Œ๋žซํผ์˜ ํ•„์š”์„ฑ (์˜ฅ์ฃผ์˜ ์ปจ์„คํ„ดํŠธ, Hancom MDS) :: AWS Techforum ...
แ„Œแ…ฅแ†ผแ„‡แ…ฉแ„€แ…ฅแ†ทแ„‰แ…ขแ†จแ„€แ…ช Elasticsearch (ํฌ๋ชฝ)
MultiModal Embedding integrates various data types, like images, text, and au...
2018 06-11-active-question-answering
Ad

Lab Seminar - Reading Wikipedia to Answer Open-Domain Questions (DrQA)

  • 1. Reading Wikipedia to Answer Open-Domain Questions (DrQA) Danqi Chen, Adam Fisch, Jason Weston & Antoine Bordes (Standford Univ. & Facebook AI Research) ACL 2017 - Poster ์„œ๊ฐ•๋Œ€ํ•™๊ต ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ์—ฐ๊ตฌ์‹ค 2017-08-23 ํ—ˆ๊ด‘ํ˜ธ 1
  • 2. 2
  • 3. Abstract โ€ข To tackle open-domain question answering โ€ข using Wikipedia as the unique knowledge source. โ€ข MRS: โ€œMachine reading at scaleโ€ 1) Document Retriever (relevant articles ์ฐพ๊ธฐ) ์ •๋ณด ๊ฒ€์ƒ‰ โ€ข Search component (Bigram hashing + TF-IDF matching) 2) Document Reader (identifying the answer from articles) ์ •๋ณด ์ถ”์ถœ โ€ข Answer detection (multi-layer RNN) โ€ข Multitask learning + Distant supervision ๊ธฐ๋ฒ•์œผ๋กœ Full system์„ฑ๋Šฅ ํ–ฅ์ƒ 3
  • 4. Introduction โ€ข Wikipedia as a knowledge base (KB) - A constantly evolving source of detailed information that could facilitate intelligent machines. - Contains up-to-date knowledge that humans are interested in. - However, Wikipedia is designed for humans to read (not machines). 4
  • 5. Introduction - ๋ณธ ์—ฐ๊ตฌ์˜ ํŠน์ง• โ€ข 1) Wikipedia article๋งŒ ์‚ฌ์šฉํ•˜๊ณ  graph structure ๋“ฑ meta ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ. โ€ข Genericํ•œ ํŠน์ง• โ€“ KB๋ฅผ ๊ธฐํƒ€ documents, books, daily updated newspapers ๋กœ ์‰ฝ๊ฒŒ ๋ณ€ํ™˜ ๊ฐ€๋Šฅ. โ€ข 2) Wikipedia๋งŒ KB๋กœ ์‚ฌ์šฉ โ€ข IBM์˜ DeepQA ๋Š” ์—ฌ๋Ÿฌ KB๋ฅผ ์ค‘๋ณต์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ Information redundancy๋ฅผ ์‚ฌ์šฉํ•จ. โ€ข ๋ฌธ์ œ๋Š” ๋ฌธ์„œ์— Evidence๊ฐ€ ํ•œ๋ฒˆ๋งŒ ๋‚˜ํƒ€๋‚œ ๊ฒฝ์šฐ, Answer๋ฅผ ์ •ํ™•(precise)ํ•˜๊ฒŒ ์ฐพ์•„๋‚ด๊ธฐ ์–ด๋ ค์›€. โ€ข 3) ๊ฒ€์ƒ‰ ๊ธฐ๋Šฅ์„ ํ†ตํ•ฉํ•œ ์˜คํ”ˆ ๋„๋ฉ”์ธ Q&A ์‹œ์Šคํ…œ โ€ข ์ผ๋ฐ˜์ ์œผ๋กœ QA ์‹œ์Šคํ…œ์€ โ€œQuestionโ€๊ณผ โ€œAnswer๊ฐ€ ํฌํ•จ๋œ short textโ€ ์ž…๋ ฅ์œผ๋กœ ์ฃผ๊ณ  ๊ทธ short text ์ค‘์—์„œ Answer ๋ถ€๋ถ„์˜ ์‹œ์ž‘, ๋ ์œ„์น˜๋ฅผ ์ฐ์–ด์ฃผ๋Š” ๋ฌธ์ œ์ž„. (Machine comprehension of text, or Information extraction) โ€ข ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ Open-domain QA ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ๋น„ ํ˜„์‹ค์ ์ž„. 5
  • 6. Related Work (1/2) โ€ข KB ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ KB-based QA ์‹œ์Šคํ…œ๋“ค์ด ์ œ์•ˆ๋จ. โ€ข WebQuestion (Berant et al., 2013) โ€ข SimpleQuestions (Bordes et al., 2015) โ€ข KB: Freebase KB, OpenIE triples and NELL โ€ข KB์˜ ๋ฌธ์ œ์  (incompleteness, fixed schemas)๋“ค ๋•Œ๋ฌธ์— โ€ข ๋‹ค์‹œ raw text์—์„œ answer๋ฅผ ์ฐพ์•„๋‚ด๋Š” original ๋ฐฉ์‹์œผ๋กœ ๋Œ์•„ ๊ฐ. โ€ข ๋˜ ๋‹ค๋ฅธ ์ด์œ ๋Š” deep learning์œผ๋กœ ์ธํ•œ machine comprehension of text ์„ฑ๋Šฅ ํ–ฅ์ƒ. โ€ข ๋ชจ๋ธ (Attention-based and Memory neural networks.) ๊ณผ โ€ข ์ฝ”ํผ์Šค (QuizBowl, CNN/Daily Mail, SQuAD and WikiReading) 6
  • 7. Related Work (2/2) Several highly developed full pipeline QA ์‹œ์Šคํ…œ โ€ข ์›น ๊ธฐ๋ฐ˜ โ€ข QuASE (Sun et al., 2015) โ€ข Wikipedia ๊ธฐ๋ฐ˜ โ€ข Microsoftโ€™s AskMSR (Brill et al., 2002) โ€ข ๊ฒ€์ƒ‰์—”์ง„ ๊ธฐ๋ฐ˜ QA ์‹œ์Šคํ…œ, linguistic analysis ์—†์ด data redundancy๋งŒ ์ด์šฉ. โ€ข IBMโ€™s DeepQA (Ferrucci et al., 2010) โ€ข ์„ธ๋ จ๋œ(Sophisticated) QA ์‹œ์Šคํ…œ โ€ข ๋น„์ •ํ˜• ๋ฌธ์„œ, KB, Databases, Ontology ์ด์šฉ. โ€ข YodaQA (Baudis, 2015) โ€“ ์˜คํ”ˆ ์†Œ์Šค!! โ€ข Websites, ์ •๋ณด์ถ”์ถœ, Databases, Wikipedia ์ด์šฉ. โ€ข ๋…ผ๋ฌธ ์‹คํ—˜์˜ ์„ฑ๋Šฅ๋น„๊ต์— ์‚ฌ์šฉํ•จ 7
  • 8. Proposed System: DrQA 8 ์ถœ์ฒ˜: Reading Wikipedia to Answer Open-Domain Questions 1933๋…„์— ํด๋ž€๋“œ์–ด๋ฅผ ๊ตฌ์‚ฌํ•˜๋Š” ๋ฐ”๋ฅด์ƒค๋ฐ” ์ฃผ๋ฏผ ์ˆ˜๋Š” ์–ผ๋งˆ์ž…๋‹ˆ๊นŒ?
  • 9. Document Retriever โ€ข A simple inverted index + term vector model scoring (TF-IDF) โ€ข Articles์™€ Question์„ TF-IDF weighted BoW๋กœ ์—ฐ๊ด€ ๋ฌธ์„œ๋ฅผ ๊ฒ€์ƒ‰. โ€ข ์ถ”๊ฐ€๋กœ Word order๊ฐ€ ๊ณ ๋ คํ•˜์—ฌ Bi-gram feature ์‚ฌ์šฉ โ€ข ์†๋„์™€ ๋ฉ”๋ชจ๋ฆฌ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•˜์—ฌ โ€ข (Weinberger et al., 2009) ์ œ์•ˆํ•œ murmur3 hash ๋ฐฉ๋ฒ• ์‚ฌ์šฉ โ€ข Question์ด ์ž…๋ ฅ๋˜๋ฉด Wikipedia์—์„œ ์—ฐ๊ด€์„ฑ์ด ๊ฐ€์žฅ ๋†’์€ Articles 5๊ฐœ๋ฅผ ๊ฒ€์ƒ‰ํ•ด๋‚ธ ํ›„ Document Reader์— ๋„˜๊น€. 9
  • 10. Document Reader โ€ข Paragraph encoding โ€ข Question encoding โ€ข Prediction โ€ข ๋ฌธ์„œ ๋‚ด์—์„œ Answer ์œ„์น˜ ๊ฒฐ์ • 10
  • 11. Document Reader โ€ข Inspired by AttentiveReader (Hermann et al., 2015; Chen et al., 2016) โ€ข Notations โ€ข A question( ๐‘ž ) - ๐‘™ ๊ฐœ token์œผ๋กœ ๊ตฌ์„ฑ: ๐‘ž1, ๐‘ž2, โ€ฆ ๐‘ž๐‘™ โ€ข A document or a single paragraph ( ๐‘ ) - ๐‘š๊ฐœ token์œผ๋กœ ๊ตฌ์„ฑ: ๐‘1, ๐‘2, โ€ฆ ๐‘ ๐‘š โ€ข Paragraph encoding โ€ข ๋ฌธ๋‹จ ๋‚ด ๋ชจ๋“  token ๐‘๐‘– ๋ฅผ feature vector ๋กœ ๋ณ€ํ™˜ (๋‹ค์Œ ์Šฌ๋ผ์ด๋“œ์—์„œ ์„ค๋ช…) โ€ข Feature vector๋ฅผ RNN์— ์ž…๋ ฅํ•˜์—ฌ ๊ฐ token ๐‘๐‘– ์˜ ์ฃผ๋ณ€ context ์ •๋ณด๋ฅผ ๋‹ด์€ ๐ฉ๐ข ๋ฅผ ์–ป์Œ. โ€ข RNN โ†’ multi-layer bidirectional LSTM 11
  • 12. Feature vector เทคpi Representation (1/2) โ€ข เทคpi comprised of 4 parts โ€ข 1. Word embeddings โ€“ โ€ข 300์ฐจ์› GloVe vector trained from 840B Web crawl data. โ€ข ๋Œ€๋ถ€๋ถ„ word embeddings์€ keep fixed, 1000 most freq. token์€ fine-tuning โ†’โ€œwhat, how, which, manyโ€ ์ด๋Ÿฌํ•œ ๋‹จ์–ด๋“ค์€ QA ์‹œ์Šคํ…œ์—์„œ ์‚ฌ์šฉ ์ค‘์š”ํ•  ์ˆ˜ ์žˆ์Œ โ€ข 2. Exact match โ€“ โ€ข 3 binary features: token ๐‘๐‘– ๊ฐ€ question ๐‘ž ๋‹จ์–ด๋“ค์˜ โ€ข original, lower-case, lemma form์— exactly matching ์—ฌ๋ถ€ โ€ข * Extremely helpful ! 12
  • 13. Feature vector เทคpi Representation (2/2) โ€ข เทคpi comprised of 4 parts โ€ข 3. Token features โ€“ โ€ข 4. Aligned question embedding โ€“ โ€ข Weighted sum of Attention score: ๐‘Ž๐‘–,๐‘— โ€ข Exact match feature์™€ ๋น„๊ตํ•  ๋•Œ ์œ ์‚ฌํ•œ ๋‹จ์–ด ์‚ฌ์ด soft alignment ๊ฐ€๋Šฅ. โ€ข ์˜ˆ: car and vehicle 13 โ†’ softmax of ๐‘๐‘– over ๐‘ž ๐‘—
  • 14. Document Reader โ€ข Question encoding โ€ข ๐‘ž = ๐‘ž1, ๐‘ž2, โ€ฆ ๐‘ž๐‘™ word embedding โ†’ ๐ช1, ๐ช2, โ€ฆ ๐ช๐‘™ โ†’ ๐ช โ€ข Question encoding โ€ข Weighted sum, ๐‘๐‘— ๋Š” ๊ฐ question word์˜ ์ค‘์š”๋„๋ฅผ encoding ํ•œ๋‹ค. โ€ข Prediction โ€ข Train 2 classifiers independently, โ€ข Find ๐‘– and ๐‘–โ€ฒ such that 14 where ๐ฐ is a weight vector to learn. is maximized โ†’
  • 15. Data (1/2) โ€ข Wikipedia (Knowledge Source) โ€ข โ‰ˆ5M articles, โ‰ˆ 9M unique uncased token โ€ข SQuAD (Rajpukar et a., 2016) QA ํ•ต์‹ฌ Dataset !! โ€ข Training 87k, Development 10k โ€ข ๋ฐ์ดํ„ฐ ํ˜•์‹ A human generated Question + A paragraph contains answer span. โ€ข Document Reader๋ฅผ ํ›ˆ๋ จํ•จ โ€ข Open-domain QA ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ Datasets โ€ข CuratedTREC โ€“ (Baudis and Sedivy 2015) (2,180 questions from TREC 1999~2004) โ€ข WebQuestions - (Berant et al., 2013) โ€ข WikiMovies โ€“ (Miller et al., 2016) (96k question-answer pairs in domain of movies) 15
  • 16. Data (2/2) โ€ข Distantly Supervised Data โ€ข ์•ž์„œ ์†Œ๊ฐœํ•œ Dataset ์ค‘, CuratedTREC, WebQuestions, WikiMovies๋Š” โ€ข Question-answer pair๋งŒ ์žˆ๊ณ , ๊ด€๋ จ document๋‚˜ paragraph๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์Œ. โ€ข ๋”ฐ๋ผ์„œ Document Reader์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ โ€ข Distant Supervision ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ Wikipedia์—์„œ ์—ฐ๊ด€์„ฑ ๋ฌธ์„œ๋ฅผ ๊ฒ€์ƒ‰ํ•˜์—ฌ โ€ข Weakly tagged training data๋ฅผ ๊ตฌ์„ฑํ•จ. (Detail ์ƒ๋žต, ๋…ผ๋ฌธ ์ฐธ๊ณ ) 16
  • 17. Experiments (1/3) โ€ข Document Retriever ์„ฑ๋Šฅ โ€ข Wikipedia ๊ฒ€์ƒ‰์—”์ง„ โ€“ ElasticSearch ์™€ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ 17 Question์œผ๋กœ 5๊ฐœ Document๋ฅผ ๊ฒ€์ƒ‰ํ–ˆ์„ ๋•Œ Answer span์ด Top-5์— ํฌํ•จ๋œ ๋น„์œจ
  • 18. Experiments (2/3) โ€ข Document Reader ์„ฑ๋Šฅ 18 SQuAD Dataset์—์„œ์˜ ์„ฑ๋Šฅ Paragraph encoding feature ๋“ค์— ๋Œ€ํ•œ Ablation analysis (์‚ญ๋งˆ)๋ถ„์„ ๊ฒฐ๊ณผ
  • 19. Experiments (3/3) โ€ข Full Wikipedia QA ์„ฑ๋Šฅ 19
  • 20. Conclusion โ€ข Wikipedia ๋ฌธ์žฅ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ QA ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•. โ€ข MRS is a challenging task for researchers to focus on. โ€ข MRS (Machine reading at scale) โ€ข Search, Distant supervision, and Multitask learning ๋“ฑ ๊ธฐ๋ฒ•์„ ํ†ตํ•ฉํ•˜์—ฌ Open-Domain QA ์‹œ์Šคํ…œ์„ ์ œ์•ˆ. 20
  • 21. Future work โ€ข DrQA ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๊ณ ๋ฏผ. โ€ข (i) ํ›ˆ๋ จ ๊ณผ์ •์—์„œ Document Reader๊ฐ€ paragraphs์™€ documents์—์„œ ๋ˆ„์ ํ•œ Fact๋ฅผ ์ด์šฉ. (Triples??) โ€ข (ii) ๊ธฐ์กด Document Retriever์™€ Document Reader์˜ Pipeline ๊ตฌ์กฐ์—์„œ End-to-End Training์„ ํ•ด๋ณด๊ณ ์ž ํ•จ 21
  • 22. Distant supervision โ€ข Most machine learning techniques require a set of training data. A traditional approach for collecting training data is to have humans label a set of documents. For example, for the marriage relation, human annotators may label the pair "Bill Clinton" and "Hillary Clinton" as a positive training example. This approach is expensive in terms of both time and money, and if our corpus is large, will not yield enough data for our algorithms to work with. And because humans make errors, the resulting training data will most likely be noisy. โ€ข An alternative approach to generating training data is distant supervision. In distant supervision, we make use of an already existing database, such as Freebase or a domain-specific database, to collect examples for the relation we want to extract. We then use these examples to automatically generate our training data. For example, Freebase contains the fact that Barack Obama and Michelle Obama are married. We take this fact, and then label each pair of "Barack Obama" and "Michelle Obama" that appear in the same sentence as a positive example for our marriage relation. This way we can easily generate a large amount of (possibly noisy) training data. Applying distant supervision to get positive examples for a particular relation is easy, but generating negative examples is more of an art than a science. 22