SlideShare a Scribd company logo
11
Development and Calibration of a Global
Tide and Surge Model (GTSM)
Xiaohui Wang1 , Martin Verlaan1,2 ,
Maialen Irazoqui Apecechea2,,Hai Xiang Lin1
(X.Wang-13@tudelft.nl)
1.Delft University of Technology
2.Deltares
22
Outline
➢ Research Motivation
➢ Global Tide and Surge Model
➢ Parameter Estimation Scheme
➢ Numerical Experiments and results
➢ Conclusions
33
Outline
➢ Research Motivation
➢ Global Tide and Surge Model
➢ Parameter Estimation Scheme
➢ Numerical Experiments and results
➢ Conclusions
44
Research Motivation
1
Why to do parameter estimation/calibration?
• The requirement of high accurate forecast of tide and surge
✓ Global climate changes are increasing the risk from storm surges
✓ Accurate forecast can help evaluate the risk
• Global Tide and Surge model is developed to deal with this
global problem.
How to get accurate global forecast results of tide and surges?
Data Assimilation
55
Research Motivation
1
Model forecastparameters model
Physical processes
Data Assimilation
Observations
+/-
Correction
• Model contains uncertain parameters
• Observation is available to validate model output
Research Objective:
• Parameter estimation/Calibration for GTSM
66
Outline
➢ Research Motivation
➢ Global Tide and Surge Model
➢ Parameter Estimation Scheme
➢ Numerical Experiments and results
➢ Conclusions
77
Global Tide and Surge Model
2
𝜕u
𝜕𝑡
+
1
ℎ
(𝛻 ∙ (ℎuu − u𝛻 ∙ (ℎu))=−g𝛻(𝜉 − 𝜉 𝐸𝑄 − 𝜉 𝑆𝐴𝐿) + 𝛻 ∙ (𝜈(𝛻u𝛻u 𝑇
)) +
𝜏
ℎ
𝜏 = −
𝑔
𝐶 𝐷
2 ∥ u ∥ u
𝜏𝐼𝑇 = −𝐶𝐼𝑇 𝑁(𝛻ℎu)𝛻ℎ
Tides
➢ Delft3D Flexible Mesh (unstructured mesh)
➢ A combined tide and surge model
Surges: forced by wind and pressure
Bathymetry, coefficient of bottom friction and
internal tides friction are often identified as three
types of parameters with large uncertainties to
estimate.
88
Global Tide and Surge Model
2
Model GTSM with coarse grid GTSM with fine grid
Mesh ~2 million ~5 million
resolution
50km in deep ocean, 5km in
coastal area
25km in deep ocean, 2.5km in
coastal area, 1.25km in European
Computational cost
(45 days simulation, 20
cores)
3 hours 10 hours
➢ Model settings:
❖ Time steps: 600s
❖ Spin-up time: 20131217 to 20131231
❖ Simulation time: 20140101 to 20140131
High resolution, high accuracy but expensive computational cost.
How to reduce computational cost in parameter estimation scheme?
99
Outline
➢ Research Motivation
➢ Global Tide and Surge Model
➢ Parameter Estimation Scheme
➢ Numerical Experiments and results
➢ Conclusions
1010
Parameter Estimation Scheme
3 ➢ Parameter estimation framework
Calibration with OpenDA:
❖ OpenDA is generic toolbox for data-assimilation
❖ Dud
➢ Run with single perturbation of parameters
➢ Linearize the model and solve it
➢ If improved, update parameters
➢ If not, do line-search
𝐽 = ෍
𝑡
(𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, 𝑝 )2
𝜎𝑜
2 𝐽 𝑚𝑖𝑛 = ෍
𝑡
(𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, Ƹ𝑝 )2
𝜎𝑜
2
Observations: 𝑦0 𝑡 Estimated output: 𝑦 𝑚 𝑡, Ƹ𝑝Model output: 𝑦 𝑚 𝑡, 𝑝
1111
Parameter Estimation Scheme
3 ➢ Key issues:
✓ Coarse-to-fine parameter estimation:
Apply parameter estimation in coarse model and set as input in fine model
✓ Parameter dimension reduction:
Parameter selection
Sensitivity test
❖ Huge computational cost
• Computing time increases quickly for high resolution global model.
• Large parameter dimension leads to large number of perturbed model simulations.
❖ Storage memory problem
• Model output can be huge for a long simulation.
• Large parameter and observation dimension.
➢ Solutions:
1212
Parameter Estimation Scheme
3 ➢ Coarse-to-fine strategy
Coarse Incremental Calibration:
Using coarse model to replace the difference (𝛿𝑦) between the initial output
and adjusted output in fine model.
𝐽 𝑛𝑒𝑤 = ෍
𝑡
(𝑦𝑜(𝑡) − 𝑦 𝑚2
𝑡, 𝑝 )2
𝜎𝑜
2 = ෍
𝑡
(𝑦𝑜(𝑡) − 𝑦 𝑚2
𝑡, 𝑝0 + 𝑦 𝑚1
𝑡, 𝑝0 − 𝑦 𝑚1
𝑡, 𝑝 )2
𝜎𝑜
2
Only one initial simulation of GTSM fine model
𝑦 𝑚2
𝑡, 𝑝 ≈ 𝑦 𝑚2
𝑡, 𝑝0 − 𝑦 𝑚1
𝑡, 𝑝0 + 𝑦 𝑚1
𝑡, 𝑝൝
𝑦 𝑚2
𝑡, 𝑝 = 𝑦 𝑚2
𝑡, 𝑝0 + 𝛿𝑦
𝛿𝑦 ≈ 𝑦 𝑚1
𝑡, 𝑝 − 𝑦 𝑚1
𝑡, 𝑝0
𝐺𝑇𝑆𝑀𝑐𝑜𝑎𝑟𝑠𝑒: 𝑦 𝑚1
𝑡, 𝑝0 , GTSMfine: 𝑦 𝑚2
𝑡, 𝑝0 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡: 𝑦 𝑚2
𝑡, Ƹ𝑝
1313
Parameter Estimation Scheme
3
Bathymetry & Internal tides friction: Deep Ocean & global
Bottom friction: coastal area
From Deep Ocean & global to coastal area
➢ Parameter Selection
FES2014 database
Tide gauge data
1414
Parameter Estimation Scheme
3 ➢ Observation: FES2014 database
✓ 1973 time series, from Jan. 1 to Jan. 14, 10 minutes interval
✓ Nearly distance equally
✓ Remove SA, SSA 𝑅𝑀𝑆𝐸 =
σ 𝑡(𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, 𝑝 )2
𝑁
➢ Accuracy before calibration with GEBCO 2014 & GEBCO 2019
Initial model: GTSM with GEBCO 2019
RMSE distribution in [m] Regional RMSE in [cm]
1515
Parameter Estimation Scheme
3 ➢ Parameter estimation framework
Parameter Dimension
reduction
Bathymetry
OpenDA:
Dud
Observation:
FES2014
Results analysis &
model validation
Coarse-to-fine
Bathymetry Estimation
Further work on BF
and IT estimation……
Observation
investigation
Parameter
selection
Sensitivity
test
Observation:
UHSLC
1616
Outline
➢ Research Motivation
➢ Global Tide and Surge Model
➢ Parameter Estimation Scheme
➢ Numerical Experiments and results
➢ Conclusions
1717
Numerical Experiments and Results
4 ➢ Parameter dimension reduction by sensitivity test
How does the observation error affect the sensitivity?
❖ Set-up
➢ Spin-up: 2 weeks
➢ Simulation: Jan. 1 to 14
❖ Specify parameter sections as adaption
parameters 𝟏𝟎° × 𝟏𝟎°
➢ Not all parameters in every grid can
be estimated in practically.
➢ Limited observations
➢ Expensive computational cost
❖ Sensitivity test
285 boxes
𝑝∗
= 1 + 𝑚 𝑝 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐽 𝑝 − 𝐽 𝑜
𝐽0
Dimension reduced from 𝒐 𝟏𝟎 𝟔
to 𝒐 𝟏𝟎 𝟐
1818
Numerical Experiments and Results
4 ➢ Propagation length with bathymetry perturbation
Length scale based on M2 amplitude [km]
Parameter sections cannot be too small
M2 in GTSM in [m]
• When the tide propagates from one location to this position, the perturbation
of bathymetry in this position could lead to a water-level difference.
• The propagation length can be calculated when we assume the water-level
difference is the same as the observation error.
1919
Numerical Experiments and Results
4
110 boxes
➢ Parameter dimension reduction
❖ Combine sections with same directions nearby
➢ Directions:
• Negative: sensitivity<0
• Positive: Sensitivity >0
❖ Re-sensitivity test
❖ Parameter estimation
Bathymetry difference after estimation
2020
Numerical Experiments and Results
4 ➢ Estimation Results Analysis: Jan. 1 to Jan. 14
𝑅𝑀𝑆𝐸 =
σ 𝑡(𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, 𝑝 )2
𝑁
𝑅𝑀𝑆𝐸 𝑑𝑖𝑓𝑓 = 𝑅𝑀𝑆𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑅𝑀𝑆𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
Estimated RMSE in fine GTSM [m] RMSE difference [m]
2121
Numerical Experiments and Results
4 ➢ Estimation Results Analysis: Jan. 1 to Jan. 14
❖ Both coarse and fine model have been improved
❖ GTSM with fine grid has a higher accuracy than coarse model
RMSE [cm] GTSM with coarse grid GTSM with fine grid
Initial Estimated Initial Estimated
Arctic 7.00 5.75 5.22 4.33
Indian Ocean 6.46 3.80 5.43 3.54
North Atlantic 6.96 4.50 5.58 3.48
South Atlantic 6.02 4.05 4.98 3.44
North Pacific 4.53 3.51 3.93 3.09
South Pacific 6.18 3.79 4.91 3.17
South Ocean 4.89 3.51 3.95 2.90
Total 5.94 3.91 4.85 3.30
2222
Numerical Experiments and Results
4 ➢ Model Validation—RMSE difference in fine GTSM
Jan. 15 to Jan. 31 July 1 to July 31
RMSE[cm] GTSM with coarse grid GTSM with fine grid
Initial Estimated Initial Estimated
Jan. 15 to 31 6.72 4.96 5.54 4.12
July 1 to 31 6.13 4.24 4.94 3.45
RMSE difference in fine GTSM [m] RMSE difference in fine GTSM [m]
2323
Numerical Experiments and Results
4 ➢ Model Validation—UHSLC dataset (230 time series)
RMSE[cm] GTSM with coarse grid GTSM with fine grid
Initial Estimated Initial Estimated
Jan.1 to 14 16.31 13.48 12.21 10.23
Jan. 15 to 31 16.73 13.87 12.74 10.42
July 1 to 31 16.15 13.32 12.11 9.95
Estimated RMSE in Jan.1 to 14[m] RMSE difference in Jan.1 to 14[m]
2424
Outline
➢ Research Motivation
➢ Global Tide and Surge Model
➢ Parameter Estimation Scheme
➢ Numerical Experiments and results
➢ Conclusions
2525
Conclusions & Future work
5 ➢ The coarse grid parameter estimation for the high
resolution GTSM is efficient.
➢ The accuracy of output in both coarse and fine model are
increased, which can be used for long term forecast.
➢ Future work will continue on:
• Model order reduction for the parameter estimation in
time patterns, because parameter estimation should be
implemented in a longer simulation time but storage
memory is limited.
• Further estimate bottom friction and internal tides
friction.
2626
Thank You!

More Related Content

PDF
B04402016018
PDF
Optimization of performance and emission characteristics of dual flow diesel ...
PPTX
Ship design project Final presentation
PPT
Notarnicola_TU3_TO3.3.ppt
PPTX
Parameter estimation of distributed hydrological model using polynomial chaos...
PDF
Hyperon and charmed baryon masses and axial charges from Lattice QCD
PPTX
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
PPTX
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9
B04402016018
Optimization of performance and emission characteristics of dual flow diesel ...
Ship design project Final presentation
Notarnicola_TU3_TO3.3.ppt
Parameter estimation of distributed hydrological model using polynomial chaos...
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Presentation 4 ce 904 on Hydrology by Rabindra Ranjan Saha,PEng, Associate Pr...
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 9

What's hot (20)

PPTX
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
DOC
Lampiran uji kointegrasi
PDF
Public defense PhD
PPTX
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3
PPTX
Watertaxi-3rd project presentation-BUET
PPTX
Presentation 7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
PDF
Thesis Report
PDF
Thesis Summary
PDF
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
PPTX
Final presentation
PPTX
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
PPTX
Primary Flight Instruments| Q & A
PDF
Ejemplos de sistemas de masas, cuerdas y poleas...
PDF
Delineation of Mahanadi River Basin by Using GIS and ArcSWAT
PPTX
Lecture 6 ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...
PPTX
Presentation 5 ce 801 By Rabindra Ranjan saha
PDF
Calculation of pipeline capacity using steady state and dynamic simulation an...
PDF
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...
PPT
2 aircraft flight instruments
PDF
Solution Manual for Statics – Sheri Sheppard, Thalia Anagnos
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 12
Lampiran uji kointegrasi
Public defense PhD
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 3
Watertaxi-3rd project presentation-BUET
Presentation 7 a ce 904 Hydrology by Rabindra Ranjan Saha, PEng
Thesis Report
Thesis Summary
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
Final presentation
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Primary Flight Instruments| Q & A
Ejemplos de sistemas de masas, cuerdas y poleas...
Delineation of Mahanadi River Basin by Using GIS and ArcSWAT
Lecture 6 ce 1005 Irrigation and flood control by Rabindra Ranjan Saha, PEn...
Presentation 5 ce 801 By Rabindra Ranjan saha
Calculation of pipeline capacity using steady state and dynamic simulation an...
Webinar deltares hydrodynamic modeling on the northwest european shelf and no...
2 aircraft flight instruments
Solution Manual for Statics – Sheri Sheppard, Thalia Anagnos
Ad

Similar to DSD-INT 2019 Development and Calibration of a Global Tide and Surge Model (GTSM) - Wang (10)

PDF
Applying Unstructured Grid Model for Tides in the Belgian Continental Shelf
 
PDF
DSD-INT 2014 - Symposium Next Generation Hydro Software (NGHS) - Global tide ...
PDF
Matsumoto Ocean Tide Models
PDF
DSD-INT 2016 Keynote Lecture 2016: From global to local: the latest developme...
PDF
Mercator Ocean newsletter 36
PDF
DSD-INT 2015 - Global tide surge model - Martin Verlaan
PPT
M Sc Poster_Jackson_Hydro_13
PDF
Mercator Ocean newsletter 06
PDF
Effects of time-series data resolution on modelling shoreline change. Avidesh...
PDF
Question and answers webinar hydrodynamic modeling on the northwest european ...
Applying Unstructured Grid Model for Tides in the Belgian Continental Shelf
 
DSD-INT 2014 - Symposium Next Generation Hydro Software (NGHS) - Global tide ...
Matsumoto Ocean Tide Models
DSD-INT 2016 Keynote Lecture 2016: From global to local: the latest developme...
Mercator Ocean newsletter 36
DSD-INT 2015 - Global tide surge model - Martin Verlaan
M Sc Poster_Jackson_Hydro_13
Mercator Ocean newsletter 06
Effects of time-series data resolution on modelling shoreline change. Avidesh...
Question and answers webinar hydrodynamic modeling on the northwest european ...
Ad

More from Deltares (20)

PDF
DSD-INT 2024 Delft3D FM Suite 2025.01 2D3D - New features + Improvements - Ge...
PDF
DSD-INT 2024 Delft3D FM Suite 2025.01 1D2D - Beta testing programme - Hutten
PDF
DSD-INT 2024 MeshKernel and Grid Editor - New mesh generation tools - Carniato
PDF
DSD-INT 2024 Quantifying wind wake effects around offshore wind farms in the ...
PDF
DSD-INT 2024 Salinity intrusion in the Rhine-Meuse Delta - Geraeds
PDF
DSD-INT 2024 El-Nakheel beach swimmer safety study - Dobrochinski
PDF
DSD-INT 2024 Development of a Delft3D FM Scheldt Estuary Model - Vanlede
PDF
DSD-INT 2024 Modeling the effects of dredging operations on salt transport in...
PDF
DSD-INT 2024 Wadi Flash Flood Modelling using Delft3D FM Suite 1D2D - Dangudu...
PDF
DSD-INT 2024 European Digital Twin Ocean and Delft3D FM - Dols
PDF
DSD-INT 2024 Building towards a better (modelling) future - Wijnants
PDF
DSD-INT 2024 Flood modelling using the Delft3D FM Suite 1D2D - Horn
PDF
DSD-INT 2024 The effects of two cable installations on the water quality of t...
PDF
DSD-INT 2024 Morphological modelling of tidal creeks along arid coasts - Luo
PDF
DSD-INT 2024 Rainfall nowcasting – now and then - Uijlenhoet
PDF
DSD-INT 2023 Hydrology User Days - Intro - Day 3 - Kroon
PDF
DSD-INT 2023 Demo EPIC Response Assessment Methodology (ERAM) - Couvin Rodriguez
PDF
DSD-INT 2023 Demo Climate Stress Testing Tool (CST Tool) - Taner
PDF
DSD-INT 2023 Demo Climate Resilient Cities Tool (CRC Tool) - Rooze
PDF
DSD-INT 2023 Approaches for assessing multi-hazard risk - Ward
DSD-INT 2024 Delft3D FM Suite 2025.01 2D3D - New features + Improvements - Ge...
DSD-INT 2024 Delft3D FM Suite 2025.01 1D2D - Beta testing programme - Hutten
DSD-INT 2024 MeshKernel and Grid Editor - New mesh generation tools - Carniato
DSD-INT 2024 Quantifying wind wake effects around offshore wind farms in the ...
DSD-INT 2024 Salinity intrusion in the Rhine-Meuse Delta - Geraeds
DSD-INT 2024 El-Nakheel beach swimmer safety study - Dobrochinski
DSD-INT 2024 Development of a Delft3D FM Scheldt Estuary Model - Vanlede
DSD-INT 2024 Modeling the effects of dredging operations on salt transport in...
DSD-INT 2024 Wadi Flash Flood Modelling using Delft3D FM Suite 1D2D - Dangudu...
DSD-INT 2024 European Digital Twin Ocean and Delft3D FM - Dols
DSD-INT 2024 Building towards a better (modelling) future - Wijnants
DSD-INT 2024 Flood modelling using the Delft3D FM Suite 1D2D - Horn
DSD-INT 2024 The effects of two cable installations on the water quality of t...
DSD-INT 2024 Morphological modelling of tidal creeks along arid coasts - Luo
DSD-INT 2024 Rainfall nowcasting – now and then - Uijlenhoet
DSD-INT 2023 Hydrology User Days - Intro - Day 3 - Kroon
DSD-INT 2023 Demo EPIC Response Assessment Methodology (ERAM) - Couvin Rodriguez
DSD-INT 2023 Demo Climate Stress Testing Tool (CST Tool) - Taner
DSD-INT 2023 Demo Climate Resilient Cities Tool (CRC Tool) - Rooze
DSD-INT 2023 Approaches for assessing multi-hazard risk - Ward

Recently uploaded (20)

PDF
Nekopoi APK 2025 free lastest update
PDF
CCleaner Pro 6.38.11537 Crack Final Latest Version 2025
PPTX
Log360_SIEM_Solutions Overview PPT_Feb 2020.pptx
PDF
Odoo Companies in India – Driving Business Transformation.pdf
PDF
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free
PDF
Salesforce Agentforce AI Implementation.pdf
PDF
CapCut Video Editor 6.8.1 Crack for PC Latest Download (Fully Activated) 2025
PPTX
Operating system designcfffgfgggggggvggggggggg
PDF
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
PDF
Autodesk AutoCAD Crack Free Download 2025
PPTX
Why Generative AI is the Future of Content, Code & Creativity?
PDF
Digital Systems & Binary Numbers (comprehensive )
PPTX
Patient Appointment Booking in Odoo with online payment
PDF
AutoCAD Professional Crack 2025 With License Key
PPTX
history of c programming in notes for students .pptx
PDF
Product Update: Alluxio AI 3.7 Now with Sub-Millisecond Latency
PPTX
assetexplorer- product-overview - presentation
PDF
Design an Analysis of Algorithms II-SECS-1021-03
PDF
Wondershare Filmora 15 Crack With Activation Key [2025
PDF
Tally Prime Crack Download New Version 5.1 [2025] (License Key Free
Nekopoi APK 2025 free lastest update
CCleaner Pro 6.38.11537 Crack Final Latest Version 2025
Log360_SIEM_Solutions Overview PPT_Feb 2020.pptx
Odoo Companies in India – Driving Business Transformation.pdf
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free
Salesforce Agentforce AI Implementation.pdf
CapCut Video Editor 6.8.1 Crack for PC Latest Download (Fully Activated) 2025
Operating system designcfffgfgggggggvggggggggg
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
Autodesk AutoCAD Crack Free Download 2025
Why Generative AI is the Future of Content, Code & Creativity?
Digital Systems & Binary Numbers (comprehensive )
Patient Appointment Booking in Odoo with online payment
AutoCAD Professional Crack 2025 With License Key
history of c programming in notes for students .pptx
Product Update: Alluxio AI 3.7 Now with Sub-Millisecond Latency
assetexplorer- product-overview - presentation
Design an Analysis of Algorithms II-SECS-1021-03
Wondershare Filmora 15 Crack With Activation Key [2025
Tally Prime Crack Download New Version 5.1 [2025] (License Key Free

DSD-INT 2019 Development and Calibration of a Global Tide and Surge Model (GTSM) - Wang

  • 1. 11 Development and Calibration of a Global Tide and Surge Model (GTSM) Xiaohui Wang1 , Martin Verlaan1,2 , Maialen Irazoqui Apecechea2,,Hai Xiang Lin1 (X.Wang-13@tudelft.nl) 1.Delft University of Technology 2.Deltares
  • 2. 22 Outline ➢ Research Motivation ➢ Global Tide and Surge Model ➢ Parameter Estimation Scheme ➢ Numerical Experiments and results ➢ Conclusions
  • 3. 33 Outline ➢ Research Motivation ➢ Global Tide and Surge Model ➢ Parameter Estimation Scheme ➢ Numerical Experiments and results ➢ Conclusions
  • 4. 44 Research Motivation 1 Why to do parameter estimation/calibration? • The requirement of high accurate forecast of tide and surge ✓ Global climate changes are increasing the risk from storm surges ✓ Accurate forecast can help evaluate the risk • Global Tide and Surge model is developed to deal with this global problem. How to get accurate global forecast results of tide and surges? Data Assimilation
  • 5. 55 Research Motivation 1 Model forecastparameters model Physical processes Data Assimilation Observations +/- Correction • Model contains uncertain parameters • Observation is available to validate model output Research Objective: • Parameter estimation/Calibration for GTSM
  • 6. 66 Outline ➢ Research Motivation ➢ Global Tide and Surge Model ➢ Parameter Estimation Scheme ➢ Numerical Experiments and results ➢ Conclusions
  • 7. 77 Global Tide and Surge Model 2 𝜕u 𝜕𝑡 + 1 ℎ (𝛻 ∙ (ℎuu − u𝛻 ∙ (ℎu))=−g𝛻(𝜉 − 𝜉 𝐸𝑄 − 𝜉 𝑆𝐴𝐿) + 𝛻 ∙ (𝜈(𝛻u𝛻u 𝑇 )) + 𝜏 ℎ 𝜏 = − 𝑔 𝐶 𝐷 2 ∥ u ∥ u 𝜏𝐼𝑇 = −𝐶𝐼𝑇 𝑁(𝛻ℎu)𝛻ℎ Tides ➢ Delft3D Flexible Mesh (unstructured mesh) ➢ A combined tide and surge model Surges: forced by wind and pressure Bathymetry, coefficient of bottom friction and internal tides friction are often identified as three types of parameters with large uncertainties to estimate.
  • 8. 88 Global Tide and Surge Model 2 Model GTSM with coarse grid GTSM with fine grid Mesh ~2 million ~5 million resolution 50km in deep ocean, 5km in coastal area 25km in deep ocean, 2.5km in coastal area, 1.25km in European Computational cost (45 days simulation, 20 cores) 3 hours 10 hours ➢ Model settings: ❖ Time steps: 600s ❖ Spin-up time: 20131217 to 20131231 ❖ Simulation time: 20140101 to 20140131 High resolution, high accuracy but expensive computational cost. How to reduce computational cost in parameter estimation scheme?
  • 9. 99 Outline ➢ Research Motivation ➢ Global Tide and Surge Model ➢ Parameter Estimation Scheme ➢ Numerical Experiments and results ➢ Conclusions
  • 10. 1010 Parameter Estimation Scheme 3 ➢ Parameter estimation framework Calibration with OpenDA: ❖ OpenDA is generic toolbox for data-assimilation ❖ Dud ➢ Run with single perturbation of parameters ➢ Linearize the model and solve it ➢ If improved, update parameters ➢ If not, do line-search 𝐽 = ෍ 𝑡 (𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, 𝑝 )2 𝜎𝑜 2 𝐽 𝑚𝑖𝑛 = ෍ 𝑡 (𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, Ƹ𝑝 )2 𝜎𝑜 2 Observations: 𝑦0 𝑡 Estimated output: 𝑦 𝑚 𝑡, Ƹ𝑝Model output: 𝑦 𝑚 𝑡, 𝑝
  • 11. 1111 Parameter Estimation Scheme 3 ➢ Key issues: ✓ Coarse-to-fine parameter estimation: Apply parameter estimation in coarse model and set as input in fine model ✓ Parameter dimension reduction: Parameter selection Sensitivity test ❖ Huge computational cost • Computing time increases quickly for high resolution global model. • Large parameter dimension leads to large number of perturbed model simulations. ❖ Storage memory problem • Model output can be huge for a long simulation. • Large parameter and observation dimension. ➢ Solutions:
  • 12. 1212 Parameter Estimation Scheme 3 ➢ Coarse-to-fine strategy Coarse Incremental Calibration: Using coarse model to replace the difference (𝛿𝑦) between the initial output and adjusted output in fine model. 𝐽 𝑛𝑒𝑤 = ෍ 𝑡 (𝑦𝑜(𝑡) − 𝑦 𝑚2 𝑡, 𝑝 )2 𝜎𝑜 2 = ෍ 𝑡 (𝑦𝑜(𝑡) − 𝑦 𝑚2 𝑡, 𝑝0 + 𝑦 𝑚1 𝑡, 𝑝0 − 𝑦 𝑚1 𝑡, 𝑝 )2 𝜎𝑜 2 Only one initial simulation of GTSM fine model 𝑦 𝑚2 𝑡, 𝑝 ≈ 𝑦 𝑚2 𝑡, 𝑝0 − 𝑦 𝑚1 𝑡, 𝑝0 + 𝑦 𝑚1 𝑡, 𝑝൝ 𝑦 𝑚2 𝑡, 𝑝 = 𝑦 𝑚2 𝑡, 𝑝0 + 𝛿𝑦 𝛿𝑦 ≈ 𝑦 𝑚1 𝑡, 𝑝 − 𝑦 𝑚1 𝑡, 𝑝0 𝐺𝑇𝑆𝑀𝑐𝑜𝑎𝑟𝑠𝑒: 𝑦 𝑚1 𝑡, 𝑝0 , GTSMfine: 𝑦 𝑚2 𝑡, 𝑝0 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡: 𝑦 𝑚2 𝑡, Ƹ𝑝
  • 13. 1313 Parameter Estimation Scheme 3 Bathymetry & Internal tides friction: Deep Ocean & global Bottom friction: coastal area From Deep Ocean & global to coastal area ➢ Parameter Selection FES2014 database Tide gauge data
  • 14. 1414 Parameter Estimation Scheme 3 ➢ Observation: FES2014 database ✓ 1973 time series, from Jan. 1 to Jan. 14, 10 minutes interval ✓ Nearly distance equally ✓ Remove SA, SSA 𝑅𝑀𝑆𝐸 = σ 𝑡(𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, 𝑝 )2 𝑁 ➢ Accuracy before calibration with GEBCO 2014 & GEBCO 2019 Initial model: GTSM with GEBCO 2019 RMSE distribution in [m] Regional RMSE in [cm]
  • 15. 1515 Parameter Estimation Scheme 3 ➢ Parameter estimation framework Parameter Dimension reduction Bathymetry OpenDA: Dud Observation: FES2014 Results analysis & model validation Coarse-to-fine Bathymetry Estimation Further work on BF and IT estimation…… Observation investigation Parameter selection Sensitivity test Observation: UHSLC
  • 16. 1616 Outline ➢ Research Motivation ➢ Global Tide and Surge Model ➢ Parameter Estimation Scheme ➢ Numerical Experiments and results ➢ Conclusions
  • 17. 1717 Numerical Experiments and Results 4 ➢ Parameter dimension reduction by sensitivity test How does the observation error affect the sensitivity? ❖ Set-up ➢ Spin-up: 2 weeks ➢ Simulation: Jan. 1 to 14 ❖ Specify parameter sections as adaption parameters 𝟏𝟎° × 𝟏𝟎° ➢ Not all parameters in every grid can be estimated in practically. ➢ Limited observations ➢ Expensive computational cost ❖ Sensitivity test 285 boxes 𝑝∗ = 1 + 𝑚 𝑝 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐽 𝑝 − 𝐽 𝑜 𝐽0 Dimension reduced from 𝒐 𝟏𝟎 𝟔 to 𝒐 𝟏𝟎 𝟐
  • 18. 1818 Numerical Experiments and Results 4 ➢ Propagation length with bathymetry perturbation Length scale based on M2 amplitude [km] Parameter sections cannot be too small M2 in GTSM in [m] • When the tide propagates from one location to this position, the perturbation of bathymetry in this position could lead to a water-level difference. • The propagation length can be calculated when we assume the water-level difference is the same as the observation error.
  • 19. 1919 Numerical Experiments and Results 4 110 boxes ➢ Parameter dimension reduction ❖ Combine sections with same directions nearby ➢ Directions: • Negative: sensitivity<0 • Positive: Sensitivity >0 ❖ Re-sensitivity test ❖ Parameter estimation Bathymetry difference after estimation
  • 20. 2020 Numerical Experiments and Results 4 ➢ Estimation Results Analysis: Jan. 1 to Jan. 14 𝑅𝑀𝑆𝐸 = σ 𝑡(𝑦𝑜(𝑡) − 𝑦 𝑚 𝑡, 𝑝 )2 𝑁 𝑅𝑀𝑆𝐸 𝑑𝑖𝑓𝑓 = 𝑅𝑀𝑆𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑅𝑀𝑆𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 Estimated RMSE in fine GTSM [m] RMSE difference [m]
  • 21. 2121 Numerical Experiments and Results 4 ➢ Estimation Results Analysis: Jan. 1 to Jan. 14 ❖ Both coarse and fine model have been improved ❖ GTSM with fine grid has a higher accuracy than coarse model RMSE [cm] GTSM with coarse grid GTSM with fine grid Initial Estimated Initial Estimated Arctic 7.00 5.75 5.22 4.33 Indian Ocean 6.46 3.80 5.43 3.54 North Atlantic 6.96 4.50 5.58 3.48 South Atlantic 6.02 4.05 4.98 3.44 North Pacific 4.53 3.51 3.93 3.09 South Pacific 6.18 3.79 4.91 3.17 South Ocean 4.89 3.51 3.95 2.90 Total 5.94 3.91 4.85 3.30
  • 22. 2222 Numerical Experiments and Results 4 ➢ Model Validation—RMSE difference in fine GTSM Jan. 15 to Jan. 31 July 1 to July 31 RMSE[cm] GTSM with coarse grid GTSM with fine grid Initial Estimated Initial Estimated Jan. 15 to 31 6.72 4.96 5.54 4.12 July 1 to 31 6.13 4.24 4.94 3.45 RMSE difference in fine GTSM [m] RMSE difference in fine GTSM [m]
  • 23. 2323 Numerical Experiments and Results 4 ➢ Model Validation—UHSLC dataset (230 time series) RMSE[cm] GTSM with coarse grid GTSM with fine grid Initial Estimated Initial Estimated Jan.1 to 14 16.31 13.48 12.21 10.23 Jan. 15 to 31 16.73 13.87 12.74 10.42 July 1 to 31 16.15 13.32 12.11 9.95 Estimated RMSE in Jan.1 to 14[m] RMSE difference in Jan.1 to 14[m]
  • 24. 2424 Outline ➢ Research Motivation ➢ Global Tide and Surge Model ➢ Parameter Estimation Scheme ➢ Numerical Experiments and results ➢ Conclusions
  • 25. 2525 Conclusions & Future work 5 ➢ The coarse grid parameter estimation for the high resolution GTSM is efficient. ➢ The accuracy of output in both coarse and fine model are increased, which can be used for long term forecast. ➢ Future work will continue on: • Model order reduction for the parameter estimation in time patterns, because parameter estimation should be implemented in a longer simulation time but storage memory is limited. • Further estimate bottom friction and internal tides friction.