SlideShare a Scribd company logo
Dynamic Programming
Topic Overview
• Overview of Serial Dynamic Programming
• Serial Monadic DP Formulations
• Nonserial Monadic DP Formulations
• Serial Polyadic DP Formulations
• Nonserial Polyadic DP Formulations
Overview of Serial Dynamic Programming
• Dynamic programming (DP) is used to solve a wide
variety of discrete optimization problems such as
scheduling, string-editing, packaging, and inventory
management.
• Break problems into subproblems and combine their
solutions into solutions to larger problems.
• In contrast to divide-and-conquer, there may be
relationships across subproblems.
Dynamic Programming: Example
• Consider the problem of finding a shortest path between
a pair of vertices in an acyclic graph.
• An edge connecting node i to node j has cost c(i,j).
• The graph contains n nodes numbered 0,1,…, n-1, and
has an edge from node i to node j only if i < j. Node 0 is
source and node n-1 is the destination.
• Let f(x) be the cost of the shortest path from node 0 to
node x.
Dynamic Programming: Example
• A graph for which the shortest path between nodes 0
and 4 is to be computed.
Dynamic Programming
• The solution to a DP problem is typically expressed as a
minimum (or maximum) of possible alternate solutions.
• If r represents the cost of a solution composed of
subproblems x1, x2,…, xl, then r can be written as
Here, g is the composition function.
• If the optimal solution to each problem is determined by
composing optimal solutions to the subproblems and
selecting the minimum (or maximum), the formulation is
said to be a DP formulation.
Dynamic Programming: Example
The computation and composition of subproblem solutions to
solve problem f(x8).
Dynamic Programming
• The recursive DP equation is also called the functional
equation or optimization equation.
• In the equation for the shortest path problem the
composition function is f(j) + c(j,x). This contains a single
recursive term (f(j)). Such a formulation is called
monadic.
• If the RHS has multiple recursive terms, the DP
formulation is called polyadic.
Dynamic Programming
• The dependencies between subproblems can be
expressed as a graph.
• If the graph can be levelized (i.e., solutions to problems
at a level depend only on solutions to problems at the
previous level), the formulation is called serial, else it is
called non-serial.
• Based on these two criteria, we can classify DP
formulations into four categories - serial-monadic, serial-
polyadic, non-serial-monadic, non-serial-polyadic.
• This classification is useful since it identifies concurrency
and dependencies that guide parallel formulations.
Serial Monadic DP Formulations
• It is difficult to derive canonical parallel formulations for
the entire class of formulations.
• For this reason, we select two representative examples,
the shortest-path problem for a multistage graph and the
0/1 knapsack problem.
• We derive parallel formulations for these problems and
identify common principles guiding design within the
class.
Shortest-Path Problem
• Special class of shortest path problem where the graph
is a weighted multistage graph of r + 1 levels.
• Each level is assumed to have n levels and every node
at level i is connected to every node at level i + 1.
• Levels zero and r contain only one node, the source and
destination nodes, respectively.
• The objective of this problem is to find the shortest path
from S to R.
Shortest-Path Problem
An example of a serial monadic DP formulation for finding
the shortest path in a graph whose nodes can be
organized into levels.
Shortest-Path Problem
• The ith
node at level l in the graph is labeled vi
l
and the
cost of an edge connecting vi
l
to node vj
l+1
is labeled ci
l
,j.
• The cost of reaching the goal node R from any node vi
l
is
represented by Ci
l
.
• If there are n nodes at level l, the vector
[C0
l
, C1
l,…,
Cn
l
-1]T
is referred to as Cl
. Note that
C0 = [C0
0
].
• We have Ci
l
= min {(ci
l
,j + Cj
l+1
) | j is a node at level l + 1}
Shortest-Path Problem
• Since all nodes vj
r-1
have only one edge connecting them
to the goal node R at level r, the cost Cj
r-1
is equal to cj
r
,
-
R
1
.
• We have:
Notice that this problem is serial and monadic.
Shortest-Path Problem
• The cost of reaching the goal node R from any node at
level l is (0 < l < r – 1) is
Shortest-Path Problem
• We can express the solution to the problem as a
modified sequence of matrix-vector products.
• Replacing the addition operation by minimization and the
multiplication operation by addition, the preceding set of
equations becomes:
where Cl
and Cl+1
are n x 1 vectors representing the cost
of reaching the goal node from each node at levels l and
l + 1.
Shortest-Path Problem
• Matrix Ml,l+1 is an n x n matrix in which entry (i, j) stores
the cost of the edge connecting node i at level l to node j
at level l + 1.
• The shortest path problem has been formulated as a
sequence of r matrix-vector products.
Parallel Shortest-Path
• We can parallelize this algorithm using the parallel
algorithms for the matrix-vector product.
• Θ(n) processing elements can compute each vector Cl
in
time Θ(n) and solve the entire problem in time Θ(rn).
• In many instances of this problem, the matrix M may be
sparse. For such problems, it is highly desirable to use
sparse matrix techniques.
0/1 Knapsack Problem
• We are given a knapsack of capacity c and a set of n objects
numbered 1,2,…,n. Each object i has weight wi and profit pi.
• Let v = [v1, v2,…, vn] be a solution vector in which vi = 0 if object i is
not in the knapsack, and vi = 1 if it is in the knapsack.
• The goal is to find a subset of objects to put into the knapsack so
that
(that is, the objects fit into the knapsack) and
is maximized (that is, the profit is maximized).
0/1 Knapsack Problem
• The naive method is to consider all 2n
possible subsets
of the n objects and choose the one that fits into the
knapsack and maximizes the profit.
• Let F[i,x] be the maximum profit for a knapsack of
capacity x using only objects {1,2,…,i}. The DP
formulation is:
0/1 Knapsack Problem
• Construct a table F of size n x c in row-major order.
• Filling an entry in a row requires two entries from the
previous row: one from the same column and one from
the column offset by the weight of the object
corresponding to the row.
• Computing each entry takes constant time; the
sequential run time of this algorithm is Θ(nc).
• The formulation is serial-monadic.
0/1 Knapsack Problem
Computing entries of table F for the 0/1 knapsack problem. The computation of
entry F[i,j] requires communication with processing elements containing
entries F[i-1,j] and F[i-1,j-wi].
0/1 Knapsack Problem
• Using c processors in a PRAM, we can derive a simple
parallel algorithm that runs in O(n) time by partitioning
the columns across processors.
• In a distributed memory machine, in the jth
iteration, for
computing F[j,r] at processing element Pr-1, F[j-1,r] is
available locally but F[j-1,r-wj] must be fetched.
• The communication operation is a circular shift and the
time is given by (ts + tw) log c. The total time is therefore
tc + (ts + tw) log c.
• Across all n iterations (rows), the parallel time is O(n log
c). Note that this is not cost optimal.
0/1 Knapsack Problem
• Using p-processing elements, each processing element
computes c/p elements of the table in each iteration.
• The corresponding shift operation takes time (2ts + twc/p),
since the data block may be partitioned across two
processors, but the total volume of data is c/p.
• The corresponding parallel time is n(tcc/p + 2ts + twc/p),
or O(nc/p) (which is cost-optimal).
• Note that there is an upper bound on the efficiency of
this formulation.
Nonserial Monadic DP Formulations: Longest-
Common-Subsequence
• Given a sequence A = <a1, a2,…, an>, a subsequence of
A can be formed by deleting some entries from A.
• Given two sequences A = <a1, a2,…, an> and B = <b1, b2,
…, bm>, find the longest sequence that is a subsequence
of both A and B.
• If A = <c,a,d,b,r,z> and B = <a,s,b,z>, the longest
common subsequence of A and B is <a,b,z>.
Longest-Common-Subsequence Problem
• Let F[i,j] denote the length of the longest common
subsequence of the first i elements of A and the first j
elements of B. The objective of the LCS problem is to
find F[n,m].
• We can write:
Longest-Common-Subsequence Problem
• The algorithm computes the two-dimensional F table in a
row- or column-major fashion. The complexity is Θ(nm).
• Treating nodes along a diagonal as belonging to one
level, each node depends on two subproblems at the
preceding level and one subproblem two levels prior.
• This DP formulation is nonserial monadic.
Longest-Common-Subsequence Problem
(a) Computing entries of table for the longest-common-
subsequence problem. Computation proceeds along the dotted
diagonal lines. (b) Mapping elements of the table to processing
elements.
Longest-Common-Subsequence: Example
• Consider the LCS of two amino-acid sequences H E A G A W G H E E and P A W H E A E. For the interested reader,
the names of the corresponding amino-acids are A: Alanine, E: Glutamic acid, G: Glycine, H: Histidine, P: Proline,
and W: Tryptophan.
• The F table for computing the LCS of the sequences. The LCS is A W H E E.
Parallel Longest-Common-Subsequence
• Table entries are computed in a diagonal sweep from the
top-left to the bottom-right corner.
• Using n processors in a PRAM, each entry in a diagonal
can be computed in constant time.
• For two sequences of length n, there are 2n-1 diagonals.
• The parallel run time is Θ(n) and the algorithm is cost-
optimal.
Parallel Longest-Common-Subsequence
• Consider a (logical) linear array of processors. Processing
element Pi is responsible for the (i+1)th
column of the
table.
• To compute F[i,j], processing element Pj-1 may need either
F[i-1,j-1] or F[i,j-1] from the processing element to its left.
This communication takes time ts + tw.
• The computation takes constant time (tc).
• We have:
• Note that this formulation is cost-optimal, however, its
efficiency is upper-bounded by 0.5!
• Can you think of how to fix this?
Serial Polyadic DP Formulation: Floyd's All-
Pairs Shortest Path
• Given weighted graph G(V,E), Floyd's algorithm determines
the cost di,j of the shortest path between each pair of nodes in
V.
• Let di
k
,j be the minimum cost of a path from node i to node j,
using only nodes v0,v1,…,vk-1.
• We have:
• Each iteration requires time Θ(n2
) and the overall run time of
the sequential algorithm is Θ(n3
).
Serial Polyadic DP Formulation: Floyd's All-
Pairs Shortest Path
• A PRAM formulation of this algorithm uses n2
processors
in a logical 2D mesh. Processor Pi,j computes the value
of di
k
,j for k=1,2,…,n in constant time.
• The parallel runtime is Θ(n) and it is cost-optimal.
• The algorithm can easily be adapted to practical
architectures, as discussed in our treatment of Graph
Algorithms.
Nonserial Polyadic DP Formulation: Optimal Matrix-
Parenthesization Problem
• When multiplying a sequence of matrices, the order of
multiplication significantly impacts operation count.
• Let C[i,j] be the optimal cost of multiplying the matrices
Ai,…Aj.
• The chain of matrices can be expressed as a product of
two smaller chains, Ai,Ai+1,…,Ak and Ak+1,…,Aj.
• The chain Ai,Ai+1,…,Ak results in a matrix of dimensions ri-
1 x rk, and the chain Ak+1,…,Aj results in a matrix of
dimensions rk x rj.
• The cost of multiplying these two matrices is ri-1rkrj.
Optimal Matrix-Parenthesization Problem
• We have:
Optimal Matrix-Parenthesization Problem
A nonserial polyadic DP formulation for finding an optimal matrix
parenthesization for a chain of four matrices. A square node represents
the optimal cost of multiplying a matrix chain. A circle node represents a
possible parenthesization.
Optimal Matrix-Parenthesization Problem
• The goal of finding C[1,n] is accomplished in a bottom-up
fashion.
• Visualize this by thinking of filling in the C table
diagonally. Entries in diagonal l corresponds to the cost
of multiplying matrix chains of length l+1.
• The value of C[i,j] is computed as min{C[i,k] + C[k+1,j] +
ri-1rkrj}, where k can take values from i to j-1.
• Computing C[i,j] requires that we evaluate (j-i) terms and
select their minimum.
• The computation of each term takes time tc, and the
computation of C[i,j] takes time (j-i)tc. Each entry in
diagonal l can be computed in time ltc.
Optimal Matrix-Parenthesization Problem
• The algorithm computes (n-1) chains of length two. This
takes time (n-1)tc; computing n-2 chains of length three
takes time (n-2)tc. In the final step, the algorithm
computes one chain of length n in time (n-1)tc.
• It follows that the serial time is Θ(n3
).
Optimal Matrix-Parenthesization Problem
The diagonal order of computation for the optimal matrix-
parenthesization problem.
Parallel Optimal Matrix-Parenthesization
Problem
• Consider a logical ring of processors. In step l, each processor computes a
single element belonging to the lth
diagonal.
• On computing the assigned value of the element in table C, each processor
sends its value to all other processors using an all-to-all broadcast.
• The next value can then be computed locally.
• The total time required to compute the entries along diagonal l is ltc+tslog
n+tw(n-1).
• The corresponding parallel time is given by:
Parallel Optimal Matrix-Parenthesization
Problem
• When using p (<n) processors, each processor stores n/p nodes.
• The time taken for all-to-all broadcast of n/p words is
and the time to compute n/p entries of the table in the lth
diagonal is ltcn/p.
• This formulation can be improved to use up to n(n+1)/2 processors using
pipelining.
Discussion of Parallel Dynamic Programming
Algorithms
• By representing computation as a graph, we identify
three sources of parallelism: parallelism within nodes,
parallelism across nodes at a level, and pipelining nodes
across multiple levels. The first two are available in serial
formulations and the third one in non-serial formulations.
• Data locality is critical for performance. Different DP
formulations, by the very nature of the problem instance,
have different degrees of locality.

More Related Content

PPT
chap1211111111111111111111111_slides.ppt
PPT
Chap12 slides
PPTX
Dynamic programming
DOC
Time and space complexity
PPTX
DAA_Hard_Problems_(4th_Sem).pptxxxxxxxxx
PPT
dynamic programming Rod cutting class
chap1211111111111111111111111_slides.ppt
Chap12 slides
Dynamic programming
Time and space complexity
DAA_Hard_Problems_(4th_Sem).pptxxxxxxxxx
dynamic programming Rod cutting class

Similar to Dynamic Programming and Applications.ppt (20)

PPTX
Undecidable Problems and Approximation Algorithms
PPTX
Dynamic programming class 16
PPTX
unit-4-dynamic programming
PPTX
Chapter 5.pptx
PPTX
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
PPTX
Lower bound theory Np hard & Np completeness
PPTX
AAC ch 3 Advance strategies (Dynamic Programming).pptx
PPTX
Combinatorial Optimization
PDF
High-dimensional polytopes defined by oracles: algorithms, computations and a...
PPTX
lecture_09.pptx
PPT
Chap10 slides
PPT
1535 graph algorithms
DOCX
in computer data structures and algorithms
PPTX
ECE 565 FInal Project
PPTX
machine learning.pptx
PPT
GraphAlgorithms.pptsfjaaaaaaaaaaaaaaaaaaa
PPTX
DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE
PDF
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
Undecidable Problems and Approximation Algorithms
Dynamic programming class 16
unit-4-dynamic programming
Chapter 5.pptx
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
Lower bound theory Np hard & Np completeness
AAC ch 3 Advance strategies (Dynamic Programming).pptx
Combinatorial Optimization
High-dimensional polytopes defined by oracles: algorithms, computations and a...
lecture_09.pptx
Chap10 slides
1535 graph algorithms
in computer data structures and algorithms
ECE 565 FInal Project
machine learning.pptx
GraphAlgorithms.pptsfjaaaaaaaaaaaaaaaaaaa
DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
Ad

More from coolscools1231 (8)

PPTX
Lecturer3 by RamaKrishna SRU waranagal telanga
PPTX
SRU_RK_Lecturer1 about datamining cocepts
PPT
R1234_SRU data knowledge informations regarding
PPT
SR_R_Datamining.ppt detaled explanation re
PPT
ERK_SRU_ch08-2019-03-27.ppt discussion in class room
PPTX
DRK_Introduction to Data mining and Knowledge discovery
PPTX
WEKA Tutorial and Introduction Data mining
PPTX
ch17_Transaction management in Database Management System
Lecturer3 by RamaKrishna SRU waranagal telanga
SRU_RK_Lecturer1 about datamining cocepts
R1234_SRU data knowledge informations regarding
SR_R_Datamining.ppt detaled explanation re
ERK_SRU_ch08-2019-03-27.ppt discussion in class room
DRK_Introduction to Data mining and Knowledge discovery
WEKA Tutorial and Introduction Data mining
ch17_Transaction management in Database Management System
Ad

Recently uploaded (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Welding lecture in detail for understanding
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
PPT on Performance Review to get promotions
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
Construction Project Organization Group 2.pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
bas. eng. economics group 4 presentation 1.pptx
UNIT 4 Total Quality Management .pptx
Welding lecture in detail for understanding
Automation-in-Manufacturing-Chapter-Introduction.pdf
UNIT-1 - COAL BASED THERMAL POWER PLANTS
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mechanical Engineering MATERIALS Selection
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT on Performance Review to get promotions
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
Lecture Notes Electrical Wiring System Components
Construction Project Organization Group 2.pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...

Dynamic Programming and Applications.ppt

  • 2. Topic Overview • Overview of Serial Dynamic Programming • Serial Monadic DP Formulations • Nonserial Monadic DP Formulations • Serial Polyadic DP Formulations • Nonserial Polyadic DP Formulations
  • 3. Overview of Serial Dynamic Programming • Dynamic programming (DP) is used to solve a wide variety of discrete optimization problems such as scheduling, string-editing, packaging, and inventory management. • Break problems into subproblems and combine their solutions into solutions to larger problems. • In contrast to divide-and-conquer, there may be relationships across subproblems.
  • 4. Dynamic Programming: Example • Consider the problem of finding a shortest path between a pair of vertices in an acyclic graph. • An edge connecting node i to node j has cost c(i,j). • The graph contains n nodes numbered 0,1,…, n-1, and has an edge from node i to node j only if i < j. Node 0 is source and node n-1 is the destination. • Let f(x) be the cost of the shortest path from node 0 to node x.
  • 5. Dynamic Programming: Example • A graph for which the shortest path between nodes 0 and 4 is to be computed.
  • 6. Dynamic Programming • The solution to a DP problem is typically expressed as a minimum (or maximum) of possible alternate solutions. • If r represents the cost of a solution composed of subproblems x1, x2,…, xl, then r can be written as Here, g is the composition function. • If the optimal solution to each problem is determined by composing optimal solutions to the subproblems and selecting the minimum (or maximum), the formulation is said to be a DP formulation.
  • 7. Dynamic Programming: Example The computation and composition of subproblem solutions to solve problem f(x8).
  • 8. Dynamic Programming • The recursive DP equation is also called the functional equation or optimization equation. • In the equation for the shortest path problem the composition function is f(j) + c(j,x). This contains a single recursive term (f(j)). Such a formulation is called monadic. • If the RHS has multiple recursive terms, the DP formulation is called polyadic.
  • 9. Dynamic Programming • The dependencies between subproblems can be expressed as a graph. • If the graph can be levelized (i.e., solutions to problems at a level depend only on solutions to problems at the previous level), the formulation is called serial, else it is called non-serial. • Based on these two criteria, we can classify DP formulations into four categories - serial-monadic, serial- polyadic, non-serial-monadic, non-serial-polyadic. • This classification is useful since it identifies concurrency and dependencies that guide parallel formulations.
  • 10. Serial Monadic DP Formulations • It is difficult to derive canonical parallel formulations for the entire class of formulations. • For this reason, we select two representative examples, the shortest-path problem for a multistage graph and the 0/1 knapsack problem. • We derive parallel formulations for these problems and identify common principles guiding design within the class.
  • 11. Shortest-Path Problem • Special class of shortest path problem where the graph is a weighted multistage graph of r + 1 levels. • Each level is assumed to have n levels and every node at level i is connected to every node at level i + 1. • Levels zero and r contain only one node, the source and destination nodes, respectively. • The objective of this problem is to find the shortest path from S to R.
  • 12. Shortest-Path Problem An example of a serial monadic DP formulation for finding the shortest path in a graph whose nodes can be organized into levels.
  • 13. Shortest-Path Problem • The ith node at level l in the graph is labeled vi l and the cost of an edge connecting vi l to node vj l+1 is labeled ci l ,j. • The cost of reaching the goal node R from any node vi l is represented by Ci l . • If there are n nodes at level l, the vector [C0 l , C1 l,…, Cn l -1]T is referred to as Cl . Note that C0 = [C0 0 ]. • We have Ci l = min {(ci l ,j + Cj l+1 ) | j is a node at level l + 1}
  • 14. Shortest-Path Problem • Since all nodes vj r-1 have only one edge connecting them to the goal node R at level r, the cost Cj r-1 is equal to cj r , - R 1 . • We have: Notice that this problem is serial and monadic.
  • 15. Shortest-Path Problem • The cost of reaching the goal node R from any node at level l is (0 < l < r – 1) is
  • 16. Shortest-Path Problem • We can express the solution to the problem as a modified sequence of matrix-vector products. • Replacing the addition operation by minimization and the multiplication operation by addition, the preceding set of equations becomes: where Cl and Cl+1 are n x 1 vectors representing the cost of reaching the goal node from each node at levels l and l + 1.
  • 17. Shortest-Path Problem • Matrix Ml,l+1 is an n x n matrix in which entry (i, j) stores the cost of the edge connecting node i at level l to node j at level l + 1. • The shortest path problem has been formulated as a sequence of r matrix-vector products.
  • 18. Parallel Shortest-Path • We can parallelize this algorithm using the parallel algorithms for the matrix-vector product. • Θ(n) processing elements can compute each vector Cl in time Θ(n) and solve the entire problem in time Θ(rn). • In many instances of this problem, the matrix M may be sparse. For such problems, it is highly desirable to use sparse matrix techniques.
  • 19. 0/1 Knapsack Problem • We are given a knapsack of capacity c and a set of n objects numbered 1,2,…,n. Each object i has weight wi and profit pi. • Let v = [v1, v2,…, vn] be a solution vector in which vi = 0 if object i is not in the knapsack, and vi = 1 if it is in the knapsack. • The goal is to find a subset of objects to put into the knapsack so that (that is, the objects fit into the knapsack) and is maximized (that is, the profit is maximized).
  • 20. 0/1 Knapsack Problem • The naive method is to consider all 2n possible subsets of the n objects and choose the one that fits into the knapsack and maximizes the profit. • Let F[i,x] be the maximum profit for a knapsack of capacity x using only objects {1,2,…,i}. The DP formulation is:
  • 21. 0/1 Knapsack Problem • Construct a table F of size n x c in row-major order. • Filling an entry in a row requires two entries from the previous row: one from the same column and one from the column offset by the weight of the object corresponding to the row. • Computing each entry takes constant time; the sequential run time of this algorithm is Θ(nc). • The formulation is serial-monadic.
  • 22. 0/1 Knapsack Problem Computing entries of table F for the 0/1 knapsack problem. The computation of entry F[i,j] requires communication with processing elements containing entries F[i-1,j] and F[i-1,j-wi].
  • 23. 0/1 Knapsack Problem • Using c processors in a PRAM, we can derive a simple parallel algorithm that runs in O(n) time by partitioning the columns across processors. • In a distributed memory machine, in the jth iteration, for computing F[j,r] at processing element Pr-1, F[j-1,r] is available locally but F[j-1,r-wj] must be fetched. • The communication operation is a circular shift and the time is given by (ts + tw) log c. The total time is therefore tc + (ts + tw) log c. • Across all n iterations (rows), the parallel time is O(n log c). Note that this is not cost optimal.
  • 24. 0/1 Knapsack Problem • Using p-processing elements, each processing element computes c/p elements of the table in each iteration. • The corresponding shift operation takes time (2ts + twc/p), since the data block may be partitioned across two processors, but the total volume of data is c/p. • The corresponding parallel time is n(tcc/p + 2ts + twc/p), or O(nc/p) (which is cost-optimal). • Note that there is an upper bound on the efficiency of this formulation.
  • 25. Nonserial Monadic DP Formulations: Longest- Common-Subsequence • Given a sequence A = <a1, a2,…, an>, a subsequence of A can be formed by deleting some entries from A. • Given two sequences A = <a1, a2,…, an> and B = <b1, b2, …, bm>, find the longest sequence that is a subsequence of both A and B. • If A = <c,a,d,b,r,z> and B = <a,s,b,z>, the longest common subsequence of A and B is <a,b,z>.
  • 26. Longest-Common-Subsequence Problem • Let F[i,j] denote the length of the longest common subsequence of the first i elements of A and the first j elements of B. The objective of the LCS problem is to find F[n,m]. • We can write:
  • 27. Longest-Common-Subsequence Problem • The algorithm computes the two-dimensional F table in a row- or column-major fashion. The complexity is Θ(nm). • Treating nodes along a diagonal as belonging to one level, each node depends on two subproblems at the preceding level and one subproblem two levels prior. • This DP formulation is nonserial monadic.
  • 28. Longest-Common-Subsequence Problem (a) Computing entries of table for the longest-common- subsequence problem. Computation proceeds along the dotted diagonal lines. (b) Mapping elements of the table to processing elements.
  • 29. Longest-Common-Subsequence: Example • Consider the LCS of two amino-acid sequences H E A G A W G H E E and P A W H E A E. For the interested reader, the names of the corresponding amino-acids are A: Alanine, E: Glutamic acid, G: Glycine, H: Histidine, P: Proline, and W: Tryptophan. • The F table for computing the LCS of the sequences. The LCS is A W H E E.
  • 30. Parallel Longest-Common-Subsequence • Table entries are computed in a diagonal sweep from the top-left to the bottom-right corner. • Using n processors in a PRAM, each entry in a diagonal can be computed in constant time. • For two sequences of length n, there are 2n-1 diagonals. • The parallel run time is Θ(n) and the algorithm is cost- optimal.
  • 31. Parallel Longest-Common-Subsequence • Consider a (logical) linear array of processors. Processing element Pi is responsible for the (i+1)th column of the table. • To compute F[i,j], processing element Pj-1 may need either F[i-1,j-1] or F[i,j-1] from the processing element to its left. This communication takes time ts + tw. • The computation takes constant time (tc). • We have: • Note that this formulation is cost-optimal, however, its efficiency is upper-bounded by 0.5! • Can you think of how to fix this?
  • 32. Serial Polyadic DP Formulation: Floyd's All- Pairs Shortest Path • Given weighted graph G(V,E), Floyd's algorithm determines the cost di,j of the shortest path between each pair of nodes in V. • Let di k ,j be the minimum cost of a path from node i to node j, using only nodes v0,v1,…,vk-1. • We have: • Each iteration requires time Θ(n2 ) and the overall run time of the sequential algorithm is Θ(n3 ).
  • 33. Serial Polyadic DP Formulation: Floyd's All- Pairs Shortest Path • A PRAM formulation of this algorithm uses n2 processors in a logical 2D mesh. Processor Pi,j computes the value of di k ,j for k=1,2,…,n in constant time. • The parallel runtime is Θ(n) and it is cost-optimal. • The algorithm can easily be adapted to practical architectures, as discussed in our treatment of Graph Algorithms.
  • 34. Nonserial Polyadic DP Formulation: Optimal Matrix- Parenthesization Problem • When multiplying a sequence of matrices, the order of multiplication significantly impacts operation count. • Let C[i,j] be the optimal cost of multiplying the matrices Ai,…Aj. • The chain of matrices can be expressed as a product of two smaller chains, Ai,Ai+1,…,Ak and Ak+1,…,Aj. • The chain Ai,Ai+1,…,Ak results in a matrix of dimensions ri- 1 x rk, and the chain Ak+1,…,Aj results in a matrix of dimensions rk x rj. • The cost of multiplying these two matrices is ri-1rkrj.
  • 36. Optimal Matrix-Parenthesization Problem A nonserial polyadic DP formulation for finding an optimal matrix parenthesization for a chain of four matrices. A square node represents the optimal cost of multiplying a matrix chain. A circle node represents a possible parenthesization.
  • 37. Optimal Matrix-Parenthesization Problem • The goal of finding C[1,n] is accomplished in a bottom-up fashion. • Visualize this by thinking of filling in the C table diagonally. Entries in diagonal l corresponds to the cost of multiplying matrix chains of length l+1. • The value of C[i,j] is computed as min{C[i,k] + C[k+1,j] + ri-1rkrj}, where k can take values from i to j-1. • Computing C[i,j] requires that we evaluate (j-i) terms and select their minimum. • The computation of each term takes time tc, and the computation of C[i,j] takes time (j-i)tc. Each entry in diagonal l can be computed in time ltc.
  • 38. Optimal Matrix-Parenthesization Problem • The algorithm computes (n-1) chains of length two. This takes time (n-1)tc; computing n-2 chains of length three takes time (n-2)tc. In the final step, the algorithm computes one chain of length n in time (n-1)tc. • It follows that the serial time is Θ(n3 ).
  • 39. Optimal Matrix-Parenthesization Problem The diagonal order of computation for the optimal matrix- parenthesization problem.
  • 40. Parallel Optimal Matrix-Parenthesization Problem • Consider a logical ring of processors. In step l, each processor computes a single element belonging to the lth diagonal. • On computing the assigned value of the element in table C, each processor sends its value to all other processors using an all-to-all broadcast. • The next value can then be computed locally. • The total time required to compute the entries along diagonal l is ltc+tslog n+tw(n-1). • The corresponding parallel time is given by:
  • 41. Parallel Optimal Matrix-Parenthesization Problem • When using p (<n) processors, each processor stores n/p nodes. • The time taken for all-to-all broadcast of n/p words is and the time to compute n/p entries of the table in the lth diagonal is ltcn/p. • This formulation can be improved to use up to n(n+1)/2 processors using pipelining.
  • 42. Discussion of Parallel Dynamic Programming Algorithms • By representing computation as a graph, we identify three sources of parallelism: parallelism within nodes, parallelism across nodes at a level, and pipelining nodes across multiple levels. The first two are available in serial formulations and the third one in non-serial formulations. • Data locality is critical for performance. Different DP formulations, by the very nature of the problem instance, have different degrees of locality.