SlideShare a Scribd company logo
Dynamic Programming
Ananth Grama, Anshul Gupta, George
Karypis, and Vipin Kumar
To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003
Topic Overview
• Overview of Serial Dynamic Programming
• Serial Monadic DP Formulations
• Nonserial Monadic DP Formulations
• Serial Polyadic DP Formulations
• Nonserial Polyadic DP Formulations
Overview of Serial Dynamic Programming
• Dynamic programming (DP) is used to solve a wide
variety of discrete optimization problems such as
scheduling, string-editing, packaging, and inventory
management.
• Break problems into subproblems and combine their
solutions into solutions to larger problems.
• In contrast to divide-and-conquer, there may be
relationships across subproblems.
Dynamic Programming: Example
• Consider the problem of finding a shortest path between
a pair of vertices in an acyclic graph.
• An edge connecting node i to node j has cost c(i,j).
• The graph contains n nodes numbered 0,1,…, n-1, and
has an edge from node i to node j only if i < j. Node 0 is
source and node n-1 is the destination.
• Let f(x) be the cost of the shortest path from node 0 to
node x.
Dynamic Programming: Example
• A graph for which the shortest path between nodes 0
and 4 is to be computed.
Dynamic Programming
• The solution to a DP problem is typically expressed as a
minimum (or maximum) of possible alternate solutions.
• If r represents the cost of a solution composed of
subproblems x1, x2,…, xl, then r can be written as
Here, g is the composition function.
• If the optimal solution to each problem is determined by
composing optimal solutions to the subproblems and
selecting the minimum (or maximum), the formulation is
said to be a DP formulation.
Dynamic Programming: Example
The computation and composition of subproblem solutions
to solve problem f(x8).
Dynamic Programming
• The recursive DP equation is also called the functional
equation or optimization equation.
• In the equation for the shortest path problem the
composition function is f(j) + c(j,x). This contains a single
recursive term (f(j)). Such a formulation is called
monadic.
• If the RHS has multiple recursive terms, the DP
formulation is called polyadic.
Dynamic Programming
• The dependencies between subproblems can be
expressed as a graph.
• If the graph can be levelized (i.e., solutions to problems
at a level depend only on solutions to problems at the
previous level), the formulation is called serial, else it is
called non-serial.
• Based on these two criteria, we can classify DP
formulations into four categories - serial-monadic, serial-
polyadic, non-serial-monadic, non-serial-polyadic.
• This classification is useful since it identifies concurrency
and dependencies that guide parallel formulations.
Serial Monadic DP Formulations
• It is difficult to derive canonical parallel formulations for
the entire class of formulations.
• For this reason, we select two representative examples,
the shortest-path problem for a multistage graph and the
0/1 knapsack problem.
• We derive parallel formulations for these problems and
identify common principles guiding design within the
class.
Shortest-Path Problem
• Special class of shortest path problem where the graph
is a weighted multistage graph of r + 1 levels.
• Each level is assumed to have n levels and every node
at level i is connected to every node at level i + 1.
• Levels zero and r contain only one node, the source and
destination nodes, respectively.
• The objective of this problem is to find the shortest path
from S to R.
Shortest-Path Problem
An example of a serial monadic DP formulation for finding
the shortest path in a graph whose nodes can be
organized into levels.
Shortest-Path Problem
• The ith node at level l in the graph is labeled vi
l and the
cost of an edge connecting vi
l to node vj
l+1 is labeled ci
l
,j.
• The cost of reaching the goal node R from any node vi
l is
represented by Ci
l.
• If there are n nodes at level l, the vector
[C0
l, C1
l,…,
Cn
l
-1]T is referred to as Cl. Note that
C0 = [C0
0].
• We have Ci
l = min {(ci
l
,j + Cj
l+1) | j is a node at level l + 1}
Shortest-Path Problem
• Since all nodes vj
r-1 have only one edge connecting them
to the goal node R at level r, the cost Cj
r-1 is equal to cj
r
,
-
R
1.
• We have:
Notice that this problem is serial and monadic.
Shortest-Path Problem
• The cost of reaching the goal node R from any node at
level l is (0 < l < r – 1) is
Shortest-Path Problem
• We can express the solution to the problem as a
modified sequence of matrix-vector products.
• Replacing the addition operation by minimization and the
multiplication operation by addition, the preceding set of
equations becomes:
where Cl and Cl+1 are n x 1 vectors representing the cost
of reaching the goal node from each node at levels l and
l + 1.
Shortest-Path Problem
• Matrix Ml,l+1 is an n x n matrix in which entry (i, j) stores
the cost of the edge connecting node i at level l to node j
at level l + 1.
• The shortest path problem has been formulated as a
sequence of r matrix-vector products.
Parallel Shortest-Path
• We can parallelize this algorithm using the parallel
algorithms for the matrix-vector product.
• Θ(n) processing elements can compute each vector Cl in
time Θ(n) and solve the entire problem in time Θ(rn).
• In many instances of this problem, the matrix M may be
sparse. For such problems, it is highly desirable to use
sparse matrix techniques.
0/1 Knapsack Problem
• We are given a knapsack of capacity c and a set of n objects
numbered 1,2,…,n. Each object i has weight wi and profit pi.
• Let v = [v1, v2,…, vn] be a solution vector in which vi = 0 if object i is
not in the knapsack, and vi = 1 if it is in the knapsack.
• The goal is to find a subset of objects to put into the knapsack so
that
(that is, the objects fit into the knapsack) and
is maximized (that is, the profit is maximized).
0/1 Knapsack Problem
• The naive method is to consider all 2n possible subsets
of the n objects and choose the one that fits into the
knapsack and maximizes the profit.
• Let F[i,x] be the maximum profit for a knapsack of
capacity x using only objects {1,2,…,i}. The DP
formulation is:
0/1 Knapsack Problem
• Construct a table F of size n x c in row-major order.
• Filling an entry in a row requires two entries from the
previous row: one from the same column and one from
the column offset by the weight of the object
corresponding to the row.
• Computing each entry takes constant time; the
sequential run time of this algorithm is Θ(nc).
• The formulation is serial-monadic.
0/1 Knapsack Problem
Computing entries of table F for the 0/1 knapsack problem. The computation of
entry F[i,j] requires communication with processing elements containing
entries F[i-1,j] and F[i-1,j-wi].
0/1 Knapsack Problem
• Using c processors in a PRAM, we can derive a simple
parallel algorithm that runs in O(n) time by partitioning
the columns across processors.
• In a distributed memory machine, in the jth iteration, for
computing F[j,r] at processing element Pr-1, F[j-1,r] is
available locally but F[j-1,r-wj] must be fetched.
• The communication operation is a circular shift and the
time is given by (ts + tw) log c. The total time is therefore
tc + (ts + tw) log c.
• Across all n iterations (rows), the parallel time is O(n log
c). Note that this is not cost optimal.
0/1 Knapsack Problem
• Using p-processing elements, each processing element
computes c/p elements of the table in each iteration.
• The corresponding shift operation takes time (2ts + twc/p),
since the data block may be partitioned across two
processors, but the total volume of data is c/p.
• The corresponding parallel time is n(tcc/p + 2ts + twc/p),
or O(nc/p) (which is cost-optimal).
• Note that there is an upper bound on the efficiency of
this formulation.
Nonserial Monadic DP Formulations: Longest-Common-
Subsequence
• Given a sequence A = <a1, a2,…, an>, a subsequence of
A can be formed by deleting some entries from A.
• Given two sequences A = <a1, a2,…, an> and B = <b1,
b2,…, bm>, find the longest sequence that is a
subsequence of both A and B.
• If A = <c,a,d,b,r,z> and B = <a,s,b,z>, the longest
common subsequence of A and B is <a,b,z>.
Longest-Common-Subsequence Problem
• Let F[i,j] denote the length of the longest common
subsequence of the first i elements of A and the first j
elements of B. The objective of the LCS problem is to
find F[n,m].
• We can write:
Longest-Common-Subsequence Problem
• The algorithm computes the two-dimensional F table in a
row- or column-major fashion. The complexity is Θ(nm).
• Treating nodes along a diagonal as belonging to one
level, each node depends on two subproblems at the
preceding level and one subproblem two levels prior.
• This DP formulation is nonserial monadic.
Longest-Common-Subsequence Problem
(a) Computing entries of table for the longest-common-
subsequence problem. Computation proceeds along the dotted
diagonal lines. (b) Mapping elements of the table to processing
elements.
Longest-Common-Subsequence: Example
• Consider the LCS of two amino-acid sequences H E A G A W G H E E and P A W H E A E. For the interested
reader, the names of the corresponding amino-acids are A: Alanine, E: Glutamic acid, G: Glycine, H: Histidine, P:
Proline, and W: Tryptophan.
• The F table for computing the LCS of the sequences. The LCS is A W H E E.
Parallel Longest-Common-Subsequence
• Table entries are computed in a diagonal sweep from the
top-left to the bottom-right corner.
• Using n processors in a PRAM, each entry in a diagonal
can be computed in constant time.
• For two sequences of length n, there are 2n-1 diagonals.
• The parallel run time is Θ(n) and the algorithm is cost-
optimal.
Parallel Longest-Common-Subsequence
• Consider a (logical) linear array of processors.
Processing element Pi is responsible for the (i+1)th
column of the table.
• To compute F[i,j], processing element Pj-1 may need
either F[i-1,j-1] or F[i,j-1] from the processing element to
its left. This communication takes time ts + tw.
• The computation takes constant time (tc).
• We have:
• Note that this formulation is cost-optimal, however, its
efficiency is upper-bounded by 0.5!
• Can you think of how to fix this?
Serial Polyadic DP Formulation: Floyd's All-Pairs
Shortest Path
• Given weighted graph G(V,E), Floyd's algorithm
determines the cost di,j of the shortest path between
each pair of nodes in V.
• Let di
k
,j be the minimum cost of a path from node i to
node j, using only nodes v0,v1,…,vk-1.
• We have:
• Each iteration requires time Θ(n2) and the overall run
time of the sequential algorithm is Θ(n3).
Serial Polyadic DP Formulation: Floyd's All-Pairs
Shortest Path
• A PRAM formulation of this algorithm uses n2 processors
in a logical 2D mesh. Processor Pi,j computes the value
of di
k
,j for k=1,2,…,n in constant time.
• The parallel runtime is Θ(n) and it is cost-optimal.
• The algorithm can easily be adapted to practical
architectures, as discussed in our treatment of Graph
Algorithms.
Nonserial Polyadic DP Formulation: Optimal Matrix-
Parenthesization Problem
• When multiplying a sequence of matrices, the order of
multiplication significantly impacts operation count.
• Let C[i,j] be the optimal cost of multiplying the matrices
Ai,…Aj.
• The chain of matrices can be expressed as a product of
two smaller chains, Ai,Ai+1,…,Ak and Ak+1,…,Aj.
• The chain Ai,Ai+1,…,Ak results in a matrix of dimensions
ri-1 x rk, and the chain Ak+1,…,Aj results in a matrix of
dimensions rk x rj.
• The cost of multiplying these two matrices is ri-1rkrj.
Optimal Matrix-Parenthesization Problem
• We have:
Optimal Matrix-Parenthesization Problem
A nonserial polyadic DP formulation for finding an optimal matrix
parenthesization for a chain of four matrices. A square node
represents the optimal cost of multiplying a matrix chain. A circle
node represents a possible parenthesization.
Optimal Matrix-Parenthesization Problem
• The goal of finding C[1,n] is accomplished in a bottom-up
fashion.
• Visualize this by thinking of filling in the C table
diagonally. Entries in diagonal l corresponds to the cost
of multiplying matrix chains of length l+1.
• The value of C[i,j] is computed as min{C[i,k] + C[k+1,j] +
ri-1rkrj}, where k can take values from i to j-1.
• Computing C[i,j] requires that we evaluate (j-i) terms and
select their minimum.
• The computation of each term takes time tc, and the
computation of C[i,j] takes time (j-i)tc. Each entry in
diagonal l can be computed in time ltc.
Optimal Matrix-Parenthesization Problem
• The algorithm computes (n-1) chains of length two. This
takes time (n-1)tc; computing n-2 chains of length three
takes time (n-2)tc. In the final step, the algorithm
computes one chain of length n in time (n-1)tc.
• It follows that the serial time is Θ(n3).
Optimal Matrix-Parenthesization Problem
The diagonal order of computation for the optimal matrix-
parenthesization problem.
Parallel Optimal Matrix-Parenthesization Problem
• Consider a logical ring of processors. In step l, each processor computes a
single element belonging to the lth diagonal.
• On computing the assigned value of the element in table C, each processor
sends its value to all other processors using an all-to-all broadcast.
• The next value can then be computed locally.
• The total time required to compute the entries along diagonal l is ltc+tslog
n+tw(n-1).
• The corresponding parallel time is given by:
Parallel Optimal Matrix-Parenthesization Problem
• When using p (<n) processors, each processor stores n/p nodes.
• The time taken for all-to-all broadcast of n/p words is
and the time to compute n/p entries of the table in the lth diagonal is
ltcn/p.
• This formulation can be improved to use up to n(n+1)/2 processors
using pipelining.
Discussion of Parallel Dynamic Programming
Algorithms
• By representing computation as a graph, we identify
three sources of parallelism: parallelism within nodes,
parallelism across nodes at a level, and pipelining nodes
across multiple levels. The first two are available in serial
formulations and the third one in non-serial formulations.
• Data locality is critical for performance. Different DP
formulations, by the very nature of the problem instance,
have different degrees of locality.

More Related Content

PDF
Goal programming
PPTX
Professional ethics and responsibilities
PDF
Integer Programming, Goal Programming, and Nonlinear Programming
ODP
Ambient intelligence
PPTX
Diabetes Mellitus
PPTX
Hypertension
PPTX
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
PPTX
Power Point Presentation on Artificial Intelligence
Goal programming
Professional ethics and responsibilities
Integer Programming, Goal Programming, and Nonlinear Programming
Ambient intelligence
Diabetes Mellitus
Hypertension
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
Power Point Presentation on Artificial Intelligence

Similar to Chap12 slides (20)

PPT
Dynamic Programming and Applications.ppt
PPTX
Dynamic programming
PPTX
DAA_Hard_Problems_(4th_Sem).pptxxxxxxxxx
PPTX
unit-4-dynamic programming
PPTX
Dynamic programming class 16
PPTX
Undecidable Problems and Approximation Algorithms
PPTX
Lower bound theory Np hard & Np completeness
PPT
dynamic programming Rod cutting class
PPTX
AAC ch 3 Advance strategies (Dynamic Programming).pptx
DOC
Time and space complexity
PPT
Chap10 slides
PPT
1535 graph algorithms
PPTX
Combinatorial Optimization
PPTX
Chapter 5.pptx
DOCX
in computer data structures and algorithms
PDF
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
PDF
High-dimensional polytopes defined by oracles: algorithms, computations and a...
PPT
GraphAlgorithms.pptsfjaaaaaaaaaaaaaaaaaaa
Dynamic Programming and Applications.ppt
Dynamic programming
DAA_Hard_Problems_(4th_Sem).pptxxxxxxxxx
unit-4-dynamic programming
Dynamic programming class 16
Undecidable Problems and Approximation Algorithms
Lower bound theory Np hard & Np completeness
dynamic programming Rod cutting class
AAC ch 3 Advance strategies (Dynamic Programming).pptx
Time and space complexity
Chap10 slides
1535 graph algorithms
Combinatorial Optimization
Chapter 5.pptx
in computer data structures and algorithms
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
High-dimensional polytopes defined by oracles: algorithms, computations and a...
GraphAlgorithms.pptsfjaaaaaaaaaaaaaaaaaaa
Ad

More from BaliThorat1 (20)

PDF
Lec15 sfm
PDF
Lec14 multiview stereo
PPTX
Lec13 stereo converted
PDF
Lec12 epipolar
PPTX
Lec11 single view-converted
PDF
Lec10 alignment
PDF
Lec09 hough
PDF
Lec08 fitting
PDF
8 operating system concept
PDF
7 processor
PDF
6 input output devices
PDF
2 windows operating system
PDF
5 computer memory
PDF
4 computer languages
PDF
1 fundamentals of computer
PDF
1 fundamentals of computer system
PDF
Computer generation and classification
PDF
Algorithm and flowchart
PDF
6 cpu scheduling
PDF
5 process synchronization
Lec15 sfm
Lec14 multiview stereo
Lec13 stereo converted
Lec12 epipolar
Lec11 single view-converted
Lec10 alignment
Lec09 hough
Lec08 fitting
8 operating system concept
7 processor
6 input output devices
2 windows operating system
5 computer memory
4 computer languages
1 fundamentals of computer
1 fundamentals of computer system
Computer generation and classification
Algorithm and flowchart
6 cpu scheduling
5 process synchronization
Ad

Recently uploaded (20)

PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Classroom Observation Tools for Teachers
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Computing-Curriculum for Schools in Ghana
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Cell Types and Its function , kingdom of life
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Classroom Observation Tools for Teachers
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Digestion and Absorption of Carbohydrates, Proteina and Fats
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Unit 4 Skeletal System.ppt.pptxopresentatiom
What if we spent less time fighting change, and more time building what’s rig...
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Computing-Curriculum for Schools in Ghana
Complications of Minimal Access Surgery at WLH
Cell Types and Its function , kingdom of life
Chinmaya Tiranga quiz Grand Finale.pdf
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
A systematic review of self-coping strategies used by university students to ...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Weekly quiz Compilation Jan -July 25.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf

Chap12 slides

  • 1. Dynamic Programming Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text ``Introduction to Parallel Computing'', Addison Wesley, 2003
  • 2. Topic Overview • Overview of Serial Dynamic Programming • Serial Monadic DP Formulations • Nonserial Monadic DP Formulations • Serial Polyadic DP Formulations • Nonserial Polyadic DP Formulations
  • 3. Overview of Serial Dynamic Programming • Dynamic programming (DP) is used to solve a wide variety of discrete optimization problems such as scheduling, string-editing, packaging, and inventory management. • Break problems into subproblems and combine their solutions into solutions to larger problems. • In contrast to divide-and-conquer, there may be relationships across subproblems.
  • 4. Dynamic Programming: Example • Consider the problem of finding a shortest path between a pair of vertices in an acyclic graph. • An edge connecting node i to node j has cost c(i,j). • The graph contains n nodes numbered 0,1,…, n-1, and has an edge from node i to node j only if i < j. Node 0 is source and node n-1 is the destination. • Let f(x) be the cost of the shortest path from node 0 to node x.
  • 5. Dynamic Programming: Example • A graph for which the shortest path between nodes 0 and 4 is to be computed.
  • 6. Dynamic Programming • The solution to a DP problem is typically expressed as a minimum (or maximum) of possible alternate solutions. • If r represents the cost of a solution composed of subproblems x1, x2,…, xl, then r can be written as Here, g is the composition function. • If the optimal solution to each problem is determined by composing optimal solutions to the subproblems and selecting the minimum (or maximum), the formulation is said to be a DP formulation.
  • 7. Dynamic Programming: Example The computation and composition of subproblem solutions to solve problem f(x8).
  • 8. Dynamic Programming • The recursive DP equation is also called the functional equation or optimization equation. • In the equation for the shortest path problem the composition function is f(j) + c(j,x). This contains a single recursive term (f(j)). Such a formulation is called monadic. • If the RHS has multiple recursive terms, the DP formulation is called polyadic.
  • 9. Dynamic Programming • The dependencies between subproblems can be expressed as a graph. • If the graph can be levelized (i.e., solutions to problems at a level depend only on solutions to problems at the previous level), the formulation is called serial, else it is called non-serial. • Based on these two criteria, we can classify DP formulations into four categories - serial-monadic, serial- polyadic, non-serial-monadic, non-serial-polyadic. • This classification is useful since it identifies concurrency and dependencies that guide parallel formulations.
  • 10. Serial Monadic DP Formulations • It is difficult to derive canonical parallel formulations for the entire class of formulations. • For this reason, we select two representative examples, the shortest-path problem for a multistage graph and the 0/1 knapsack problem. • We derive parallel formulations for these problems and identify common principles guiding design within the class.
  • 11. Shortest-Path Problem • Special class of shortest path problem where the graph is a weighted multistage graph of r + 1 levels. • Each level is assumed to have n levels and every node at level i is connected to every node at level i + 1. • Levels zero and r contain only one node, the source and destination nodes, respectively. • The objective of this problem is to find the shortest path from S to R.
  • 12. Shortest-Path Problem An example of a serial monadic DP formulation for finding the shortest path in a graph whose nodes can be organized into levels.
  • 13. Shortest-Path Problem • The ith node at level l in the graph is labeled vi l and the cost of an edge connecting vi l to node vj l+1 is labeled ci l ,j. • The cost of reaching the goal node R from any node vi l is represented by Ci l. • If there are n nodes at level l, the vector [C0 l, C1 l,…, Cn l -1]T is referred to as Cl. Note that C0 = [C0 0]. • We have Ci l = min {(ci l ,j + Cj l+1) | j is a node at level l + 1}
  • 14. Shortest-Path Problem • Since all nodes vj r-1 have only one edge connecting them to the goal node R at level r, the cost Cj r-1 is equal to cj r , - R 1. • We have: Notice that this problem is serial and monadic.
  • 15. Shortest-Path Problem • The cost of reaching the goal node R from any node at level l is (0 < l < r – 1) is
  • 16. Shortest-Path Problem • We can express the solution to the problem as a modified sequence of matrix-vector products. • Replacing the addition operation by minimization and the multiplication operation by addition, the preceding set of equations becomes: where Cl and Cl+1 are n x 1 vectors representing the cost of reaching the goal node from each node at levels l and l + 1.
  • 17. Shortest-Path Problem • Matrix Ml,l+1 is an n x n matrix in which entry (i, j) stores the cost of the edge connecting node i at level l to node j at level l + 1. • The shortest path problem has been formulated as a sequence of r matrix-vector products.
  • 18. Parallel Shortest-Path • We can parallelize this algorithm using the parallel algorithms for the matrix-vector product. • Θ(n) processing elements can compute each vector Cl in time Θ(n) and solve the entire problem in time Θ(rn). • In many instances of this problem, the matrix M may be sparse. For such problems, it is highly desirable to use sparse matrix techniques.
  • 19. 0/1 Knapsack Problem • We are given a knapsack of capacity c and a set of n objects numbered 1,2,…,n. Each object i has weight wi and profit pi. • Let v = [v1, v2,…, vn] be a solution vector in which vi = 0 if object i is not in the knapsack, and vi = 1 if it is in the knapsack. • The goal is to find a subset of objects to put into the knapsack so that (that is, the objects fit into the knapsack) and is maximized (that is, the profit is maximized).
  • 20. 0/1 Knapsack Problem • The naive method is to consider all 2n possible subsets of the n objects and choose the one that fits into the knapsack and maximizes the profit. • Let F[i,x] be the maximum profit for a knapsack of capacity x using only objects {1,2,…,i}. The DP formulation is:
  • 21. 0/1 Knapsack Problem • Construct a table F of size n x c in row-major order. • Filling an entry in a row requires two entries from the previous row: one from the same column and one from the column offset by the weight of the object corresponding to the row. • Computing each entry takes constant time; the sequential run time of this algorithm is Θ(nc). • The formulation is serial-monadic.
  • 22. 0/1 Knapsack Problem Computing entries of table F for the 0/1 knapsack problem. The computation of entry F[i,j] requires communication with processing elements containing entries F[i-1,j] and F[i-1,j-wi].
  • 23. 0/1 Knapsack Problem • Using c processors in a PRAM, we can derive a simple parallel algorithm that runs in O(n) time by partitioning the columns across processors. • In a distributed memory machine, in the jth iteration, for computing F[j,r] at processing element Pr-1, F[j-1,r] is available locally but F[j-1,r-wj] must be fetched. • The communication operation is a circular shift and the time is given by (ts + tw) log c. The total time is therefore tc + (ts + tw) log c. • Across all n iterations (rows), the parallel time is O(n log c). Note that this is not cost optimal.
  • 24. 0/1 Knapsack Problem • Using p-processing elements, each processing element computes c/p elements of the table in each iteration. • The corresponding shift operation takes time (2ts + twc/p), since the data block may be partitioned across two processors, but the total volume of data is c/p. • The corresponding parallel time is n(tcc/p + 2ts + twc/p), or O(nc/p) (which is cost-optimal). • Note that there is an upper bound on the efficiency of this formulation.
  • 25. Nonserial Monadic DP Formulations: Longest-Common- Subsequence • Given a sequence A = <a1, a2,…, an>, a subsequence of A can be formed by deleting some entries from A. • Given two sequences A = <a1, a2,…, an> and B = <b1, b2,…, bm>, find the longest sequence that is a subsequence of both A and B. • If A = <c,a,d,b,r,z> and B = <a,s,b,z>, the longest common subsequence of A and B is <a,b,z>.
  • 26. Longest-Common-Subsequence Problem • Let F[i,j] denote the length of the longest common subsequence of the first i elements of A and the first j elements of B. The objective of the LCS problem is to find F[n,m]. • We can write:
  • 27. Longest-Common-Subsequence Problem • The algorithm computes the two-dimensional F table in a row- or column-major fashion. The complexity is Θ(nm). • Treating nodes along a diagonal as belonging to one level, each node depends on two subproblems at the preceding level and one subproblem two levels prior. • This DP formulation is nonserial monadic.
  • 28. Longest-Common-Subsequence Problem (a) Computing entries of table for the longest-common- subsequence problem. Computation proceeds along the dotted diagonal lines. (b) Mapping elements of the table to processing elements.
  • 29. Longest-Common-Subsequence: Example • Consider the LCS of two amino-acid sequences H E A G A W G H E E and P A W H E A E. For the interested reader, the names of the corresponding amino-acids are A: Alanine, E: Glutamic acid, G: Glycine, H: Histidine, P: Proline, and W: Tryptophan. • The F table for computing the LCS of the sequences. The LCS is A W H E E.
  • 30. Parallel Longest-Common-Subsequence • Table entries are computed in a diagonal sweep from the top-left to the bottom-right corner. • Using n processors in a PRAM, each entry in a diagonal can be computed in constant time. • For two sequences of length n, there are 2n-1 diagonals. • The parallel run time is Θ(n) and the algorithm is cost- optimal.
  • 31. Parallel Longest-Common-Subsequence • Consider a (logical) linear array of processors. Processing element Pi is responsible for the (i+1)th column of the table. • To compute F[i,j], processing element Pj-1 may need either F[i-1,j-1] or F[i,j-1] from the processing element to its left. This communication takes time ts + tw. • The computation takes constant time (tc). • We have: • Note that this formulation is cost-optimal, however, its efficiency is upper-bounded by 0.5! • Can you think of how to fix this?
  • 32. Serial Polyadic DP Formulation: Floyd's All-Pairs Shortest Path • Given weighted graph G(V,E), Floyd's algorithm determines the cost di,j of the shortest path between each pair of nodes in V. • Let di k ,j be the minimum cost of a path from node i to node j, using only nodes v0,v1,…,vk-1. • We have: • Each iteration requires time Θ(n2) and the overall run time of the sequential algorithm is Θ(n3).
  • 33. Serial Polyadic DP Formulation: Floyd's All-Pairs Shortest Path • A PRAM formulation of this algorithm uses n2 processors in a logical 2D mesh. Processor Pi,j computes the value of di k ,j for k=1,2,…,n in constant time. • The parallel runtime is Θ(n) and it is cost-optimal. • The algorithm can easily be adapted to practical architectures, as discussed in our treatment of Graph Algorithms.
  • 34. Nonserial Polyadic DP Formulation: Optimal Matrix- Parenthesization Problem • When multiplying a sequence of matrices, the order of multiplication significantly impacts operation count. • Let C[i,j] be the optimal cost of multiplying the matrices Ai,…Aj. • The chain of matrices can be expressed as a product of two smaller chains, Ai,Ai+1,…,Ak and Ak+1,…,Aj. • The chain Ai,Ai+1,…,Ak results in a matrix of dimensions ri-1 x rk, and the chain Ak+1,…,Aj results in a matrix of dimensions rk x rj. • The cost of multiplying these two matrices is ri-1rkrj.
  • 36. Optimal Matrix-Parenthesization Problem A nonserial polyadic DP formulation for finding an optimal matrix parenthesization for a chain of four matrices. A square node represents the optimal cost of multiplying a matrix chain. A circle node represents a possible parenthesization.
  • 37. Optimal Matrix-Parenthesization Problem • The goal of finding C[1,n] is accomplished in a bottom-up fashion. • Visualize this by thinking of filling in the C table diagonally. Entries in diagonal l corresponds to the cost of multiplying matrix chains of length l+1. • The value of C[i,j] is computed as min{C[i,k] + C[k+1,j] + ri-1rkrj}, where k can take values from i to j-1. • Computing C[i,j] requires that we evaluate (j-i) terms and select their minimum. • The computation of each term takes time tc, and the computation of C[i,j] takes time (j-i)tc. Each entry in diagonal l can be computed in time ltc.
  • 38. Optimal Matrix-Parenthesization Problem • The algorithm computes (n-1) chains of length two. This takes time (n-1)tc; computing n-2 chains of length three takes time (n-2)tc. In the final step, the algorithm computes one chain of length n in time (n-1)tc. • It follows that the serial time is Θ(n3).
  • 39. Optimal Matrix-Parenthesization Problem The diagonal order of computation for the optimal matrix- parenthesization problem.
  • 40. Parallel Optimal Matrix-Parenthesization Problem • Consider a logical ring of processors. In step l, each processor computes a single element belonging to the lth diagonal. • On computing the assigned value of the element in table C, each processor sends its value to all other processors using an all-to-all broadcast. • The next value can then be computed locally. • The total time required to compute the entries along diagonal l is ltc+tslog n+tw(n-1). • The corresponding parallel time is given by:
  • 41. Parallel Optimal Matrix-Parenthesization Problem • When using p (<n) processors, each processor stores n/p nodes. • The time taken for all-to-all broadcast of n/p words is and the time to compute n/p entries of the table in the lth diagonal is ltcn/p. • This formulation can be improved to use up to n(n+1)/2 processors using pipelining.
  • 42. Discussion of Parallel Dynamic Programming Algorithms • By representing computation as a graph, we identify three sources of parallelism: parallelism within nodes, parallelism across nodes at a level, and pipelining nodes across multiple levels. The first two are available in serial formulations and the third one in non-serial formulations. • Data locality is critical for performance. Different DP formulations, by the very nature of the problem instance, have different degrees of locality.