SlideShare a Scribd company logo
Influence of Creep on the Stability of
 Pultruded E-Glass / Polyester Composite
Columns at Elevated Service Temperatures




              By: Evan A. Bennett

         Advisor: David W. Scott, Ph. D.
FRP in Civil Engineering

FRP Components in Civil Engineering
  No Reliable Design Criteria
  Long-Term Behavior
  Elevated Temperatures

Goals of the Current Work
  Expand on Previous Creep Studies on FRP
  Components
  Develop Semi-empirical Predictive Equations for
  Lateral Creep Displacement
  Better Understanding of Long-Term Behavior
  Examine Impact of Elevated Temperatures
Short-Term Properties



Test Specimens                  4
  Pultruded 4 x 4 x ¼”
  Square Tubes
  6 ft Length
                                      4
  Extren Series 500       1/4
  Isophthalic Polyester
  Resin
  E-Glass Rovings and
  CSM
Buckling Loads
            π 2 EL I
                 C
                                                     PE
     PE =                              Pe =
                                            1 + (ns PE Ag GLT )
               2
                       (1)                                      (2)
              Leff



               Short-Term Critical Load Approximations
                                 Approximation
         Current Study      Butz          Euler     Modified Euler
         (Experimental) (Experimental) (Equation 1) (Equation 2)
  Pcr
              50.5             46.6           53.5            49.9
(kips)
Testing Apparatus
                    Top Plate

                                                    Knife Edge



Typical Creep Frame
(Room Temp. Tests)

                           L eff = 75 in
                                                     1-1/2" Threaded Rod




         1-1/2" Hexagonal Nut
                                                      Middle Plate
                     20 x 20 x 1" Steel              Spring
                     Plate
                                                    Bottom Plate
                                                     Hydraulic Jack
                       Load Cell


                                       FRONT VIEW
Testing Apparatus
Elevated Temperature Chambers
Manufacturers Recommendations




From Strongwell Corporation Extren Design Manual (2002)


F.O.S. = 3
Long-Term Testing

               Creep Test Matrix

                        Temperature   Duration
Specimen    l (P/Pcr)
                           (°F)       (hours)
PG-33-R       0.33           73        1000

PG-33-E       0.33          150        1000

PG-67-R       0.67           73        1000

PG-67-E       0.67          150        1000

PG-90-R       0.90           73        1000

PG-90-E       0.90          150        1000
Long-Term Results
                   Midheight Lateral Deflection of All Specimens
                                                                       0.14
                 PG-33-R
                 PG-33-E
                 PG-67-R                                               0.12
         3
                 PG-67-E
                 PG-90-R
                 PG-90-E
                                                                       0.10



         2                                                             0.08
d (mm)




                                                                              d (in)
                                                                       0.06



         1                                                             0.04



                                                                       0.02



         0                                                             0.00
             0        200     400       600        800    1000     1200

                                    Time (hours)
Quasielastic Method

Schapery (1965)
Vinogradov (1987)
Kang (2001)
Remove Eccentricity from Kang’s Analysis

                 λ                               tn
      δ = Ai             (3)          ψ (t ) =        (4)
               1− λ                              β

                             λ [1 +ψ (t )]
               δ (t ) = Ai                     (5)
                           1 − λ [1 +ψ (t )]
Determination of Quasielastic Parameters

         3.0       Room Temperature                                               0.12
                      Specimens

         2.5                                                                      0.10
                                                         PG-33-R
                                                         PG-67-R
                                                         PG-90-R
         2.0                                                                      0.08
                                                         PG-33-R Prediction
                                                         PG-67-R Prediction
d (mm)




                                                                                         d (in)
                                                         PG-90-R Prediction
         1.5                                                                      0.06



         1.0                                                                      0.04



         0.5                                                                      0.02



         0.0                                                                      0.00
               0      200     400       600        800         1000           1200

                                    Time (hours)
Determination of Quasielastic Parameters
                                                                                  0.14

                 Elevated Temperature
                      Specimens                                                   0.12
         3


                                                                                  0.10



         2                                                                        0.08
d (mm)




                                                         PG-33-E




                                                                                         d (in)
                                                         PG-67-E
                                                         PG-90-E
                                                         PG-33-E Prediction       0.06
                                                         PG-67-E Prediction
                                                         PG-90-E Prediction
         1                                                                        0.04



                                                                                  0.02



         0                                                                        0.00
             0       200      400       600        800         1000           1200

                                    Time (hours)
Findley’s Power Law
                                                                                         1


                                      10        PG-90-R

ε (t ) = ε 0 + mt n   (6)
                                                                                         0.1


                                       1




                            d (mm)
                                                m




                                                                                                  d (in)
                                                                                         0.01
                                                          n

δ (t ) = δ 0 + mt n
                                      0.1
                      (7)
                                                                                         0.001


                                     0.01



                                                                                         0.0001
                                            1             10       100        1000   10000

                                                               Time (hours)

log[δ (t ) − δ 0 ] = log(m ) + n log(t ) (8)
Inclusion of Temperature Effects in Predictive Model

  Findley et al. (1956)

                       ⎛σ        ⎞              ⎛σ ⎞
     ε (t ) = ε '0 sinh⎜
                       ⎜σ        ⎟ + m' t n sinh⎜
                                 ⎟              ⎜σ ⎟
                                                   ⎟   (9)
                       ⎝ ε       ⎠              ⎝ m⎠
  Applied to Lateral Deflection

                             ⎛ λ ⎞
     δ (t ) − δ 0 = m' t sinh⎜ ⎟
                      n
                             ⎜λ ⎟
                                           (10)
                             ⎝ m⎠
  Including Temperature

                                 ⎛ λ ⎞
     δ (t ,τ ) − δ 0 = τm' t sinh⎜ ⎟ (11)
                                                                 T
                             n
                                 ⎜λ ⎟                        τ =      (12)
                                 ⎝ m⎠                            TR
Findley Predictions of Lateral Creep
                                                                                0.14
                 Room Temperature
                    Specimens
         3                                                                      0.12

                                                       PG-33-R
                                                       PG-67-R                  0.10
                                                       PG-90-R
                                                       PG-33-R Prediction
                                                       PG-67-R Prediction
d (mm)




                                                                                       d (in)
         2                                                                      0.08
                                                       PG-90-R Prediction


                                                                                0.06



         1                                                                      0.04


                                                                                0.02


         0                                                                      0.00
             0      200     400       600        800         1000           1200

                                  Time (hours)
Findley Predictions of Lateral Creep
                                                                                  0.14

                 Elevated Temperature
                      Specimens                                                   0.12
         3


                                                                                  0.10
                                                         PG-33-E
                                                         PG-67-E
                                                         PG-90-E
         2                                               PG-33-E Prediction       0.08
d (mm)




                                                                                         d (in)
                                                         PG-67-E Prediction
                                                         PG-90-E Prediction
                                                                                  0.06



         1                                                                        0.04



                                                                                  0.02



         0                                                                        0.00
             0       200      400       600        800        1000            1200

                                    Time (hours)
Extended Predictions of Lateral Creep
                 Deflection

                    Predicted Lateral Deflection (in)
Specimen    1000
                     1 Year     5 Years   10 Years 25 Years
            Hours
PG-33-R     0.004     0.007      0.010      0.012       0.015
 PG-33-E    0.008     0.014      0.021      0.025       0.031
PG-67-R     0.013     0.022      0.032      0.038       0.048
 PG-67-E    0.026     0.045      0.066      0.078       0.098
PG-90-R     0.027     0.046      0.068      0.080       0.100
*PG-90-E    0.127     -7.694    -0.288      -0.219      -0.174

*Predicted using Quasielastic Creep Parameters
Post-Creep Buckling Tests

                                                                                     d (in)
Recovery                                    0.0     0.2     0.4   0.6           0.8       1.0          1.2         1.4     1.6     1.8
                                                                                                                                         60
   1 Week (168 Hours)                 250         PG-33-E

Permanent Modulus                                                                                                                        50

Reduction                             200


         π 2 EL I
              C                                                                                                                          40

  PE =




                                                                                                                                              Load (kips)
                                                                           50


                          Load (kN)
            2                         150
           Leff                                                            40                                                            30




                                                                  d (mm)
                                                                           30
                                      100
Specimen Failure                                                           20                      Slope = 227 kN (50.9 kips)            20

                                                                           10
                                      50
                                                                           0                                                             10
                                                                           0.00       0.05      0.10        0.15    0.20    0.25

                                                                                                d/P (mm/kN)
                                       0                                                                                                 0
                                            0               10                  20                     30                  40

                                                                                  d (mm)
Specimen Failure
Post-Creep Buckling Test Results

            Experimental Buckling Loads
                  Pexp      Pexp /PE      Pexp /PST
Specimen
                 (kips)       (%)           (%)
PG-33-R          50.5        94.4           99.9
PG-33-E          50.9        95.3          100.8
PG-67-R          50.5        94.4           99.9
PG-67-E          34.1        63.7           67.5
PG-90-R          59.2        110.7         117.2
PG-90-E          32.5        60.7           64.4
PE (kips)        53.5      PST (kips)       50.5
Conclusions


Quasielastic Method Effective with Bending

Power Law Model Effective without Bending

Transition Point Between l = 0.67 and l = 0.90

Sustained Loads and Elevated Temperatures
Reduce Modulus

F.S. = 3 Appears Reasonable

More Related Content

DOC
Regression.Doc Rini
DOC
Regresi Ni3.Nf
PPSX
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
PDF
Molecular models, threads and you
PDF
Structural Design of 38 m Special Purpose Vessel in Aluminium Alloy
PDF
CMS - Bosone di Higgs
PDF
Bradford 2nd April
PDF
Geotextile Turbidity Curtain Failure
Regression.Doc Rini
Regresi Ni3.Nf
化工概論: 製程分析模擬最適化與控制_陳奇中教授演講投影片
Molecular models, threads and you
Structural Design of 38 m Special Purpose Vessel in Aluminium Alloy
CMS - Bosone di Higgs
Bradford 2nd April
Geotextile Turbidity Curtain Failure

What's hot (13)

PDF
Senergy Formation Damage Presentation
PDF
16.40 o10 d wiltshire
PDF
Nanoscience seminar Grenoble March 2012
PDF
Graphs on Synthetic Data
PDF
precRec vs. baselines
PDF
Spatially resolved characterization of capping using nondestructive ultrasoni...
PDF
Application of survival data analysis introduction and discussion
PDF
Bfi_barcelona08
PPTX
Mandeep asme ectc_2011
PPTX
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
PDF
Maste Thesis Ap Thiago Assis
PDF
Lk2419191924
PDF
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...
Senergy Formation Damage Presentation
16.40 o10 d wiltshire
Nanoscience seminar Grenoble March 2012
Graphs on Synthetic Data
precRec vs. baselines
Spatially resolved characterization of capping using nondestructive ultrasoni...
Application of survival data analysis introduction and discussion
Bfi_barcelona08
Mandeep asme ectc_2011
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
Maste Thesis Ap Thiago Assis
Lk2419191924
Using Graph Partitioning Techniques for Neighbour Selection in User-Based Col...
Ad

Similar to Thesis Presentation (20)

PDF
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
PDF
Datasheet - Medical
PDF
A computational (DEM) study of fluidized beds with particle size distribution...
PDF
On The Measurement Of Yield Strength
PDF
Session 2 ic2011 miller-riffel
PDF
Datasheet - Nuclear and Power
PPTX
Benson-ASRANET2012
PPSX
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
PDF
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
PDF
DOC
A short list of material din vs astm
PPSX
FAST2011 - Benson - Presentation
PDF
Khx3200ak2 2g
PDF
Experimental study on polypropylene fiber reinforced moderate deep beam
PPT
MPR portugal 2007
PDF
Ciasem 2005 villar
PDF
Poster ic2011 muszynski
PDF
Initial Sintering Mechanism of Mesocarbon Microbeads
PDF
Csbmm 2003 villar
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Datasheet - Medical
A computational (DEM) study of fluidized beds with particle size distribution...
On The Measurement Of Yield Strength
Session 2 ic2011 miller-riffel
Datasheet - Nuclear and Power
Benson-ASRANET2012
Constitutive equations for hot extrusion of AA6005, AA6063, AA7020 alloys
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
A short list of material din vs astm
FAST2011 - Benson - Presentation
Khx3200ak2 2g
Experimental study on polypropylene fiber reinforced moderate deep beam
MPR portugal 2007
Ciasem 2005 villar
Poster ic2011 muszynski
Initial Sintering Mechanism of Mesocarbon Microbeads
Csbmm 2003 villar
Ad

Thesis Presentation

  • 1. Influence of Creep on the Stability of Pultruded E-Glass / Polyester Composite Columns at Elevated Service Temperatures By: Evan A. Bennett Advisor: David W. Scott, Ph. D.
  • 2. FRP in Civil Engineering FRP Components in Civil Engineering No Reliable Design Criteria Long-Term Behavior Elevated Temperatures Goals of the Current Work Expand on Previous Creep Studies on FRP Components Develop Semi-empirical Predictive Equations for Lateral Creep Displacement Better Understanding of Long-Term Behavior Examine Impact of Elevated Temperatures
  • 3. Short-Term Properties Test Specimens 4 Pultruded 4 x 4 x ¼” Square Tubes 6 ft Length 4 Extren Series 500 1/4 Isophthalic Polyester Resin E-Glass Rovings and CSM
  • 4. Buckling Loads π 2 EL I C PE PE = Pe = 1 + (ns PE Ag GLT ) 2 (1) (2) Leff Short-Term Critical Load Approximations Approximation Current Study Butz Euler Modified Euler (Experimental) (Experimental) (Equation 1) (Equation 2) Pcr 50.5 46.6 53.5 49.9 (kips)
  • 5. Testing Apparatus Top Plate Knife Edge Typical Creep Frame (Room Temp. Tests) L eff = 75 in 1-1/2" Threaded Rod 1-1/2" Hexagonal Nut Middle Plate 20 x 20 x 1" Steel Spring Plate Bottom Plate Hydraulic Jack Load Cell FRONT VIEW
  • 8. Manufacturers Recommendations From Strongwell Corporation Extren Design Manual (2002) F.O.S. = 3
  • 9. Long-Term Testing Creep Test Matrix Temperature Duration Specimen l (P/Pcr) (°F) (hours) PG-33-R 0.33 73 1000 PG-33-E 0.33 150 1000 PG-67-R 0.67 73 1000 PG-67-E 0.67 150 1000 PG-90-R 0.90 73 1000 PG-90-E 0.90 150 1000
  • 10. Long-Term Results Midheight Lateral Deflection of All Specimens 0.14 PG-33-R PG-33-E PG-67-R 0.12 3 PG-67-E PG-90-R PG-90-E 0.10 2 0.08 d (mm) d (in) 0.06 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 11. Quasielastic Method Schapery (1965) Vinogradov (1987) Kang (2001) Remove Eccentricity from Kang’s Analysis λ tn δ = Ai (3) ψ (t ) = (4) 1− λ β λ [1 +ψ (t )] δ (t ) = Ai (5) 1 − λ [1 +ψ (t )]
  • 12. Determination of Quasielastic Parameters 3.0 Room Temperature 0.12 Specimens 2.5 0.10 PG-33-R PG-67-R PG-90-R 2.0 0.08 PG-33-R Prediction PG-67-R Prediction d (mm) d (in) PG-90-R Prediction 1.5 0.06 1.0 0.04 0.5 0.02 0.0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 13. Determination of Quasielastic Parameters 0.14 Elevated Temperature Specimens 0.12 3 0.10 2 0.08 d (mm) PG-33-E d (in) PG-67-E PG-90-E PG-33-E Prediction 0.06 PG-67-E Prediction PG-90-E Prediction 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 14. Findley’s Power Law 1 10 PG-90-R ε (t ) = ε 0 + mt n (6) 0.1 1 d (mm) m d (in) 0.01 n δ (t ) = δ 0 + mt n 0.1 (7) 0.001 0.01 0.0001 1 10 100 1000 10000 Time (hours) log[δ (t ) − δ 0 ] = log(m ) + n log(t ) (8)
  • 15. Inclusion of Temperature Effects in Predictive Model Findley et al. (1956) ⎛σ ⎞ ⎛σ ⎞ ε (t ) = ε '0 sinh⎜ ⎜σ ⎟ + m' t n sinh⎜ ⎟ ⎜σ ⎟ ⎟ (9) ⎝ ε ⎠ ⎝ m⎠ Applied to Lateral Deflection ⎛ λ ⎞ δ (t ) − δ 0 = m' t sinh⎜ ⎟ n ⎜λ ⎟ (10) ⎝ m⎠ Including Temperature ⎛ λ ⎞ δ (t ,τ ) − δ 0 = τm' t sinh⎜ ⎟ (11) T n ⎜λ ⎟ τ = (12) ⎝ m⎠ TR
  • 16. Findley Predictions of Lateral Creep 0.14 Room Temperature Specimens 3 0.12 PG-33-R PG-67-R 0.10 PG-90-R PG-33-R Prediction PG-67-R Prediction d (mm) d (in) 2 0.08 PG-90-R Prediction 0.06 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 17. Findley Predictions of Lateral Creep 0.14 Elevated Temperature Specimens 0.12 3 0.10 PG-33-E PG-67-E PG-90-E 2 PG-33-E Prediction 0.08 d (mm) d (in) PG-67-E Prediction PG-90-E Prediction 0.06 1 0.04 0.02 0 0.00 0 200 400 600 800 1000 1200 Time (hours)
  • 18. Extended Predictions of Lateral Creep Deflection Predicted Lateral Deflection (in) Specimen 1000 1 Year 5 Years 10 Years 25 Years Hours PG-33-R 0.004 0.007 0.010 0.012 0.015 PG-33-E 0.008 0.014 0.021 0.025 0.031 PG-67-R 0.013 0.022 0.032 0.038 0.048 PG-67-E 0.026 0.045 0.066 0.078 0.098 PG-90-R 0.027 0.046 0.068 0.080 0.100 *PG-90-E 0.127 -7.694 -0.288 -0.219 -0.174 *Predicted using Quasielastic Creep Parameters
  • 19. Post-Creep Buckling Tests d (in) Recovery 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 60 1 Week (168 Hours) 250 PG-33-E Permanent Modulus 50 Reduction 200 π 2 EL I C 40 PE = Load (kips) 50 Load (kN) 2 150 Leff 40 30 d (mm) 30 100 Specimen Failure 20 Slope = 227 kN (50.9 kips) 20 10 50 0 10 0.00 0.05 0.10 0.15 0.20 0.25 d/P (mm/kN) 0 0 0 10 20 30 40 d (mm)
  • 21. Post-Creep Buckling Test Results Experimental Buckling Loads Pexp Pexp /PE Pexp /PST Specimen (kips) (%) (%) PG-33-R 50.5 94.4 99.9 PG-33-E 50.9 95.3 100.8 PG-67-R 50.5 94.4 99.9 PG-67-E 34.1 63.7 67.5 PG-90-R 59.2 110.7 117.2 PG-90-E 32.5 60.7 64.4 PE (kips) 53.5 PST (kips) 50.5
  • 22. Conclusions Quasielastic Method Effective with Bending Power Law Model Effective without Bending Transition Point Between l = 0.67 and l = 0.90 Sustained Loads and Elevated Temperatures Reduce Modulus F.S. = 3 Appears Reasonable