SlideShare a Scribd company logo
Electrical Machines-II
6th Semester, EE and EEE
By
Dr. Binod Kumar Sahu
Associate Professor, Electrical Engg.
Siksha ‘O’ Anusandhan, Deemed to be University,
Bhubaneswar, Odisha, India
Lecture-33
2
Learning Outcomes: - (Previous Lecture_32)
 To Analyse the voltage equation of a Salient Pole Synchronous Motor.
 To draw and analyse the phasor diagram of a salient pole synchronous motor.
 To derive the formulae related to determination of back emf and load angle.
3
Learning Outcomes: - (Today’s Lecture_33)
 To solve numerical on voltage equation to determine the back emf and load
angle of a Salient Pole Synchronous Motor.
 To analyse the power equation and power angle characteristics of a
cylindrical pole synchronous motor.
4
Formulae related to determination of back and load angle of a salient
pole Synchronous Motor
( ' ' ' ')
( ' ' ' ')
a b
a b
for lagging power factor I lagging both V and E
for lagging power factor I lagging V but leading E
for leading power factor
 
  
 


 
 
( ' ' ' ')
( ' ' ' ')
q a d d a b
b q a d d a b
q a d d
Vcos I R I X for lagging power factor I lagging both V and E
E Vcos I R I X for lagging power factor I lagging V but leading E
Vcos I R I X for leading power factor



  

  

 
( ' ' ' ')
( ' ' ' ')
a q-1
a b
a a
a q-1
a b
a a
a q-1
a a
Vsin I X
tan for lagging power factor I lagging both V and E
Vcos I R
I X Vsin
tan for lagging power factor I lagging V but leading E
Vcos I R
I X Vsin
tan for leading
Vcos I R







 
 
 
 
  
 
 
 
 
power factor










5
Numerical on determination of back emf and load angle of a salient pole
synchronous motor
1. A 20 MVA, 3-phase, 11 kV, 12-pole, 50 Hz, star connected salient pole synchronous motor has
direct and quadrature axis reactance per phase of 5 Ω and 3 Ω respectively. Determine the
excitation voltage and load angle when the machine is drawing (a) rated power at 0.5 pf lagging,
(b) half the rated power 0.8 pf leading, (c) rated power at 0.95 pf lagging.3
6
3
0
1 1
11 10
, 6350.85
3
20 10
( ) , 1049.73
3 3 11 10
, 60 .
6350.85 0.5 1049.73 3
6350.85 0.5 1049.73 0
a
L
a q
a a
Termianl voltage V V
S
a Armaturecurrent I A
V
Power factor angle lagging
Vsin I X
tan tan
Vcos I R




 

 

  
  

     
       
0
0 0 0
0
0
0
36.51
, 60 36.51 23.49
1049.73 (36.51 ) 624.6 .
1049.73 (36.51 ) 843.69 .
, 6350.85 (23.49 ) 0 624.6 5 2701.72
d a
q a
b q a d d
Load angle
I I sin sin A
I I cos cos A
Soback emf E Vcos I R I X cos V
  





    
   
   
        
V
Ia
Eb



6
3
6
3
0
1 1
11 10
, 6350.85
3
0.5 20 10
( ) , 524.86
3 3 11 10
, 36.87 .
6350.85 0.5 524.86 3
6350.85 0.5 524.86 0
a
L
a q
a a
Termianl voltage V V
S
b Armaturecurrent I A
V
Power factor angle leading
Vsin I X
tan tan
Vcos I R




 

 
 
  
  

    
  
    
0
0 0 0
0
0
0
46.67
, 46.67 36.87 9.8
1049.73 (36.51 ) 381.77 .
1049.73 (36.51 ) 360.2 .
, 6350.85 (9.8 ) 0 360.2 5 8167.1 .
d a
q a
b q a d d
Load angle
I I sin sin A
I I cos cos A
Soback emf E Vcos I R I X cos V
  



 
 
 
    
   
   
        
V
Ia
Eb
 

7
3
6
3
0
1 1
11 10
, 6350.85
3
20 10
( ) , 1049.73
3 3 11 10
, 18.2 .
6350.85 0.95 1049.73 3
6350.85 0.31 1049.73 0
a
L
a q
a a
Termianl voltage V V
S
c Armaturecurrent I A
V
Power factor angle lagging
Vsin I X
tan tan
Vcos I R




 

 

  
  

    
  
    
0
0 0 0
0
0
40.4
' ' , ' ',
, 18.2 40.4 58.6
1049.73 (40.4 ) 680.16 .
1049.73 (40.4 ) 843.69 .
, 6350.85 (
a b
d a
q a
b q a d d
Since is negative I lags V but leads E
Load angle
I I sin sin A
I I cos cos A
Soback emf E Vcos I R I X cos

  



 
  
 
    
   
   
     0
50.6 ) 0 680.16 5 6711.43V   
V
Ia
Eb



8
2. A 200 kW, 3-phase, 11 kV, 10-pole, 50 Hz, star connected salient pole synchronous motor has
direct and quadrature axis reactance per phase of 1.2 pu and 0.8 pu respectively. Determine the
excitation voltage and load angle when the machine is drawing rated power input of 200 MW at
0.98 pf leading.
0
1 0
0
1 1 0
0
, 1 0 .
, (0.98) 11.48 .
, 1 11.48
1 0.199 1 0.8
45.55
1 0.98 1 0
, 45.55 14.48
a
a q
a a
Termianl voltage V pu
Power factor angle cos leading
Armaturecurrent I
Vsin I X
tan tan
Vcos I R
Load angle




  

 
 
 
 
     
          
    0 0
0
0
0
34
1 (45.55 ) 0.714 .
1 (45.55 ) 0.7 .
, 1 (34 ) 0 0.714 1.2 1.685 .
, , 1.685 11 18.535 .
d a
q a
b q a d d
b
I I sin sin pu
I I cos cos pu
Soback emf E Vcos I R I X cos pu
So linevalueof back emf E kV




   
   
        
  
9
Power Equation of a cylindrical pole Alternator: -
Real Power input, Pi = Real part of ‘Si’, and reactive power input, Qi = Imaginary part
of ‘Si’.
0
0
0 2
0
, 0 ,
,
,
0
0
, * 0 ( ) ( )
b b
s s
b b
a
s s
b b
i a
s s s
Let V V
E E
Z Z
V EV E
I
Z Z
V E VEV
Complex power input tomotor S V I V
Z Z Z





  



 
 
 
  
 
   
 

  
        
 
2 2
cos( ) cos( ), sin( ) sin( )b b
i i
s s s s
VE VEV V
P and Q
Z Z Z Z
          
fV
fI
Field CircuitArmature Circuit
bE
aIar sx
V
10
 Condition for maximum active power input is
 So, maximum power that the synchronous motor can deliver is :
 If the armature resistance neglected because of its small value, then Synchronous
Impedance,
 So, expressions of active and reactive power becomes:
0
90s a s s sZ r jX jX X    
2
0 0
2 2
0 0
cos(90 ) cos(90 ) sin
sin(90 ) sin(90 ) cos ( )
b b
i
s s s
b b
b
s s s s s
VE VEV
P P
X X X
VE VEV V V
and Q Q V E cos
X X X X X
 
  
    
       
0 0
0 sin( ) 0 180 180idP
d
     

         
2 2
0
cos cos(180 ) cosb b
im
s s s s
VE VEV V
P
Z Z Z Z
    
11
0
0 2
, *
0
0
, ( ) ( )
b a
b b
a
s s
b b b
b
s s s
Complex power output of themotor S E I
V EV E
I
Z Z
V E VE E
So S E
Z Z Z



   

 
 

   
 

  
        
 
So, active power output is:
2
cos( ) cos( )b b
s s
VE E
P
Z Z
    
So, reactive power output is:
2
sin( ) sin( )b b
s s
VE E
Q
Z Z
    
12
Condition for maximum active power output is
So, maximum active power output is,
2
0
0 cos( ) cos( ) sin( ) 0 0b b
s s
VE EdP d
d d Z Z
        
 
 
             
 
2
max cos( )b b
s s
VE E
P
Z Z
 
13
Active power output is:
2
0 0
cos(90 ) cos(90 ) sinb b b
s s s
VE E VE
P
X X X
    
Reactive power output is:
2 2
0 0
sin(90 ) sin(90 ) cosb b b b
s s s s
VE E VE E
Q
X X X X
     
For machines having negligible armature resistance, i.e.
0
90s a s s sZ r jX jX X    
14
Waveforms are plotted by taking V = 1.0 pu, Eb = 0.98 pu,
Zs = 0.4 + j 2 pu and varying load angle from 00 to 1800.
15
16
17
1. A 3-phase, 100 HP, 440 V, star connected synchronous motor has a synchronous impedance of
(0.1 + j 1) Ω/phase. Calculate the load angle, armature current, power factor and efficiency with
an excitation emf of 400 V if the excitation and torque losses are 4 kW.
0
2
440
, 254 .
3
400
, 230.94 .
3
0.1 1 1.005 84.3
100 746 4000 78600
3 3
cos( ) cos( )
440 400
78600 cos(84.3
1.005
b
s
b b
om
s s
Supply voltage V V
Back emf E V
Z j
Mechanical power developed W
But mechanical power developed
VE E
P
Z Z
  
 
 
    
   
  


2
0 0
0
400
) cos(84.3 )
1.005
26.9


 
 
18
0 0
0
0
254 0 230.94 26.9
, , 114.33 19
0.1 1
cos(19 ) 0.95
, 3 cos( ) 3 440 114.33 0.95 82774.6
786
, 100
b
a
s
i L a
o
i
V E
So armaturecurrent I
Z j
Operating power factor lagging
Input power tothemotro P V I W
P
Efficiency
P


 
    
    

 
        
  
00
100 94.96%
82774.6
 
19
Thank you

More Related Content

PDF
Eet3082 binod kumar sahu lecture_34
PDF
Eet3082 binod kumar sahu lecture_31
PDF
Eet3082 binod kumar sahu lecturer_14
PDF
Eet3082 binod kumar sahu lecturer_24
PDF
Eet3082 binod kumar sahu lecturer_25
PDF
Electrical machines solved objective
PDF
Eet3082 binod kumar sahu lecture_35
PDF
Eet3082 binod kumar sahu lecture_36
Eet3082 binod kumar sahu lecture_34
Eet3082 binod kumar sahu lecture_31
Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_24
Eet3082 binod kumar sahu lecturer_25
Electrical machines solved objective
Eet3082 binod kumar sahu lecture_35
Eet3082 binod kumar sahu lecture_36

What's hot (19)

PDF
Eet3082 binod kumar sahu lecture_39
PDF
Eet3082 binod kumar sahu lecturer_23
PDF
Electrical formulas
DOCX
Electrical formulas
PDF
electrical objective
PDF
Eet3082 binod kumar sahu lecture_38
DOC
Soln unit5
PDF
transfarmers and generators
PDF
Objective question eee
PPT
Ee1 chapter13 impedance
DOC
Questions unit4
PDF
Ies electrical engineering - electrical machines
PDF
Electrical engineering objective type questions(www.allexamreview.com) أساأ...
DOC
Questions From 1st Unit Nagrath
PDF
Eet3082 binod kumar sahu lecturer_13
PPT
L36 3ph im
DOCX
Practice questions for unit ii
PPT
T8 1 ph-tr
PPT
Lecture 14
Eet3082 binod kumar sahu lecture_39
Eet3082 binod kumar sahu lecturer_23
Electrical formulas
Electrical formulas
electrical objective
Eet3082 binod kumar sahu lecture_38
Soln unit5
transfarmers and generators
Objective question eee
Ee1 chapter13 impedance
Questions unit4
Ies electrical engineering - electrical machines
Electrical engineering objective type questions(www.allexamreview.com) أساأ...
Questions From 1st Unit Nagrath
Eet3082 binod kumar sahu lecturer_13
L36 3ph im
Practice questions for unit ii
T8 1 ph-tr
Lecture 14
Ad

Similar to Eet3082 binod kumar sahu lecture_33 (20)

PDF
Eet3082 binod kumar sahu lecturer_14
PDF
Assignment & solution (selected)
PDF
Power Electronics Lab Manual Spring 2017
PDF
NR-Power Flow.pdf
PPT
Lecture_12 Power Flow Analysis and it techniques
PDF
Eet3082 binod kumar sahu lecture_37
PPTX
Newton raphson method
PPT
Load flow study Part-II
PDF
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
PDF
Eet3082 binod kumar sahu lecturer_10
PPTX
fd6790bc-9642-4e63-8a17-f24f2ce7a6d9.pptx
PDF
Eet3082 binod kumar sahu lecturer_08
PPT
Stability with analysis and psa and load flow.ppt
PDF
Three phase balanced load circuits and synchronous generators
PPTX
Determination of Equivalent Circuit parameters and performance characteristic...
PDF
Space vector pwm_inverter
PPT
UNIT-III complex reactive three phase.ppt
PPT
Lecture 12
PDF
Objective Electrical Electronics Engineering Questions and Answers
PDF
Eet3082 binod kumar sahu lecturer_14
Assignment & solution (selected)
Power Electronics Lab Manual Spring 2017
NR-Power Flow.pdf
Lecture_12 Power Flow Analysis and it techniques
Eet3082 binod kumar sahu lecture_37
Newton raphson method
Load flow study Part-II
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
Eet3082 binod kumar sahu lecturer_10
fd6790bc-9642-4e63-8a17-f24f2ce7a6d9.pptx
Eet3082 binod kumar sahu lecturer_08
Stability with analysis and psa and load flow.ppt
Three phase balanced load circuits and synchronous generators
Determination of Equivalent Circuit parameters and performance characteristic...
Space vector pwm_inverter
UNIT-III complex reactive three phase.ppt
Lecture 12
Objective Electrical Electronics Engineering Questions and Answers
Ad

More from BinodKumarSahu5 (19)

PDF
Design of rotating electrical machines
PDF
Electrical machines 1
PDF
Inductor and transformer desing
PDF
Introduction to matlab
PDF
Eet3082 binod kumar sahu lecture_32
PDF
Eet3082 binod kumar sahu lecture_30
PDF
Eet3082 binod kumar sahu lecture_29
PDF
Eet3082 binod kumar sahu lecture_28
PDF
Eet3082 binod kumar sahu lecture_27
PDF
Eet3082 binod kumar sahu lecture_26
PDF
Eet3082 binod kumar sahu lecturer_11
PDF
Eet3082 binod kumar sahu lecturer_09
PDF
Eet3082 binod kumar sahu lecturer_12
PDF
Eet3082 binod kumar sahu lecturer_05 & 6 new
PDF
Eet3082 binod kumar sahu lecturer_07
PDF
Eet3082 binod kumar sahu lecturer_05 & 6 new
PDF
Eet3082 binod kumar sahu lecture_03
PDF
Eet3082 binod kumar sahu lecture_02
PDF
Eet3082 binod kumar sahu lecture_01
Design of rotating electrical machines
Electrical machines 1
Inductor and transformer desing
Introduction to matlab
Eet3082 binod kumar sahu lecture_32
Eet3082 binod kumar sahu lecture_30
Eet3082 binod kumar sahu lecture_29
Eet3082 binod kumar sahu lecture_28
Eet3082 binod kumar sahu lecture_27
Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecturer_11
Eet3082 binod kumar sahu lecturer_09
Eet3082 binod kumar sahu lecturer_12
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_07
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecture_03
Eet3082 binod kumar sahu lecture_02
Eet3082 binod kumar sahu lecture_01

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Yogi Goddess Pres Conference Studio Updates
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Lesson notes of climatology university.
Abdominal Access Techniques with Prof. Dr. R K Mishra
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
01-Introduction-to-Information-Management.pdf
Cell Structure & Organelles in detailed.
Supply Chain Operations Speaking Notes -ICLT Program
Chinmaya Tiranga quiz Grand Finale.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Yogi Goddess Pres Conference Studio Updates
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
A systematic review of self-coping strategies used by university students to ...
202450812 BayCHI UCSC-SV 20250812 v17.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
GDM (1) (1).pptx small presentation for students
Orientation - ARALprogram of Deped to the Parents.pptx
VCE English Exam - Section C Student Revision Booklet
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Lesson notes of climatology university.

Eet3082 binod kumar sahu lecture_33

  • 1. Electrical Machines-II 6th Semester, EE and EEE By Dr. Binod Kumar Sahu Associate Professor, Electrical Engg. Siksha ‘O’ Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India Lecture-33
  • 2. 2 Learning Outcomes: - (Previous Lecture_32)  To Analyse the voltage equation of a Salient Pole Synchronous Motor.  To draw and analyse the phasor diagram of a salient pole synchronous motor.  To derive the formulae related to determination of back emf and load angle.
  • 3. 3 Learning Outcomes: - (Today’s Lecture_33)  To solve numerical on voltage equation to determine the back emf and load angle of a Salient Pole Synchronous Motor.  To analyse the power equation and power angle characteristics of a cylindrical pole synchronous motor.
  • 4. 4 Formulae related to determination of back and load angle of a salient pole Synchronous Motor ( ' ' ' ') ( ' ' ' ') a b a b for lagging power factor I lagging both V and E for lagging power factor I lagging V but leading E for leading power factor              ( ' ' ' ') ( ' ' ' ') q a d d a b b q a d d a b q a d d Vcos I R I X for lagging power factor I lagging both V and E E Vcos I R I X for lagging power factor I lagging V but leading E Vcos I R I X for leading power factor              ( ' ' ' ') ( ' ' ' ') a q-1 a b a a a q-1 a b a a a q-1 a a Vsin I X tan for lagging power factor I lagging both V and E Vcos I R I X Vsin tan for lagging power factor I lagging V but leading E Vcos I R I X Vsin tan for leading Vcos I R                           power factor          
  • 5. 5 Numerical on determination of back emf and load angle of a salient pole synchronous motor 1. A 20 MVA, 3-phase, 11 kV, 12-pole, 50 Hz, star connected salient pole synchronous motor has direct and quadrature axis reactance per phase of 5 Ω and 3 Ω respectively. Determine the excitation voltage and load angle when the machine is drawing (a) rated power at 0.5 pf lagging, (b) half the rated power 0.8 pf leading, (c) rated power at 0.95 pf lagging.3 6 3 0 1 1 11 10 , 6350.85 3 20 10 ( ) , 1049.73 3 3 11 10 , 60 . 6350.85 0.5 1049.73 3 6350.85 0.5 1049.73 0 a L a q a a Termianl voltage V V S a Armaturecurrent I A V Power factor angle lagging Vsin I X tan tan Vcos I R                                0 0 0 0 0 0 0 36.51 , 60 36.51 23.49 1049.73 (36.51 ) 624.6 . 1049.73 (36.51 ) 843.69 . , 6350.85 (23.49 ) 0 624.6 5 2701.72 d a q a b q a d d Load angle I I sin sin A I I cos cos A Soback emf E Vcos I R I X cos V                               V Ia Eb   
  • 6. 6 3 6 3 0 1 1 11 10 , 6350.85 3 0.5 20 10 ( ) , 524.86 3 3 11 10 , 36.87 . 6350.85 0.5 524.86 3 6350.85 0.5 524.86 0 a L a q a a Termianl voltage V V S b Armaturecurrent I A V Power factor angle leading Vsin I X tan tan Vcos I R                                0 0 0 0 0 0 0 46.67 , 46.67 36.87 9.8 1049.73 (36.51 ) 381.77 . 1049.73 (36.51 ) 360.2 . , 6350.85 (9.8 ) 0 360.2 5 8167.1 . d a q a b q a d d Load angle I I sin sin A I I cos cos A Soback emf E Vcos I R I X cos V                                   V Ia Eb   
  • 7. 7 3 6 3 0 1 1 11 10 , 6350.85 3 20 10 ( ) , 1049.73 3 3 11 10 , 18.2 . 6350.85 0.95 1049.73 3 6350.85 0.31 1049.73 0 a L a q a a Termianl voltage V V S c Armaturecurrent I A V Power factor angle lagging Vsin I X tan tan Vcos I R                               0 0 0 0 0 0 40.4 ' ' , ' ', , 18.2 40.4 58.6 1049.73 (40.4 ) 680.16 . 1049.73 (40.4 ) 843.69 . , 6350.85 ( a b d a q a b q a d d Since is negative I lags V but leads E Load angle I I sin sin A I I cos cos A Soback emf E Vcos I R I X cos                                 0 50.6 ) 0 680.16 5 6711.43V    V Ia Eb   
  • 8. 8 2. A 200 kW, 3-phase, 11 kV, 10-pole, 50 Hz, star connected salient pole synchronous motor has direct and quadrature axis reactance per phase of 1.2 pu and 0.8 pu respectively. Determine the excitation voltage and load angle when the machine is drawing rated power input of 200 MW at 0.98 pf leading. 0 1 0 0 1 1 0 0 , 1 0 . , (0.98) 11.48 . , 1 11.48 1 0.199 1 0.8 45.55 1 0.98 1 0 , 45.55 14.48 a a q a a Termianl voltage V pu Power factor angle cos leading Armaturecurrent I Vsin I X tan tan Vcos I R Load angle                                      0 0 0 0 0 34 1 (45.55 ) 0.714 . 1 (45.55 ) 0.7 . , 1 (34 ) 0 0.714 1.2 1.685 . , , 1.685 11 18.535 . d a q a b q a d d b I I sin sin pu I I cos cos pu Soback emf E Vcos I R I X cos pu So linevalueof back emf E kV                        
  • 9. 9 Power Equation of a cylindrical pole Alternator: - Real Power input, Pi = Real part of ‘Si’, and reactive power input, Qi = Imaginary part of ‘Si’. 0 0 0 2 0 , 0 , , , 0 0 , * 0 ( ) ( ) b b s s b b a s s b b i a s s s Let V V E E Z Z V EV E I Z Z V E VEV Complex power input tomotor S V I V Z Z Z                                            2 2 cos( ) cos( ), sin( ) sin( )b b i i s s s s VE VEV V P and Q Z Z Z Z            fV fI Field CircuitArmature Circuit bE aIar sx V
  • 10. 10  Condition for maximum active power input is  So, maximum power that the synchronous motor can deliver is :  If the armature resistance neglected because of its small value, then Synchronous Impedance,  So, expressions of active and reactive power becomes: 0 90s a s s sZ r jX jX X     2 0 0 2 2 0 0 cos(90 ) cos(90 ) sin sin(90 ) sin(90 ) cos ( ) b b i s s s b b b s s s s s VE VEV P P X X X VE VEV V V and Q Q V E cos X X X X X                   0 0 0 sin( ) 0 180 180idP d                  2 2 0 cos cos(180 ) cosb b im s s s s VE VEV V P Z Z Z Z     
  • 11. 11 0 0 2 , * 0 0 , ( ) ( ) b a b b a s s b b b b s s s Complex power output of themotor S E I V EV E I Z Z V E VE E So S E Z Z Z                                   So, active power output is: 2 cos( ) cos( )b b s s VE E P Z Z      So, reactive power output is: 2 sin( ) sin( )b b s s VE E Q Z Z     
  • 12. 12 Condition for maximum active power output is So, maximum active power output is, 2 0 0 cos( ) cos( ) sin( ) 0 0b b s s VE EdP d d d Z Z                              2 max cos( )b b s s VE E P Z Z  
  • 13. 13 Active power output is: 2 0 0 cos(90 ) cos(90 ) sinb b b s s s VE E VE P X X X      Reactive power output is: 2 2 0 0 sin(90 ) sin(90 ) cosb b b b s s s s VE E VE E Q X X X X       For machines having negligible armature resistance, i.e. 0 90s a s s sZ r jX jX X    
  • 14. 14 Waveforms are plotted by taking V = 1.0 pu, Eb = 0.98 pu, Zs = 0.4 + j 2 pu and varying load angle from 00 to 1800.
  • 15. 15
  • 16. 16
  • 17. 17 1. A 3-phase, 100 HP, 440 V, star connected synchronous motor has a synchronous impedance of (0.1 + j 1) Ω/phase. Calculate the load angle, armature current, power factor and efficiency with an excitation emf of 400 V if the excitation and torque losses are 4 kW. 0 2 440 , 254 . 3 400 , 230.94 . 3 0.1 1 1.005 84.3 100 746 4000 78600 3 3 cos( ) cos( ) 440 400 78600 cos(84.3 1.005 b s b b om s s Supply voltage V V Back emf E V Z j Mechanical power developed W But mechanical power developed VE E P Z Z                      2 0 0 0 400 ) cos(84.3 ) 1.005 26.9      
  • 18. 18 0 0 0 0 254 0 230.94 26.9 , , 114.33 19 0.1 1 cos(19 ) 0.95 , 3 cos( ) 3 440 114.33 0.95 82774.6 786 , 100 b a s i L a o i V E So armaturecurrent I Z j Operating power factor lagging Input power tothemotro P V I W P Efficiency P                              00 100 94.96% 82774.6  