SlideShare a Scribd company logo
6
Most read
16
Most read
20
Most read
Eigen Values by Jacobi Method
by
Dr. Rajendra N. Khapre
Civil Engineering Department
Shri Ramdeobaba College of Engineering and
Management, Nagpur
In the Jacobi method, the given matrix is converted to a diagonal
matrix. The diagonal elements of this diagonal matrix are nothing
but the Eigen values. In order to convert the given matrix into
diagonal matrix, transformation method is used. In this method, the
given matrix is multiplied by orthogonal matrix in the following
fashion
Eigen Values by Jacobi Method
]
[P
]
][
][
[
]
[ 1
1
1 P
A
P
A
T

Here is the orthogonal matrix such that . The shape of
this matrix depends on the element of matrix that has to be
transformed. For instance, matrix is of size and we wish to
reduce its element to zero, then the matrix will be as follows
]
[ 1
P
1
1
1 ]
[
]
[ 
 P
P
T
]
[A
]
[A 3
3
12
a ]
[ 1
P









 

1
0
0
0
cos
sin
1
sin
cos
]
[ 1 



P
Eigen Values by Jacobi Method
Once matrix is obtained, it will contain elements involving terms
like and . The unknown entity can be obtained by
equating the term at location with zero. After substituting the
value of in matrices and , we get them in their numerical
form.
This process transformation continues for all non-diagonal elements.
Newly generated matrix is used for further calculations. In order
to convert element to zero, following expression is used.
Where
]
[ 1
A

cos 
sin 
12
a
 ]
[ 1
A ]
[ 1
P
]
[ 1
A
13
a
]
][
][
[
]
[ 2
1
2
2 P
A
P
A
T










 

1
0
0
cos
sin
0
sin
cos
1
]
[ 2 



P
Eigen Values by Jacobi Method
Once transformation of all non-diagonal elements is over, matrix
becomes a diagonal matrix. The diagonal elements of this matrix are
the Eigen values. To compute their corresponding Eigen vectors,
product of matrices , , , … is obtained. For matrix of
size , six transformation matrices are required in order to convert
it to a diagonal element. Hence we need to find the product of
The matrix will be of size . Each column of this matrix
represents the Eigen vector corresponding to the Eigen value belongs
to the same column in matrix .
]
[A
]
[ 1
P ]
[ 2
P ]
[ 3
P ]
[A
3
3
]
][
][
][
][
][
[
]
[ 6
5
4
3
2
1 P
P
P
P
P
P
P 
]
[P 3
3
]
[A
Eigen Values by Jacobi Method
Problem
Find out the Eigen values and Eigen vectors for the following matrix
using Jacobi method
Solution
In the Jacobi method, the given matrix must be converted into a
diagonal matrix. This process is sequential and hence converting the
first element of matrix to zero.















2
1
0
1
2
1
0
1
2
]
[A
12
a ]
[A
Eigen Values by Jacobi Method
Step 1: Converting
where
Above equation becomes
0
12 
a
]
][
][
[
]
[ 1
1
1 P
A
P
A
T










 

1
0
0
0
cos
sin
0
sin
cos
]
[ 1 



P









 


























1
0
0
0
cos
sin
0
sin
cos
2
1
0
1
2
1
0
1
2
1
0
0
0
cos
sin
0
sin
cos
]
[ 1 







A









 




















1
0
0
0
cos
sin
0
sin
cos
2
1
0
cos
cos
2
sin
cos
sin
2
sin
sin
2
cos
sin
cos
2
]
[ 1 













A
Eigen Values by Jacobi Method





























2
cos
sin
cos
cos
2
cos
sin
cos
sin
sin
2
cos
sin
2
sin
cos
cos
sin
2
sin
cos
sin
2
cos
sin
cos
sin
2
sin
2
cos
sin
cos
sin
cos
2
]
[ 2
2
2
2
2
2
2
2
1




























A





 cos
sin
2
cos
sin
cos
sin
2
0 2
2
12 





a
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form
 45


]
[ 1
A















2
7071
.
0
7071
.
0
7071
.
0
3
0
7071
.
0
0
1
]
[ 1
A
]
[ 1
P









 

1
0
0
0
7071
.
0
7071
.
0
0
7071
.
0
7071
.
0
]
[ 1
P
Eigen Values by Jacobi Method
Step 2: Converting
where
Above equation becomes
0
13 
a
]
][
][
[
]
[ 2
1
2
2 P
A
P
A
T










 





cos
0
sin
0
1
0
sin
0
cos
]
[ 2
P









 


































cos
0
sin
0
1
0
sin
0
cos
2
7071
.
0
7071
.
0
7071
.
0
3
0
7071
.
0
0
1
cos
0
sin
0
1
0
sin
0
cos
]
[ 2
A









 


































cos
0
sin
0
1
0
sin
0
cos
cos
2
sin
7071
.
0
cos
7071
.
0
cos
7071
.
0
sin
7071
.
0
3
0
sin
2
cos
7071
.
0
sin
7071
.
0
sin
7071
.
0
cos
]
[ 2
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 2
A
]
[ 2
P

























































2
2
2
2
2
2
2
2
2
cos
2
cos
sin
7071
.
0
cos
sin
7071
.
0
sin
cos
7071
.
0
cos
sin
2
sin
7071
.
0
cos
7071
.
0
cos
sin
cos
7071
.
0
3
sin
7071
.
0
cos
sin
2
cos
7071
.
0
sin
7071
.
0
cos
sin
sin
7071
.
0
sin
2
cos
sin
7071
.
0
cos
sin
7071
.
0
cos
]
[A





 cos
sin
2
cos
7071
.
0
sin
7071
.
0
cos
sin
0 2
2
13 





a
367
.
27

















366
.
2
628
.
0
0
628
.
0
3
325
.
0
0
325
.
0
634
.
0
]
[ 2
A









 

888
.
0
0
459
.
0
0
1
0
459
.
0
0
888
.
0
]
[ 2
P
Eigen Values by Jacobi Method
Step 3: Converting
where
Above equation becomes
0
23 
a
]
][
][
[
]
[ 3
2
3
3 P
A
P
A
T

















cos
sin
0
sin
cos
0
0
0
1
]
[ 3
P













































cos
sin
0
sin
cos
0
0
0
1
366
.
2
628
.
0
0
628
.
0
3
325
.
0
0
325
.
0
634
.
0
cos
sin
0
sin
cos
0
0
0
1
]
[ 3
A












































cos
sin
0
sin
cos
0
0
0
1
cos
366
.
2
sin
628
.
0
cos
628
.
0
sin
3
sin
325
.
0
sin
366
.
2
cos
628
.
0
sin
628
.
0
cos
3
cos
325
.
0
0
325
.
0
634
.
0
]
[ 3
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 3
A
]
[ 3
P























































2
2
2
2
2
2
2
2
3
cos
366
.
2
cos
sin
628
.
0
cos
sin
628
.
0
sin
3
cos
sin
366
.
2
sin
628
.
0
cos
628
.
0
cos
sin
3
sin
325
.
0
cos
sin
366
.
2
cos
628
.
0
sin
628
.
0
cos
sin
3
sin
366
.
2
cos
sin
628
.
0
cos
sin
628
.
0
cos
3
cos
325
.
0
sin
325
.
0
cos
325
.
0
634
.
0
]
[A





 cos
sin
366
.
2
cos
628
.
0
sin
628
.
0
cos
sin
3
0 2
2
23 





a
392
.
58















386
.
3
0
277
.
0
0
979
.
1
170
.
0
277
.
0
170
.
0
634
.
0
]
[ 3
A












524
.
0
851
.
0
0
851
.
0
524
.
0
0
0
0
1
]
[ 3
P
Eigen Values by Jacobi Method
Step 4: Converting
where
Above equation becomes
0
21 
a
]
][
][
[
]
[ 4
3
4
4 P
A
P
A
T













1
0
0
0
cos
sin
0
sin
cos
]
[ 4 



P
































 

1
0
0
0
cos
sin
0
sin
cos
386
.
3
0
277
.
0
0
979
.
1
170
.
0
277
.
0
170
.
0
634
.
0
1
0
0
0
cos
sin
0
sin
cos
]
[ 4 







A




























1
0
0
0
cos
sin
0
sin
cos
386
.
3
0
277
.
0
sin
277
.
0
cos
979
.
1
sin
17
.
0
cos
170
.
0
sin
634
.
0
cos
277
.
0
sin
979
.
1
cos
170
.
0
sin
170
.
0
cos
634
.
0
]
[ 4 













A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 4
A
]
[ 4
P























386
.
3
sin
277
.
0
cos
277
.
0
sin
277
.
0
cos
979
.
1
cos
sin
17
.
0
cos
sin
17
.
0
sin
634
.
0
cos
sin
979
.
1
sin
17
.
0
cos
170
.
0
cos
sin
634
.
0
cos
277
.
0
cos
sin
979
.
1
cos
17
.
0
sin
17
.
0
cos
sin
634
.
0
sin
979
.
1
cos
sin
17
.
0
cos
sin
17
.
0
cos
634
.
0
]
[ 2
2
2
2
2
2
2
2
4




























A





 cos
sin
979
.
1
sin
17
.
0
cos
170
.
0
cos
sin
634
.
0
0 2
2
21 




a
738
.
93













386
.
3
275
.
0
034
.
0
275
.
0
613
.
0
0
034
.
0
0
2
]
[ 4
A












1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
]
[ 4
P
Eigen Values by Jacobi Method
Step 5: Converting
where
Above equation becomes
0
31 
a
]
][
][
[
]
[ 5
4
5
5 P
A
P
A
T

















cos
0
sin
0
1
0
sin
0
cos
]
[ 5
P






























 









cos
0
sin
0
1
0
sin
0
cos
386
.
3
275
.
0
034
.
0
275
.
0
613
.
0
0
034
.
0
0
2
cos
0
sin
0
1
0
sin
0
cos
]
[ 5
A









































cos
0
sin
0
1
0
sin
0
cos
cos
386
.
3
sin
034
.
0
cos
275
.
0
cos
034
.
0
sin
2
275
.
0
613
.
0
0
sin
386
.
3
cos
034
.
0
sin
275
.
0
sin
034
.
0
cos
2
]
[ 5
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 5
A
]
[ 5
P





















































2
2
2
2
2
2
2
2
5
cos
386
.
3
cos
sin
034
.
0
cos
sin
034
.
0
sin
2
cos
275
.
0
cos
sin
386
.
3
sin
034
.
0
cos
034
.
0
cos
sin
2
cos
275
.
0
613
.
0
sin
275
.
0
cos
sin
386
.
3
cos
034
.
0
sin
034
.
0
cos
sin
2
sin
275
.
0
sin
386
.
3
cos
sin
034
.
0
cos
sin
034
.
0
cos
2
]
[A





 cos
sin
386
.
3
sin
034
.
0
cos
034
.
0
cos
sin
2
0 2
2
31 




a
4044
.
1













387
.
3
275
.
0
0
275
.
0
613
.
0
0
0
0
2
]
[ 5
A












999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
]
[ 5
P
Eigen Values by Jacobi Method
Step 6: Converting
where
Above equation becomes
0
32 
a
]
][
][
[
]
[ 6
5
6
6 P
A
P
A
T

















cos
sin
0
sin
cos
0
0
0
1
]
[ 6
P









































cos
sin
0
sin
cos
0
0
0
1
387
.
3
275
.
0
0
275
.
0
613
.
0
0
0
0
2
cos
sin
0
sin
cos
0
0
0
1
]
[ 6
A






































cos
sin
0
sin
cos
0
0
0
1
cos
387
.
3
sin
275
.
0
cos
275
.
0
sin
613
.
0
0
sin
387
.
3
cos
275
.
0
sin
275
.
0
cos
613
.
0
0
0
0
2
]
[ 6
A
Eigen Values by Jacobi Method
Solving above equation for , we get
Hence matrix takes following form
and matrix takes following form

]
[ 6
A
]
[ 6
P















































2
2
2
2
2
2
2
2
6
cos
387
.
3
cos
sin
275
.
0
cos
sin
275
.
0
sin
613
.
0
cos
sin
387
.
3
sin
275
.
0
cos
275
.
0
cos
sin
613
.
0
0
cos
sin
387
.
3
cos
275
.
0
sin
275
.
0
cos
sin
613
.
0
sin
387
.
3
cos
sin
275
.
0
cos
sin
275
.
0
cos
613
.
0
0
0
0
2
]
[A





 cos
sin
387
.
3
sin
275
.
0
cos
275
.
0
cos
sin
613
.
0
0 2
2
32 




a
4044
.
1













414
.
3
0
0
0
586
.
0
0
0
0
2
]
[ 6
A












995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
]
[ 6
P
Now, the given matrix has been converted to the diagonal matrix.
The diagonal elements of this matrix are nothing but the Eigen
values. To find out their respective Eigen vectors, we need to
compute
Eigen Values by Jacobi Method
]
[A
]
][
][
][
][
][
[
]
[ 6
5
4
3
2
1 P
P
P
P
P
P
P 





















































 









 

995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
524
.
0
851
.
0
0
851
.
0
524
.
0
0
0
0
1
888
.
0
0
459
.
0
0
1
0
459
.
0
0
888
.
0
1
0
0
0
7071
.
0
7071
.
0
0
7071
.
0
7071
.
0
]
[P


























































995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
524
.
0
851
.
0
0
851
.
0
524
.
0
0
0
0
1
8880
.
0
0
4590
.
0
3246
.
0
7071
.
0
6279
.
0
3246
.
0
7071
.
0
6279
.
0
]
[P














































995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
1
0
0
0
123
.
0
992
.
0
0
992
.
0
123
.
0
4653
.
0
7557
.
0
4590
.
0
7718
.
0
0943
.
0
6279
.
0
4317
.
0
6467
.
0
6279
.
0
]
[P
The Eigen vectors for the Eigen values are the elements in each
columns of matrix .
Hence for the given matrix Eigen values are found out to be 2, 0.586,
3.414.
Eigen Values by Jacobi Method




































995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
999
.
0
0
025
.
0
0
1
0
025
.
0
0
999
.
0
4653
.
0
5483
.
0
6932
.
0
7718
.
0
6345
.
0
0163
.
0
4317
.
0
5433
.
0
7188
.
0
]
[P
























995
.
0
098
.
0
0
098
.
0
995
.
0
0
0
0
1
4475
.
0
5483
.
0
7041
.
0
7714
.
0
6345
.
0
0030
.
0
4492
.
0
5433
.
0
7073
.
0
]
[P













4990
.
0
5017
.
0
7041
.
0
7054
.
0
7069
.
0
0030
.
0
5002
.
0
4966
.
0
7073
.
0
]
[P
]
[P
Eigen Values by Jacobi Method
Problem
Find out the Eigen values and Eigen vectors for the following
matrices using Jacobi method
1)
2)







8
6
6
3
]
[A







6
2
2
3
]
[A

More Related Content

PPTX
Numerical analysis ppt
PPTX
GAUSS ELIMINATION METHOD
PDF
algebraic&transdential equations
PPTX
Jacobi method
PPTX
PDF
Romberg's Integration
PPTX
Runge Kutta Method
PDF
Numerical method for solving non linear equations
Numerical analysis ppt
GAUSS ELIMINATION METHOD
algebraic&transdential equations
Jacobi method
Romberg's Integration
Runge Kutta Method
Numerical method for solving non linear equations

What's hot (20)

PPTX
Linear differential equation of second order
PPTX
Solution of eigenvalue problem using Jacobi Method
PPTX
Runge kutta
PPTX
Rank nullity theorem
PPTX
PPT
System Of Linear Equations
PDF
Multiple Choice Questions - Numerical Methods
DOC
Three dimensional geometry
PPTX
Jacobi iteration method
PPTX
Higher order ODE with applications
PPTX
The False-Position Method
PDF
Numerical Solution of Ordinary Differential Equations
PPTX
system linear equations and matrices
PDF
Numerical
PPT
Gauss sediel
PPTX
Euler's Method
PDF
Numerical Methods - Power Method for Eigen values
PPTX
Presentation on Solution to non linear equations
PPTX
Power Series - Legendre Polynomial - Bessel's Equation
Linear differential equation of second order
Solution of eigenvalue problem using Jacobi Method
Runge kutta
Rank nullity theorem
System Of Linear Equations
Multiple Choice Questions - Numerical Methods
Three dimensional geometry
Jacobi iteration method
Higher order ODE with applications
The False-Position Method
Numerical Solution of Ordinary Differential Equations
system linear equations and matrices
Numerical
Gauss sediel
Euler's Method
Numerical Methods - Power Method for Eigen values
Presentation on Solution to non linear equations
Power Series - Legendre Polynomial - Bessel's Equation
Ad

Similar to Eigen Values Jocobi Method.ppt (20)

DOCX
Metodos jacobi y gauss seidel
DOCX
Metodos jacobi y gauss seidel
DOC
Term paper
PPTX
Iterative methods
PPTX
Solution of equations and eigenvalue problems
PPTX
Iterative methods for the solution
PPTX
Iterative methods for the solution
PPTX
Iterative methods for the solution
PPT
Iterative methods
PPT
Iterative methods
PPTX
jacobi method
PDF
Solution to linear equhgations
PDF
4 pages from matlab an introduction with app.-2
PPTX
mws_gen_sle_ppt_eigenvalues.pptx
PDF
Ijetr021210
PDF
Chapter 3 solving systems of linear equations
PPTX
Direct Methods For The Solution Of Systems Of
PPTX
Jacobi iterative method
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidel
Term paper
Iterative methods
Solution of equations and eigenvalue problems
Iterative methods for the solution
Iterative methods for the solution
Iterative methods for the solution
Iterative methods
Iterative methods
jacobi method
Solution to linear equhgations
4 pages from matlab an introduction with app.-2
mws_gen_sle_ppt_eigenvalues.pptx
Ijetr021210
Chapter 3 solving systems of linear equations
Direct Methods For The Solution Of Systems Of
Jacobi iterative method
Ad

Recently uploaded (20)

PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
OOP with Java - Java Introduction (Basics)
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPT
Project quality management in manufacturing
PPTX
additive manufacturing of ss316l using mig welding
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Mechanical Engineering MATERIALS Selection
OOP with Java - Java Introduction (Basics)
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
UNIT-1 - COAL BASED THERMAL POWER PLANTS
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Project quality management in manufacturing
additive manufacturing of ss316l using mig welding
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
Foundation to blockchain - A guide to Blockchain Tech
Internet of Things (IOT) - A guide to understanding
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
bas. eng. economics group 4 presentation 1.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Embodied AI: Ushering in the Next Era of Intelligent Systems
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
CYBER-CRIMES AND SECURITY A guide to understanding

Eigen Values Jocobi Method.ppt

  • 1. Eigen Values by Jacobi Method by Dr. Rajendra N. Khapre Civil Engineering Department Shri Ramdeobaba College of Engineering and Management, Nagpur
  • 2. In the Jacobi method, the given matrix is converted to a diagonal matrix. The diagonal elements of this diagonal matrix are nothing but the Eigen values. In order to convert the given matrix into diagonal matrix, transformation method is used. In this method, the given matrix is multiplied by orthogonal matrix in the following fashion Eigen Values by Jacobi Method ] [P ] ][ ][ [ ] [ 1 1 1 P A P A T  Here is the orthogonal matrix such that . The shape of this matrix depends on the element of matrix that has to be transformed. For instance, matrix is of size and we wish to reduce its element to zero, then the matrix will be as follows ] [ 1 P 1 1 1 ] [ ] [   P P T ] [A ] [A 3 3 12 a ] [ 1 P             1 0 0 0 cos sin 1 sin cos ] [ 1     P
  • 3. Eigen Values by Jacobi Method Once matrix is obtained, it will contain elements involving terms like and . The unknown entity can be obtained by equating the term at location with zero. After substituting the value of in matrices and , we get them in their numerical form. This process transformation continues for all non-diagonal elements. Newly generated matrix is used for further calculations. In order to convert element to zero, following expression is used. Where ] [ 1 A  cos  sin  12 a  ] [ 1 A ] [ 1 P ] [ 1 A 13 a ] ][ ][ [ ] [ 2 1 2 2 P A P A T              1 0 0 cos sin 0 sin cos 1 ] [ 2     P
  • 4. Eigen Values by Jacobi Method Once transformation of all non-diagonal elements is over, matrix becomes a diagonal matrix. The diagonal elements of this matrix are the Eigen values. To compute their corresponding Eigen vectors, product of matrices , , , … is obtained. For matrix of size , six transformation matrices are required in order to convert it to a diagonal element. Hence we need to find the product of The matrix will be of size . Each column of this matrix represents the Eigen vector corresponding to the Eigen value belongs to the same column in matrix . ] [A ] [ 1 P ] [ 2 P ] [ 3 P ] [A 3 3 ] ][ ][ ][ ][ ][ [ ] [ 6 5 4 3 2 1 P P P P P P P  ] [P 3 3 ] [A
  • 5. Eigen Values by Jacobi Method Problem Find out the Eigen values and Eigen vectors for the following matrix using Jacobi method Solution In the Jacobi method, the given matrix must be converted into a diagonal matrix. This process is sequential and hence converting the first element of matrix to zero.                2 1 0 1 2 1 0 1 2 ] [A 12 a ] [A
  • 6. Eigen Values by Jacobi Method Step 1: Converting where Above equation becomes 0 12  a ] ][ ][ [ ] [ 1 1 1 P A P A T              1 0 0 0 cos sin 0 sin cos ] [ 1     P                                      1 0 0 0 cos sin 0 sin cos 2 1 0 1 2 1 0 1 2 1 0 0 0 cos sin 0 sin cos ] [ 1         A                                1 0 0 0 cos sin 0 sin cos 2 1 0 cos cos 2 sin cos sin 2 sin sin 2 cos sin cos 2 ] [ 1               A
  • 7. Eigen Values by Jacobi Method                              2 cos sin cos cos 2 cos sin cos sin sin 2 cos sin 2 sin cos cos sin 2 sin cos sin 2 cos sin cos sin 2 sin 2 cos sin cos sin cos 2 ] [ 2 2 2 2 2 2 2 2 1                             A       cos sin 2 cos sin cos sin 2 0 2 2 12       a Solving above equation for , we get Hence matrix takes following form and matrix takes following form  45   ] [ 1 A                2 7071 . 0 7071 . 0 7071 . 0 3 0 7071 . 0 0 1 ] [ 1 A ] [ 1 P             1 0 0 0 7071 . 0 7071 . 0 0 7071 . 0 7071 . 0 ] [ 1 P
  • 8. Eigen Values by Jacobi Method Step 2: Converting where Above equation becomes 0 13  a ] ][ ][ [ ] [ 2 1 2 2 P A P A T                  cos 0 sin 0 1 0 sin 0 cos ] [ 2 P                                              cos 0 sin 0 1 0 sin 0 cos 2 7071 . 0 7071 . 0 7071 . 0 3 0 7071 . 0 0 1 cos 0 sin 0 1 0 sin 0 cos ] [ 2 A                                              cos 0 sin 0 1 0 sin 0 cos cos 2 sin 7071 . 0 cos 7071 . 0 cos 7071 . 0 sin 7071 . 0 3 0 sin 2 cos 7071 . 0 sin 7071 . 0 sin 7071 . 0 cos ] [ 2 A
  • 9. Eigen Values by Jacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 2 A ] [ 2 P                                                          2 2 2 2 2 2 2 2 2 cos 2 cos sin 7071 . 0 cos sin 7071 . 0 sin cos 7071 . 0 cos sin 2 sin 7071 . 0 cos 7071 . 0 cos sin cos 7071 . 0 3 sin 7071 . 0 cos sin 2 cos 7071 . 0 sin 7071 . 0 cos sin sin 7071 . 0 sin 2 cos sin 7071 . 0 cos sin 7071 . 0 cos ] [A       cos sin 2 cos 7071 . 0 sin 7071 . 0 cos sin 0 2 2 13       a 367 . 27                  366 . 2 628 . 0 0 628 . 0 3 325 . 0 0 325 . 0 634 . 0 ] [ 2 A             888 . 0 0 459 . 0 0 1 0 459 . 0 0 888 . 0 ] [ 2 P
  • 10. Eigen Values by Jacobi Method Step 3: Converting where Above equation becomes 0 23  a ] ][ ][ [ ] [ 3 2 3 3 P A P A T                  cos sin 0 sin cos 0 0 0 1 ] [ 3 P                                              cos sin 0 sin cos 0 0 0 1 366 . 2 628 . 0 0 628 . 0 3 325 . 0 0 325 . 0 634 . 0 cos sin 0 sin cos 0 0 0 1 ] [ 3 A                                             cos sin 0 sin cos 0 0 0 1 cos 366 . 2 sin 628 . 0 cos 628 . 0 sin 3 sin 325 . 0 sin 366 . 2 cos 628 . 0 sin 628 . 0 cos 3 cos 325 . 0 0 325 . 0 634 . 0 ] [ 3 A
  • 11. Eigen Values by Jacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 3 A ] [ 3 P                                                        2 2 2 2 2 2 2 2 3 cos 366 . 2 cos sin 628 . 0 cos sin 628 . 0 sin 3 cos sin 366 . 2 sin 628 . 0 cos 628 . 0 cos sin 3 sin 325 . 0 cos sin 366 . 2 cos 628 . 0 sin 628 . 0 cos sin 3 sin 366 . 2 cos sin 628 . 0 cos sin 628 . 0 cos 3 cos 325 . 0 sin 325 . 0 cos 325 . 0 634 . 0 ] [A       cos sin 366 . 2 cos 628 . 0 sin 628 . 0 cos sin 3 0 2 2 23       a 392 . 58                386 . 3 0 277 . 0 0 979 . 1 170 . 0 277 . 0 170 . 0 634 . 0 ] [ 3 A             524 . 0 851 . 0 0 851 . 0 524 . 0 0 0 0 1 ] [ 3 P
  • 12. Eigen Values by Jacobi Method Step 4: Converting where Above equation becomes 0 21  a ] ][ ][ [ ] [ 4 3 4 4 P A P A T              1 0 0 0 cos sin 0 sin cos ] [ 4     P                                    1 0 0 0 cos sin 0 sin cos 386 . 3 0 277 . 0 0 979 . 1 170 . 0 277 . 0 170 . 0 634 . 0 1 0 0 0 cos sin 0 sin cos ] [ 4         A                             1 0 0 0 cos sin 0 sin cos 386 . 3 0 277 . 0 sin 277 . 0 cos 979 . 1 sin 17 . 0 cos 170 . 0 sin 634 . 0 cos 277 . 0 sin 979 . 1 cos 170 . 0 sin 170 . 0 cos 634 . 0 ] [ 4               A
  • 13. Eigen Values by Jacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 4 A ] [ 4 P                        386 . 3 sin 277 . 0 cos 277 . 0 sin 277 . 0 cos 979 . 1 cos sin 17 . 0 cos sin 17 . 0 sin 634 . 0 cos sin 979 . 1 sin 17 . 0 cos 170 . 0 cos sin 634 . 0 cos 277 . 0 cos sin 979 . 1 cos 17 . 0 sin 17 . 0 cos sin 634 . 0 sin 979 . 1 cos sin 17 . 0 cos sin 17 . 0 cos 634 . 0 ] [ 2 2 2 2 2 2 2 2 4                             A       cos sin 979 . 1 sin 17 . 0 cos 170 . 0 cos sin 634 . 0 0 2 2 21      a 738 . 93              386 . 3 275 . 0 034 . 0 275 . 0 613 . 0 0 034 . 0 0 2 ] [ 4 A             1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 ] [ 4 P
  • 14. Eigen Values by Jacobi Method Step 5: Converting where Above equation becomes 0 31  a ] ][ ][ [ ] [ 5 4 5 5 P A P A T                  cos 0 sin 0 1 0 sin 0 cos ] [ 5 P                                          cos 0 sin 0 1 0 sin 0 cos 386 . 3 275 . 0 034 . 0 275 . 0 613 . 0 0 034 . 0 0 2 cos 0 sin 0 1 0 sin 0 cos ] [ 5 A                                          cos 0 sin 0 1 0 sin 0 cos cos 386 . 3 sin 034 . 0 cos 275 . 0 cos 034 . 0 sin 2 275 . 0 613 . 0 0 sin 386 . 3 cos 034 . 0 sin 275 . 0 sin 034 . 0 cos 2 ] [ 5 A
  • 15. Eigen Values by Jacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 5 A ] [ 5 P                                                      2 2 2 2 2 2 2 2 5 cos 386 . 3 cos sin 034 . 0 cos sin 034 . 0 sin 2 cos 275 . 0 cos sin 386 . 3 sin 034 . 0 cos 034 . 0 cos sin 2 cos 275 . 0 613 . 0 sin 275 . 0 cos sin 386 . 3 cos 034 . 0 sin 034 . 0 cos sin 2 sin 275 . 0 sin 386 . 3 cos sin 034 . 0 cos sin 034 . 0 cos 2 ] [A       cos sin 386 . 3 sin 034 . 0 cos 034 . 0 cos sin 2 0 2 2 31      a 4044 . 1              387 . 3 275 . 0 0 275 . 0 613 . 0 0 0 0 2 ] [ 5 A             999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 ] [ 5 P
  • 16. Eigen Values by Jacobi Method Step 6: Converting where Above equation becomes 0 32  a ] ][ ][ [ ] [ 6 5 6 6 P A P A T                  cos sin 0 sin cos 0 0 0 1 ] [ 6 P                                          cos sin 0 sin cos 0 0 0 1 387 . 3 275 . 0 0 275 . 0 613 . 0 0 0 0 2 cos sin 0 sin cos 0 0 0 1 ] [ 6 A                                       cos sin 0 sin cos 0 0 0 1 cos 387 . 3 sin 275 . 0 cos 275 . 0 sin 613 . 0 0 sin 387 . 3 cos 275 . 0 sin 275 . 0 cos 613 . 0 0 0 0 2 ] [ 6 A
  • 17. Eigen Values by Jacobi Method Solving above equation for , we get Hence matrix takes following form and matrix takes following form  ] [ 6 A ] [ 6 P                                                2 2 2 2 2 2 2 2 6 cos 387 . 3 cos sin 275 . 0 cos sin 275 . 0 sin 613 . 0 cos sin 387 . 3 sin 275 . 0 cos 275 . 0 cos sin 613 . 0 0 cos sin 387 . 3 cos 275 . 0 sin 275 . 0 cos sin 613 . 0 sin 387 . 3 cos sin 275 . 0 cos sin 275 . 0 cos 613 . 0 0 0 0 2 ] [A       cos sin 387 . 3 sin 275 . 0 cos 275 . 0 cos sin 613 . 0 0 2 2 32      a 4044 . 1              414 . 3 0 0 0 586 . 0 0 0 0 2 ] [ 6 A             995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 ] [ 6 P
  • 18. Now, the given matrix has been converted to the diagonal matrix. The diagonal elements of this matrix are nothing but the Eigen values. To find out their respective Eigen vectors, we need to compute Eigen Values by Jacobi Method ] [A ] ][ ][ ][ ][ ][ [ ] [ 6 5 4 3 2 1 P P P P P P P                                                                     995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 524 . 0 851 . 0 0 851 . 0 524 . 0 0 0 0 1 888 . 0 0 459 . 0 0 1 0 459 . 0 0 888 . 0 1 0 0 0 7071 . 0 7071 . 0 0 7071 . 0 7071 . 0 ] [P                                                           995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 524 . 0 851 . 0 0 851 . 0 524 . 0 0 0 0 1 8880 . 0 0 4590 . 0 3246 . 0 7071 . 0 6279 . 0 3246 . 0 7071 . 0 6279 . 0 ] [P                                               995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 1 0 0 0 123 . 0 992 . 0 0 992 . 0 123 . 0 4653 . 0 7557 . 0 4590 . 0 7718 . 0 0943 . 0 6279 . 0 4317 . 0 6467 . 0 6279 . 0 ] [P
  • 19. The Eigen vectors for the Eigen values are the elements in each columns of matrix . Hence for the given matrix Eigen values are found out to be 2, 0.586, 3.414. Eigen Values by Jacobi Method                                     995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 999 . 0 0 025 . 0 0 1 0 025 . 0 0 999 . 0 4653 . 0 5483 . 0 6932 . 0 7718 . 0 6345 . 0 0163 . 0 4317 . 0 5433 . 0 7188 . 0 ] [P                         995 . 0 098 . 0 0 098 . 0 995 . 0 0 0 0 1 4475 . 0 5483 . 0 7041 . 0 7714 . 0 6345 . 0 0030 . 0 4492 . 0 5433 . 0 7073 . 0 ] [P              4990 . 0 5017 . 0 7041 . 0 7054 . 0 7069 . 0 0030 . 0 5002 . 0 4966 . 0 7073 . 0 ] [P ] [P
  • 20. Eigen Values by Jacobi Method Problem Find out the Eigen values and Eigen vectors for the following matrices using Jacobi method 1) 2)        8 6 6 3 ] [A        6 2 2 3 ] [A