SlideShare a Scribd company logo
6
Most read
7
Most read
8
Most read
Romberg’s Integration
Dr. Varun Kumar
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 1 / 8
Outlines
1 Introduction to Romberg’s Rule
2 Mathematical Formulation
3 Example
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 2 / 8
Introduction to Romberg’s Rule
Important points
⇒ In numerical analysis, Romberg’s method (Romberg 1955) is used to
estimate the definite integral
F(x) =
Z b
a
f (x)dx
⇒ By applying Richardson extrapolation repeatedly on the trapezium
rule or the rectangle rule.
⇒ The estimates generate a triangular array.
⇒ It increases the accuracy with greater extent.
⇒ It is the extension of trapezoidal and rectangular rule.
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 3 / 8
Other Integration Methods
Rectangular rule
Z b
a
f (x)dx = h
h
f (a) +

f (x1) + f (x2) + ....f (xn−1)
	
+ f (b)
i
where
h = step size → (b−a)
n
Total numbers of sample = n + 1 (Including point a and b )
x1 = a + h, x2 = a + 2h,.......
Trapezoidal rule
Z b
a
f (x)dx =
h
2
h
f (a) + 2

f (x1) + f (x2) + ....f (xn−1)
	
+ f (b)
i
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 4 / 8
Romberg’s Integration
Steps for solving Romberg’s Integration
hn = (b−a)
2n → Variable step size
The method can be inductively defined by
R(0, 0) = h1 f (a) + f (b)

R(n, 0) =
1
2
R(n − 1, 0) + hn
2n−1
X
k=1
f (a + (2k − 1)hn)
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 5 / 8
More on Romberg’s Integration
Triangular array
Rectangular or Trapezoidal Method Recursively
Step size Step-1 Step-2 Step-3 Step-4
h I1
I∗
1 = I2 + 1
3
(I2 − I1)
I∗
2 = I3 + 1
3
(I3 − I2)
I∗
3 = I4 + 1
3
(I4 − I3)
I∗∗
1 = I2 ∗ + 1
3
(I2 ∗ −I1∗)
I∗∗
2 = I3 ∗ + 1
3
(I3 ∗ −I2∗)
I∗∗∗
1 = I∗∗
1 + 1
3
(I∗∗
2 − I∗∗
1 )
h/2 I2
h/4 I3
h/8 I4
This method can be stopped when two successive values are very
close to each other.
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 6 / 8
Example–
Example
Q Evaluate the following definite integral J using Romberg’s integration
rule, where
J =
Z 1
0
1
1 + x
dx
Ans Solution: According to question, a = 0, b = 1. We solve this by
trapezoidal rule
Case 1: Taking h = 0.5, the value of x and f (x) is
At x = 0, f (x) = 1
At x = 0.5, f (x) = 0.66667
At x = 1, f (x) = 0.5
At I = 1
4[1 + 2 × 0.66667 + 0.5] = 0.70835
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 7 / 8
Continued–
Case 2: Taking h = 0.25, the value of x and f (x) is
x 0 0.25 0.5 0.75 1
f(x) 1 0.8 0.667 0.5714 0.5
By trapezoidal rule I = 0.25
2 [1 + 2(0.8 + 0.667 + 0.5714) + 0.5] = 0.6970
Case 3: Taking h=0.125, x and f (x) value is
x 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
f(x) 1 0.8889 0.8 0.7273 0.667 0.6154 0.5714 0.5333 0.5
By trapezoidal rule
I = 0.125
2
[1+2(0.8889+0.8+0.7273+0.667+0.6154+0.5714+0.5333)+0.5] = 0.6914
I(h) = 0.7084 I(h/2) = 0.6970 I(h/4) = 0.6914
I∗
1 = 0.6932, I∗
2 = 0.6931 and I∗∗
1 = 0.6931
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 8 / 8

More Related Content

PDF
Romberg’s method
PDF
Newton's Forward/Backward Difference Interpolation
PDF
Gaussian quadratures
PPTX
APPLICATION OF PARTIAL DIFFERENTIATION
PPT
Newton divided difference interpolation
PPTX
Euler and runge kutta method
PPTX
Runge-Kutta methods with examples
Romberg’s method
Newton's Forward/Backward Difference Interpolation
Gaussian quadratures
APPLICATION OF PARTIAL DIFFERENTIATION
Newton divided difference interpolation
Euler and runge kutta method
Runge-Kutta methods with examples

What's hot (20)

PPTX
Numerical integration;Gaussian integration one point, two point and three poi...
PPTX
Trapezoidal rule
PDF
Numerical Methods - Oridnary Differential Equations - 2
PPT
Null space, Rank and nullity theorem
PDF
Finite Difference Method
PPTX
presentation on Euler and Modified Euler method ,and Fitting of curve
PPT
Legendre functions
PPTX
Divergence,curl,gradient
PPTX
Numerical integration
PPTX
Power series
PDF
Lecture 04 newton-raphson, secant method etc
PPTX
Integration of Trigonometric Functions
PPT
Numerical integration
PPTX
Lagrange’s interpolation formula
PDF
Initial Value Problems
PPTX
Engineering Numerical Analysis Lecture-1
PPTX
Test of consistency
PPT
21 simpson's rule
PPTX
Gaussian Quadrature Formula
PPT
Chapter 5 Point Slope Form
Numerical integration;Gaussian integration one point, two point and three poi...
Trapezoidal rule
Numerical Methods - Oridnary Differential Equations - 2
Null space, Rank and nullity theorem
Finite Difference Method
presentation on Euler and Modified Euler method ,and Fitting of curve
Legendre functions
Divergence,curl,gradient
Numerical integration
Power series
Lecture 04 newton-raphson, secant method etc
Integration of Trigonometric Functions
Numerical integration
Lagrange’s interpolation formula
Initial Value Problems
Engineering Numerical Analysis Lecture-1
Test of consistency
21 simpson's rule
Gaussian Quadrature Formula
Chapter 5 Point Slope Form
Ad

Similar to Romberg's Integration (20)

PDF
Overviewing the techniques of Numerical Integration.pdf
PPT
mtl_gen_int_ppt_romberg.ppt 6 6 6
PDF
Numerical Integration: Trapezoidal Rule
PDF
Numerical_Methods_Simpson_Rule
PDF
Applied numerical methods lec10
DOCX
new math seminar paper
PDF
Gaussian Numerical Integration
PDF
Integration techniques
PPT
1519 differentiation-integration-02
PPT
Lec_1_Integration.ppt
PPT
23MA401 NM Numerical integration anddifferenciation
PDF
SMT1105-1.pdf
PPTX
NUMERICAL METHOD'S
PPTX
Newton Cotes Integration Method, Open Newton Cotes, Closed Newton Cotes Gauss...
DOCX
Assignment 3
PPTX
Presentation on Numerical Method (Trapezoidal Method)
PPT
CIS541_07_Integration.ppt
PDF
Simpson's rule of integration
PDF
Numerical integration
PPT
Numerical hhhhhhhhhhhhhhhhhIntegration.ppt
Overviewing the techniques of Numerical Integration.pdf
mtl_gen_int_ppt_romberg.ppt 6 6 6
Numerical Integration: Trapezoidal Rule
Numerical_Methods_Simpson_Rule
Applied numerical methods lec10
new math seminar paper
Gaussian Numerical Integration
Integration techniques
1519 differentiation-integration-02
Lec_1_Integration.ppt
23MA401 NM Numerical integration anddifferenciation
SMT1105-1.pdf
NUMERICAL METHOD'S
Newton Cotes Integration Method, Open Newton Cotes, Closed Newton Cotes Gauss...
Assignment 3
Presentation on Numerical Method (Trapezoidal Method)
CIS541_07_Integration.ppt
Simpson's rule of integration
Numerical integration
Numerical hhhhhhhhhhhhhhhhhIntegration.ppt
Ad

More from VARUN KUMAR (20)

PDF
Distributed rc Model
PDF
Electrical Wire Model
PDF
Interconnect Parameter in Digital VLSI Design
PDF
Introduction to Digital VLSI Design
PDF
Challenges of Massive MIMO System
PDF
E-democracy or Digital Democracy
PDF
Ethics of Parasitic Computing
PDF
Action Lines of Geneva Plan of Action
PDF
Geneva Plan of Action
PDF
Fair Use in the Electronic Age
PDF
Software as a Property
PDF
Orthogonal Polynomial
PDF
Patent Protection
PDF
Copyright Vs Patent and Trade Secrecy Law
PDF
Property Right and Software
PDF
Investigating Data Trials
PDF
Censorship and Controversy
PDF
Introduction to Censorship
PDF
Protect your online privacy-2
PDF
Interception Act vs Privacy Act
Distributed rc Model
Electrical Wire Model
Interconnect Parameter in Digital VLSI Design
Introduction to Digital VLSI Design
Challenges of Massive MIMO System
E-democracy or Digital Democracy
Ethics of Parasitic Computing
Action Lines of Geneva Plan of Action
Geneva Plan of Action
Fair Use in the Electronic Age
Software as a Property
Orthogonal Polynomial
Patent Protection
Copyright Vs Patent and Trade Secrecy Law
Property Right and Software
Investigating Data Trials
Censorship and Controversy
Introduction to Censorship
Protect your online privacy-2
Interception Act vs Privacy Act

Recently uploaded (20)

PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Geodesy 1.pptx...............................................
PDF
composite construction of structures.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPT
Project quality management in manufacturing
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
OOP with Java - Java Introduction (Basics)
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
web development for engineering and engineering
Model Code of Practice - Construction Work - 21102022 .pdf
Lesson 3_Tessellation.pptx finite Mathematics
Internet of Things (IOT) - A guide to understanding
CYBER-CRIMES AND SECURITY A guide to understanding
Geodesy 1.pptx...............................................
composite construction of structures.pdf
bas. eng. economics group 4 presentation 1.pptx
Project quality management in manufacturing
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
OOP with Java - Java Introduction (Basics)
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Arduino robotics embedded978-1-4302-3184-4.pdf
CH1 Production IntroductoryConcepts.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
web development for engineering and engineering

Romberg's Integration

  • 1. Romberg’s Integration Dr. Varun Kumar Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 1 / 8
  • 2. Outlines 1 Introduction to Romberg’s Rule 2 Mathematical Formulation 3 Example Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 2 / 8
  • 3. Introduction to Romberg’s Rule Important points ⇒ In numerical analysis, Romberg’s method (Romberg 1955) is used to estimate the definite integral F(x) = Z b a f (x)dx ⇒ By applying Richardson extrapolation repeatedly on the trapezium rule or the rectangle rule. ⇒ The estimates generate a triangular array. ⇒ It increases the accuracy with greater extent. ⇒ It is the extension of trapezoidal and rectangular rule. Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 3 / 8
  • 4. Other Integration Methods Rectangular rule Z b a f (x)dx = h h f (a) + f (x1) + f (x2) + ....f (xn−1) + f (b) i where h = step size → (b−a) n Total numbers of sample = n + 1 (Including point a and b ) x1 = a + h, x2 = a + 2h,....... Trapezoidal rule Z b a f (x)dx = h 2 h f (a) + 2 f (x1) + f (x2) + ....f (xn−1) + f (b) i Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 4 / 8
  • 5. Romberg’s Integration Steps for solving Romberg’s Integration hn = (b−a) 2n → Variable step size The method can be inductively defined by R(0, 0) = h1 f (a) + f (b) R(n, 0) = 1 2 R(n − 1, 0) + hn 2n−1 X k=1 f (a + (2k − 1)hn) Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 5 / 8
  • 6. More on Romberg’s Integration Triangular array Rectangular or Trapezoidal Method Recursively Step size Step-1 Step-2 Step-3 Step-4 h I1 I∗ 1 = I2 + 1 3 (I2 − I1) I∗ 2 = I3 + 1 3 (I3 − I2) I∗ 3 = I4 + 1 3 (I4 − I3) I∗∗ 1 = I2 ∗ + 1 3 (I2 ∗ −I1∗) I∗∗ 2 = I3 ∗ + 1 3 (I3 ∗ −I2∗) I∗∗∗ 1 = I∗∗ 1 + 1 3 (I∗∗ 2 − I∗∗ 1 ) h/2 I2 h/4 I3 h/8 I4 This method can be stopped when two successive values are very close to each other. Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 6 / 8
  • 7. Example– Example Q Evaluate the following definite integral J using Romberg’s integration rule, where J = Z 1 0 1 1 + x dx Ans Solution: According to question, a = 0, b = 1. We solve this by trapezoidal rule Case 1: Taking h = 0.5, the value of x and f (x) is At x = 0, f (x) = 1 At x = 0.5, f (x) = 0.66667 At x = 1, f (x) = 0.5 At I = 1 4[1 + 2 × 0.66667 + 0.5] = 0.70835 Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 7 / 8
  • 8. Continued– Case 2: Taking h = 0.25, the value of x and f (x) is x 0 0.25 0.5 0.75 1 f(x) 1 0.8 0.667 0.5714 0.5 By trapezoidal rule I = 0.25 2 [1 + 2(0.8 + 0.667 + 0.5714) + 0.5] = 0.6970 Case 3: Taking h=0.125, x and f (x) value is x 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 f(x) 1 0.8889 0.8 0.7273 0.667 0.6154 0.5714 0.5333 0.5 By trapezoidal rule I = 0.125 2 [1+2(0.8889+0.8+0.7273+0.667+0.6154+0.5714+0.5333)+0.5] = 0.6914 I(h) = 0.7084 I(h/2) = 0.6970 I(h/4) = 0.6914 I∗ 1 = 0.6932, I∗ 2 = 0.6931 and I∗∗ 1 = 0.6931 Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-3 8 / 8