SlideShare a Scribd company logo
7
Most read
9
Most read
11
Most read
Gaussian Numerical Integration
Dr. Varun Kumar
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 1 / 11
Outlines
1 Newton’s Cotes Integration
2 Gaussian Integration
3 Gauss Quadrature 2 Point Formula
4 Gauss Quadrature 3 Point Formula
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 2 / 11
Newton’s Cotes Integration
Newton’s Cotes Integration
⇒ Trapezoidal rule
⇒ Simpson’s 1
3rd rule
⇒ Simpson’s 3
8th rule
⇒ Romberg’s Integration
Important points
⇒ Above rules are derived from Newton’s divide difference interpolation.
⇒ In all the rules range of integral is divide into equally space.
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 3 / 11
Gaussian Integration
⇒ Accuracy of integration can be increased by choosing the sample
point wisely.
⇒ Objective → Area of (A+C)=Area of B.
I =
Z 1
−1
f (x)dx =
n
X
i=1
wi f (xi )
⇒ Methods for finding wi and xi for finding the integral of f (x) is called
as Gaussian numerical integration.
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 4 / 11
Methods of Gaussian Integral
Methods of Gaussian Integral
1 Gauss quadrature 2 point formula
2 Gauss quadrature 3 point formula
Gauss quadrature 2 point formula
⇒ It is also called Gauss Legendre 2 point formula.
⇒ Assume,
I =
Z 1
−1
f (x)dx =
n
X
i=1
wi f (xi ) (1)
⇒ By putting n = 2, we get
I =
Z 1
−1
f (x)dx =
n
X
i=1
wi f (xi ) = w1f (x1) + w2f (x2) (2)
⇒ Here, four unknown (w1, w2, x1, x2) required four equation. Let f (x) = 1
I =
Z 1
−1
f (x)dx = 2 =
2
X
i=1
wi f (xi ) = w1 + w2 = 2 (3)
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 5 / 11
Continued–
⇒ Let f (x) = x then f (x1) = x1 and f (x2) = x2
I =
Z 1
−1
f (x)dx = 0 =
2
X
i=1
wi f (xi ) = w1x1 + w2x2 = 0 (4)
⇒ Let f (x) = x2 then f (x1) = x2
1 and f (x2) = x2
2
I =
Z 1
−1
f (x)dx =
2
3
=
2
X
i=1
wi f (xi ) = w1x2
1 + w2x2
2 =
2
3
(5)
⇒ Let f (x) = x3 then f (x1) = x3
1 and f (x2) = x3
2
I =
Z 1
−1
f (x)dx = 0 =
2
X
i=1
wi f (xi ) = w1x3
1 + w2x3
2 = 0 (6)
From (3), (4), (5), (6)
w1 = w2 = 1, x1 = − 1
√
3
, and x2 = 1
√
3
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 6 / 11
Continued–
Gaussian quadrature integration 2-point formula
I = f

−
1
√
3

+ f
 1
√
3

Gauss quadrature 3 point formula
⇒ It is also called Gauss Legendre 3 point formula.
⇒ Assume,
I =
Z 1
−1
f (x)dx =
n
X
i=1
wi f (xi ) (7)
⇒ By putting n = 3, we get
I =
Z 1
−1
f (x)dx =
n
X
i=1
wi f (xi ) = w1f (x1) + w2f (x2) + w3f (x3) (8)
⇒ Here, six unknown (w1, w2, w3, x1, x2, x3) required six equation. Let f (x) = 1
I =
Z 1
−1
f (x)dx = 2 =
3
X
i=1
wi f (xi ) = w1 + w2 + w3 = 2 (9)
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 7 / 11
Continued–
⇒ Let f (x) = x then f (x1) = x1, f (x2) = x2, and f (x3) = x3
I =
Z 1
−1
f (x)dx = 0 =
3
X
i=1
wi f (xi ) = w1x1 + w2x2 + w3x3 = 0 (10)
⇒ Let f (x) = x2 then f (x1) = x2
1 , f (x2) = x2
2 , and f (x3) = x2
3
I =
Z 1
−1
f (x)dx =
2
3
=
2
X
i=1
wi f (xi ) = w1x2
1 + w2x2
2 + w3x2
3 =
2
3
(11)
⇒ Let f (x) = x3 then f (x1) = x3
1 , f (x2) = x3
2 , and f (x3) = x3
3
I =
Z 1
−1
f (x)dx = 0 =
2
X
i=1
wi f (xi ) = w1x3
1 + w2x3
2 + w3x3
3 = 0 (12)
⇒ Let f (x) = x4 then f (x1) = x4
1 , f (x2) = x4
2 , and f (x3) = x4
3
I =
Z 1
−1
f (x)dx =
2
5
=
2
X
i=1
wi f (xi ) = w1x4
1 + w2x4
2 + w3x4
3 =
2
5
(13)
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 8 / 11
Continued–
⇒ Let f (x) = x5 then f (x1) = x5
1 , f (x2) = x5
2 , and f (x3) = x5
3
I =
Z 1
−1
f (x)dx = 0 =
2
X
i=1
wi f (xi ) = w1x5
1 + w2x5
2 + w3x5
3 = 0 (14)
From (9), (10), (11), (12), (13) and (14)
w1 = 5
9, w2 = 8
9, w3 = 5
9, x1 = −
q
3
5, x2 = 0 and x3 =
q
3
5
Gaussian quadrature formula for n = 3
I =
5
9
f

−
r
3
5

+
8
9
f(0) +
5
9
f
r
3
5

Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 9 / 11
Gauss quadrature formula when limit differs from [-1,1]
♦ Gauss quadrature 2-point formula ⇒ I =
R 1
−1
f (x)dx = f

− 1
√
3

+ f

1
√
3

♦ Gauss quadrature 3-point formula ⇒ I = 5
9
f

−
q
3
5

+ 8
9
f (0) + 5
9
f
q
3
5

Interval Transformation:
⇒ Objective→ To find
R b
a f (x)dx
⇒ Interval transformation refers →
R b
a ⇐⇒
R 1
−1 and f (x) ⇐⇒ f (z)
Let
x = Az + B
dx = Adz
When I =
R b
a
f (x)dx =
R 1
−1
Af (z)dz = A
Pn
i=1 wi f (zi )
At x = a → z = −1 and x = b → z = 1
a = −A + B and b = A + B
A = b−a
2 and B = a+b
2
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 10 / 11
Continued–
For Gauss 2-point formula
I =
Z b
a
f (x)dx = A
2
X
i=1
wi f (zi ) =
b − a
2
[w1f (z1) + w2f (z2)] (15)
where w1 = w2 = 1 and z1 = − 1
√
3
, z2 = 1
√
3
For Gauss 3-point formula
I =
Z b
a
f (x)dx = A
3
X
i=1
wi f (zi ) =
b − a
2
[w1f (z1) + w2f (z2) + w3f (z3)]
(16)
where w1 = 5
9, w2 = 8
9, w3 = 5
9 and z1 = −
q
3
5, z2 = 0, z3 =
q
3
5
Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 11 / 11

More Related Content

PPT
The Gregory Gauss Quadrature formula for beginners
PPTX
Gauss Quadrature Formula
PDF
1. introduction to complex numbers
PPTX
Class 14 3D HermiteInterpolation.pptx
PPTX
Newton Forward Difference Interpolation Method
PDF
Rational expression
PPTX
Newton's forward difference
PDF
Gaussian quadratures
The Gregory Gauss Quadrature formula for beginners
Gauss Quadrature Formula
1. introduction to complex numbers
Class 14 3D HermiteInterpolation.pptx
Newton Forward Difference Interpolation Method
Rational expression
Newton's forward difference
Gaussian quadratures

What's hot (20)

PPTX
Matlab polynimials and curve fitting
PPTX
Jacobi iterative method
PDF
Quadratic programming (Tool of optimization)
PPT
Gaussian Integration
PPT
08 interpolation lagrange
PPTX
Metric space
PPTX
Numerical analysis ppt
PPTX
Riemann's Sum
PPT
Newton-Raphson Method
PPT
Numerical Analysis (Solution of Non-Linear Equations) part 2
PPT
Differential equations
PDF
New approach for wolfe’s modified simplex method to solve quadratic programmi...
PDF
Error analysis in numerical integration
PPTX
2. Fixed Point Iteration.pptx
PPTX
PPTX
composite functions
PPTX
False Point Method / Regula falsi method
PDF
Finite difference & interpolation
PPTX
4.1 the chain rule
Matlab polynimials and curve fitting
Jacobi iterative method
Quadratic programming (Tool of optimization)
Gaussian Integration
08 interpolation lagrange
Metric space
Numerical analysis ppt
Riemann's Sum
Newton-Raphson Method
Numerical Analysis (Solution of Non-Linear Equations) part 2
Differential equations
New approach for wolfe’s modified simplex method to solve quadratic programmi...
Error analysis in numerical integration
2. Fixed Point Iteration.pptx
composite functions
False Point Method / Regula falsi method
Finite difference & interpolation
4.1 the chain rule
Ad

Similar to Gaussian Numerical Integration (20)

PPTX
L10 Gauss quadrature formula download pdf.pptx
PPTX
NUMERICAL INTEGRATION : ERROR FORMULA, GAUSSIAN QUADRATURE FORMULA
PPTX
interpolation-190605141327 (1).pptx
PPTX
interpolation-190605141327 (1).pptx
PPTX
Numerical integration;Gaussian integration one point, two point and three poi...
PPTX
Newton Cotes Integration Method, Open Newton Cotes, Closed Newton Cotes Gauss...
PDF
Newton's Divide and Difference Interpolation
PDF
Interpolation techniques - Background and implementation
PPTX
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
PPS
Unit iv
PDF
Overviewing the techniques of Numerical Integration.pdf
PPS
M1 unit iii-jntuworld
DOC
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
PDF
Quadrature
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lecture about interpolation
PDF
Numerical_Methods_Simpson_Rule
PPTX
Gaussian Quadrature Formula
PDF
Lesson 27: Evaluating Definite Integrals
L10 Gauss quadrature formula download pdf.pptx
NUMERICAL INTEGRATION : ERROR FORMULA, GAUSSIAN QUADRATURE FORMULA
interpolation-190605141327 (1).pptx
interpolation-190605141327 (1).pptx
Numerical integration;Gaussian integration one point, two point and three poi...
Newton Cotes Integration Method, Open Newton Cotes, Closed Newton Cotes Gauss...
Newton's Divide and Difference Interpolation
Interpolation techniques - Background and implementation
formulanonekjdhdihddhkdddnfdbfdjfkddk.pptx
Unit iv
Overviewing the techniques of Numerical Integration.pdf
M1 unit iii-jntuworld
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
Quadrature
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Lecture about interpolation
Numerical_Methods_Simpson_Rule
Gaussian Quadrature Formula
Lesson 27: Evaluating Definite Integrals
Ad

More from VARUN KUMAR (20)

PDF
Distributed rc Model
PDF
Electrical Wire Model
PDF
Interconnect Parameter in Digital VLSI Design
PDF
Introduction to Digital VLSI Design
PDF
Challenges of Massive MIMO System
PDF
E-democracy or Digital Democracy
PDF
Ethics of Parasitic Computing
PDF
Action Lines of Geneva Plan of Action
PDF
Geneva Plan of Action
PDF
Fair Use in the Electronic Age
PDF
Software as a Property
PDF
Orthogonal Polynomial
PDF
Patent Protection
PDF
Copyright Vs Patent and Trade Secrecy Law
PDF
Property Right and Software
PDF
Investigating Data Trials
PDF
Censorship and Controversy
PDF
Romberg's Integration
PDF
Introduction to Censorship
PDF
Protect your online privacy-2
Distributed rc Model
Electrical Wire Model
Interconnect Parameter in Digital VLSI Design
Introduction to Digital VLSI Design
Challenges of Massive MIMO System
E-democracy or Digital Democracy
Ethics of Parasitic Computing
Action Lines of Geneva Plan of Action
Geneva Plan of Action
Fair Use in the Electronic Age
Software as a Property
Orthogonal Polynomial
Patent Protection
Copyright Vs Patent and Trade Secrecy Law
Property Right and Software
Investigating Data Trials
Censorship and Controversy
Romberg's Integration
Introduction to Censorship
Protect your online privacy-2

Recently uploaded (20)

PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Construction Project Organization Group 2.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Digital Logic Computer Design lecture notes
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
additive manufacturing of ss316l using mig welding
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPT
Project quality management in manufacturing
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Geodesy 1.pptx...............................................
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Construction Project Organization Group 2.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Digital Logic Computer Design lecture notes
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
CH1 Production IntroductoryConcepts.pptx
additive manufacturing of ss316l using mig welding
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Model Code of Practice - Construction Work - 21102022 .pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Project quality management in manufacturing
Embodied AI: Ushering in the Next Era of Intelligent Systems
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Geodesy 1.pptx...............................................

Gaussian Numerical Integration

  • 1. Gaussian Numerical Integration Dr. Varun Kumar Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 1 / 11
  • 2. Outlines 1 Newton’s Cotes Integration 2 Gaussian Integration 3 Gauss Quadrature 2 Point Formula 4 Gauss Quadrature 3 Point Formula Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 2 / 11
  • 3. Newton’s Cotes Integration Newton’s Cotes Integration ⇒ Trapezoidal rule ⇒ Simpson’s 1 3rd rule ⇒ Simpson’s 3 8th rule ⇒ Romberg’s Integration Important points ⇒ Above rules are derived from Newton’s divide difference interpolation. ⇒ In all the rules range of integral is divide into equally space. Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 3 / 11
  • 4. Gaussian Integration ⇒ Accuracy of integration can be increased by choosing the sample point wisely. ⇒ Objective → Area of (A+C)=Area of B. I = Z 1 −1 f (x)dx = n X i=1 wi f (xi ) ⇒ Methods for finding wi and xi for finding the integral of f (x) is called as Gaussian numerical integration. Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 4 / 11
  • 5. Methods of Gaussian Integral Methods of Gaussian Integral 1 Gauss quadrature 2 point formula 2 Gauss quadrature 3 point formula Gauss quadrature 2 point formula ⇒ It is also called Gauss Legendre 2 point formula. ⇒ Assume, I = Z 1 −1 f (x)dx = n X i=1 wi f (xi ) (1) ⇒ By putting n = 2, we get I = Z 1 −1 f (x)dx = n X i=1 wi f (xi ) = w1f (x1) + w2f (x2) (2) ⇒ Here, four unknown (w1, w2, x1, x2) required four equation. Let f (x) = 1 I = Z 1 −1 f (x)dx = 2 = 2 X i=1 wi f (xi ) = w1 + w2 = 2 (3) Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 5 / 11
  • 6. Continued– ⇒ Let f (x) = x then f (x1) = x1 and f (x2) = x2 I = Z 1 −1 f (x)dx = 0 = 2 X i=1 wi f (xi ) = w1x1 + w2x2 = 0 (4) ⇒ Let f (x) = x2 then f (x1) = x2 1 and f (x2) = x2 2 I = Z 1 −1 f (x)dx = 2 3 = 2 X i=1 wi f (xi ) = w1x2 1 + w2x2 2 = 2 3 (5) ⇒ Let f (x) = x3 then f (x1) = x3 1 and f (x2) = x3 2 I = Z 1 −1 f (x)dx = 0 = 2 X i=1 wi f (xi ) = w1x3 1 + w2x3 2 = 0 (6) From (3), (4), (5), (6) w1 = w2 = 1, x1 = − 1 √ 3 , and x2 = 1 √ 3 Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 6 / 11
  • 7. Continued– Gaussian quadrature integration 2-point formula I = f − 1 √ 3 + f 1 √ 3 Gauss quadrature 3 point formula ⇒ It is also called Gauss Legendre 3 point formula. ⇒ Assume, I = Z 1 −1 f (x)dx = n X i=1 wi f (xi ) (7) ⇒ By putting n = 3, we get I = Z 1 −1 f (x)dx = n X i=1 wi f (xi ) = w1f (x1) + w2f (x2) + w3f (x3) (8) ⇒ Here, six unknown (w1, w2, w3, x1, x2, x3) required six equation. Let f (x) = 1 I = Z 1 −1 f (x)dx = 2 = 3 X i=1 wi f (xi ) = w1 + w2 + w3 = 2 (9) Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 7 / 11
  • 8. Continued– ⇒ Let f (x) = x then f (x1) = x1, f (x2) = x2, and f (x3) = x3 I = Z 1 −1 f (x)dx = 0 = 3 X i=1 wi f (xi ) = w1x1 + w2x2 + w3x3 = 0 (10) ⇒ Let f (x) = x2 then f (x1) = x2 1 , f (x2) = x2 2 , and f (x3) = x2 3 I = Z 1 −1 f (x)dx = 2 3 = 2 X i=1 wi f (xi ) = w1x2 1 + w2x2 2 + w3x2 3 = 2 3 (11) ⇒ Let f (x) = x3 then f (x1) = x3 1 , f (x2) = x3 2 , and f (x3) = x3 3 I = Z 1 −1 f (x)dx = 0 = 2 X i=1 wi f (xi ) = w1x3 1 + w2x3 2 + w3x3 3 = 0 (12) ⇒ Let f (x) = x4 then f (x1) = x4 1 , f (x2) = x4 2 , and f (x3) = x4 3 I = Z 1 −1 f (x)dx = 2 5 = 2 X i=1 wi f (xi ) = w1x4 1 + w2x4 2 + w3x4 3 = 2 5 (13) Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 8 / 11
  • 9. Continued– ⇒ Let f (x) = x5 then f (x1) = x5 1 , f (x2) = x5 2 , and f (x3) = x5 3 I = Z 1 −1 f (x)dx = 0 = 2 X i=1 wi f (xi ) = w1x5 1 + w2x5 2 + w3x5 3 = 0 (14) From (9), (10), (11), (12), (13) and (14) w1 = 5 9, w2 = 8 9, w3 = 5 9, x1 = − q 3 5, x2 = 0 and x3 = q 3 5 Gaussian quadrature formula for n = 3 I = 5 9 f − r 3 5 + 8 9 f(0) + 5 9 f r 3 5 Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 9 / 11
  • 10. Gauss quadrature formula when limit differs from [-1,1] ♦ Gauss quadrature 2-point formula ⇒ I = R 1 −1 f (x)dx = f − 1 √ 3 + f 1 √ 3 ♦ Gauss quadrature 3-point formula ⇒ I = 5 9 f − q 3 5 + 8 9 f (0) + 5 9 f q 3 5 Interval Transformation: ⇒ Objective→ To find R b a f (x)dx ⇒ Interval transformation refers → R b a ⇐⇒ R 1 −1 and f (x) ⇐⇒ f (z) Let x = Az + B dx = Adz When I = R b a f (x)dx = R 1 −1 Af (z)dz = A Pn i=1 wi f (zi ) At x = a → z = −1 and x = b → z = 1 a = −A + B and b = A + B A = b−a 2 and B = a+b 2 Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 10 / 11
  • 11. Continued– For Gauss 2-point formula I = Z b a f (x)dx = A 2 X i=1 wi f (zi ) = b − a 2 [w1f (z1) + w2f (z2)] (15) where w1 = w2 = 1 and z1 = − 1 √ 3 , z2 = 1 √ 3 For Gauss 3-point formula I = Z b a f (x)dx = A 3 X i=1 wi f (zi ) = b − a 2 [w1f (z1) + w2f (z2) + w3f (z3)] (16) where w1 = 5 9, w2 = 8 9, w3 = 5 9 and z1 = − q 3 5, z2 = 0, z3 = q 3 5 Dr. Varun Kumar (IIIT Surat) Unit 5 / Lecture-4 11 / 11