SlideShare a Scribd company logo
MCE 565
Wave Motion & Vibration in Continuous Media
Spring 2005
Professor M. H. Sadd
Introduction to Finite Element Methods
Need for Computational Methods
• Solutions Using Either Strength of Materials or Theory of
Elasticity Are Normally Accomplished for Regions and
Loadings With Relatively Simple Geometry
• Many Applicaitons Involve Cases with Complex Shape,
Boundary Conditions and Material Behavior
• Therefore a Gap Exists Between What Is Needed in
Applications and What Can Be Solved by Analytical Closed-
form Methods
• This Has Lead to the Development of Several
Numerical/Computational Schemes Including: Finite
Difference, Finite Element and Boundary Element Methods
Introduction to Finite Element Analysis
The finite element method is a computational scheme to solve field problems in
engineering and science. The technique has very wide application, and has been used on
problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations,
electrical and magnetic fields, etc. The fundamental concept involves dividing the body
under study into a finite number of pieces (subdomains) called elements (see Figure).
Particular assumptions are then made on the variation of the unknown dependent
variable(s) across each element using so-called interpolation or approximation functions.
This approximated variation is quantified in terms of solution values at special element
locations called nodes. Through this discretization process, the method sets up an
algebraic system of equations for unknown nodal values which approximate the
continuous solution. Because element size, shape and approximating scheme can be
varied to suit the problem, the method can accurately simulate solutions to problems of
complex geometry and loading and thus this technique has become a very useful and
practical tool.
Advantages of Finite Element Analysis
- Models Bodies of Complex Shape
- Can Handle General Loading/Boundary Conditions
- Models Bodies Composed of Composite and Multiphase Materials
- Model is Easily Refined for Improved Accuracy by Varying
Element Size and Type (Approximation Scheme)
- Time Dependent and Dynamic Effects Can Be Included
- Can Handle a Variety Nonlinear Effects Including Material
Behavior, Large Deformations, Boundary Conditions, Etc.
Basic Concept of the Finite Element Method
Any continuous solution field such as stress, displacement,
temperature, pressure, etc. can be approximated by a
discrete model composed of a set of piecewise continuous
functions defined over a finite number of subdomains.
Exact Analytical Solution
x
T
Approximate Piecewise
Linear Solution
x
T
One-Dimensional Temperature Distribution
Two-Dimensional Discretization
-1
-0.5
0
0.5
1
1.5
2
2.5
3
1
1.5
2
2.5
3
3.5
4
-3
-2
-1
0
1
2
x
y
u(x,y)
Approximate Piecewise
Linear Representation
Discretization Concepts
x
T
Exact Temperature Distribution, T(x)
Finite Element Discretization
Linear Interpolation Model
(Four Elements)
Quadratic Interpolation Model
(Two Elements)
T1
T2
T2
T3 T3
T4 T4
T5
T1
T2
T3
T4 T5
Piecewise Linear Approximation
T
x
T1
T2
T3 T3
T4 T5
T
T1
T2
T3
T4 T5
Piecewise Quadratic Approximation
x
Temperature Continuous but with
Discontinuous Temperature Gradients
Temperature and Temperature Gradients
Continuous
Common Types of Elements
One-Dimensional Elements
Line
Rods, Beams, Trusses, Frames
Two-Dimensional Elements
Triangular, Quadrilateral
Plates, Shells, 2-D Continua
Three-Dimensional Elements
Tetrahedral, Rectangular Prism (Brick)
3-D Continua
Discretization Examples
One-Dimensional
Frame Elements
Two-Dimensional
Triangular Elements
Three-Dimensional
Brick Elements
Basic Steps in the Finite Element Method
Time Independent Problems
- Domain Discretization
- Select Element Type (Shape and Approximation)
- Derive Element Equations (Variational and Energy Methods)
- Assemble Element Equations to Form Global System
[K]{U} = {F}
[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector
- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal
Displacements and Secondary Unknowns of Stress and Strain Values
Common Sources of Error in FEA
• Domain Approximation
• Element Interpolation/Approximation
• Numerical Integration Errors
(Including Spatial and Time Integration)
• Computer Errors (Round-Off, Etc., )
Measures of Accuracy in FEA
Accuracy
Error = |(Exact Solution)-(FEM Solution)|
Convergence
Limit of Error as:
Number of Elements (h-convergence)
or
Approximation Order (p-convergence)
Increases
Ideally, Error  0 as Number of Elements or
Approximation Order  
Two-Dimensional Discretization Refinement
(Discretization with 228 Elements)
(Discretization with 912 Elements)
(Triangular Element)
(Node)



One Dimensional Examples
Static Case
1 2
u1 u2
Bar Element
Uniaxial Deformation of Bars
Using Strength of Materials Theory
Beam Element
Deflection of Elastic Beams
Using Euler-Bernouli Theory
1 2
w1
w2
q2
q1
dx
du
a
u
q
cu
au
dx
d
,
:
ion
Specificat
Condtions
Boundary
0
)
(
:
Equation
al
Differenti




)
(
,
,
,
:
ion
Specificat
Condtions
Boundary
)
(
)
(
:
Equation
al
Differenti
2
2
2
2
2
2
2
2
dx
w
d
b
dx
d
dx
w
d
b
dx
dw
w
x
f
dx
w
d
b
dx
d


Two Dimensional Examples
u1
u2
1
2
3 u3
v1
v2
v3
1
2
3
f1
f2
f3
Triangular Element
Scalar-Valued, Two-Dimensional
Field Problems
Triangular Element
Vector/Tensor-Valued, Two-
Dimensional Field Problems
y
x n
y
n
x
dn
d
y
x
f
y
x

f



f


f
f


f



f

,
:
ion
Specificat
Condtions
Boundary
)
,
(
:
Equation
ial
Different
Example
2
2
2
2
y
x
y
y
x
x
y
x
n
y
v
C
x
u
C
n
x
v
y
u
C
T
n
x
v
y
u
C
n
y
v
C
x
u
C
T
F
y
v
x
u
y
E
v
F
y
v
x
u
x
E
u




































































































22
12
66
66
12
11
2
2
Conditons
Boundary
0
)
1
(
2
0
)
1
(
2
ents
Displacem
of
Terms
in
Equations
Field
Elasticity
Development of Finite Element Equation
• The Finite Element Equation Must Incorporate the Appropriate Physics
of the Problem
• For Problems in Structural Solid Mechanics, the Appropriate Physics
Comes from Either Strength of Materials or Theory of Elasticity
• FEM Equations are Commonly Developed Using Direct, Variational-
Virtual Work or Weighted Residual Methods
Variational-Virtual Work Method
Based on the concept of virtual displacements, leads to relations between internal and
external virtual work and to minimization of system potential energy for equilibrium
Weighted Residual Method
Starting with the governing differential equation, special mathematical operations
develop the “weak form” that can be incorporated into a FEM equation. This
method is particularly suited for problems that have no variational statement. For
stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that
found by variational methods.
Direct Method
Based on physical reasoning and limited to simple cases, this method is
worth studying because it enhances physical understanding of the process
Simple Element Equation Example
Direct Stiffness Derivation
1 2
k
u1 u2
F1 F2
}
{
}
]{
[
rm
Matrix Fo
in
or
2
Node
at
m
Equilibriu
1
Node
at
m
Equilibriu
2
1
2
1
2
1
2
2
1
1
F
u
K
F
F
u
u
k
k
k
k
ku
ku
F
ku
ku
F





























Stiffness Matrix Nodal Force Vector
Common Approximation Schemes
One-Dimensional Examples
Linear Quadratic Cubic
Polynomial Approximation
Most often polynomials are used to construct approximation
functions for each element. Depending on the order of
approximation, different numbers of element parameters are
needed to construct the appropriate function.
Special Approximation
For some cases (e.g. infinite elements, crack or other singular
elements) the approximation function is chosen to have special
properties as determined from theoretical considerations
One-Dimensional Bar Element






 
 

udV
f
u
P
u
P
edV j
j
i
i
}
]{
[
:
Law
Strain
-
Stress
}
]{
[
}
{
]
[
)
(
:
Strain
}
{
]
[
)
(
:
ion
Approximat
d
B
d
B
d
N
d
N
E
Ee
dx
d
u
x
dx
d
dx
du
e
u
x
u
k
k
k
k
k
k





















 

L
T
T
j
i
T
L
T
T
fdx
A
P
P
dx
E
A
0
0
]
[
}
{
}
{
}
{
]
[
]
[
}
{ N
δd
δd
d
B
B
δd

 

L
T
L
T
fdx
A
dx
E
A
0
0
]
[
}
{
}
{
]
[
]
[ N
P
d
B
B
Vector
ent
Displacem
Nodal
}
{
Vector
Loading
]
[
}
{
Matrix
Stiffness
]
[
]
[
]
[
0
0





















j
i
L
T
j
i
L
T
u
u
fdx
A
P
P
dx
E
A
K
d
N
F
B
B
}
{
}
]{
[ F
d
K 
One-Dimensional Bar Element
A = Cross-sectional Area
E = Elastic Modulus
f(x) = Distributed Loading
dV
u
F
dS
u
T
dV
e i
V
i
S
i
n
i
ij
V
ij
t





 


Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
For One-Dimensional Case

 






 udV
f
u
P
u
P
edV j
j
i
i

(i) (j)
Axial Deformation of an Elastic Bar
Typical Bar Element
dx
du
AE
P i
i 

dx
du
AE
P
j
j 

i
u j
u
L
x
(Two Degrees of Freedom)
Linear Approximation Scheme
 
Vector
ent
Displacem
Nodal
}
{
Matrix
Function
ion
Approximat
]
[
}
]{
[
1
)
(
)
(
1
2
1
2
1
2
1
2
2
1
1
2
1
1
2
1
2
1
2
1
1
2
1























































d
N
d
N
nt
Displaceme
Elastic
e
Approximat
u
u
L
x
L
x
u
u
u
u
x
u
x
u
L
x
u
L
x
x
L
u
u
u
u
L
a
a
u
a
u
x
a
a
u
x (local coordinate system)
(1) (2)
i
u j
u
L
x
(1) (2)
u(x)
x
(1) (2)
1(x) 2(x)
1
k(x) – Lagrange Interpolation Functions
Element Equation
Linear Approximation Scheme, Constant Properties
Vector
ent
Displacem
Nodal
}
{
1
1
2
]
[
}
{
1
1
1
1
1
1
1
1
]
[
]
[
]
[
]
[
]
[
2
1
2
1
0
2
1
0
2
1
0
0



















































































u
u
L
Af
P
P
dx
L
x
L
x
Af
P
P
fdx
A
P
P
L
AE
L
L
L
L
L
AE
dx
AE
dx
E
A
K
o
L
o
L
T
L
T
L
T
d
N
F
B
B
B
B






























1
1
2
1
1
1
1
}
{
}
]{
[
2
1
2
1 L
Af
P
P
u
u
L
AE o
F
d
K
Quadratic Approximation Scheme
  }
]{
[
)
(
)
(
)
(
4
2
3
2
1
3
2
1
3
3
2
2
1
1
2
3
2
1
3
2
3
2
1
2
1
1
2
3
2
1
d
N
nt
Displaceme
Elastic
e
Approximat
































u
u
u
u
u
x
u
x
u
x
u
L
a
L
a
a
u
L
a
L
a
a
u
a
u
x
a
x
a
a
u
x
(1) (3)
1
u 3
u
(2)
2
u
L
u(x)
x
(1) (3)
(2)
x
(1) (3)
(2)
1
1(x) 3(x)
2(x)



































3
2
1
3
2
1
7
8
1
8
16
8
1
8
7
3
F
F
F
u
u
u
L
AE
Equation
Element
Lagrange Interpolation Functions
Using Natural or Normalized Coordinates
1
1 




(1) (2)
)
1
(
2
1
)
1
(
2
1
2
1








)
1
(
2
1
)
1
)(
1
(
)
1
(
2
1
3
2
1

















)
1
)(
3
1
)(
3
1
(
16
9
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
3
1
)(
1
(
16
9
4
3
2
1



































(1) (2) (3)

(1) (2) (3) (4)








j
i
j
i
j
i
,
0
,
1
)
(
Simple Example
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2

































0
0
0
0
0
1
1
0
1
1
1
Element
Equation
Global
)
1
(
2
)
1
(
1
3
2
1
1
1
1
P
P
U
U
U
L
E
A

































)
2
(
2
)
2
(
1
3
2
1
2
2
2
0
1
1
0
1
1
0
0
0
0
2
Element
Equation
Global
P
P
U
U
U
L
E
A
























































3
2
1
)
2
(
2
)
2
(
1
)
1
(
2
)
1
(
1
3
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
0
0
Equation
System
Global
Assembled
P
P
P
P
P
P
P
U
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
Loading
ed
Distribut
Zero
Take

f
Simple Example Continued
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2
0
0
Conditions
Boundary
)
2
(
1
)
1
(
2
)
2
(
2
1




P
P
P
P
U












































P
P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
0
0
0
Equation
System
Global
Reduced
)
1
(
1
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1




























P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
L
E
A ,
,
Properties
m
For Unifor





















P
U
U
L
AE 0
1
1
1
2
3
2
P
P
AE
PL
U
AE
PL
U 



 )
1
(
1
3
2 ,
2
,
Solving
One-Dimensional Beam Element
Deflection of an Elastic Beam
2
2
4
2
3
1
1
2
1
1
2
2
2
4
2
2
2
3
1
2
2
2
1
2
2
1
,
,
,
,
,
dx
dw
u
w
u
dx
dw
u
w
u
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q


q




q








































I = Section Moment of Inertia
E = Elastic Modulus
f(x) = Distributed Loading

(1) (2)
Typical Beam Element
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
x
Virtual Strain Energy = Virtual Work Done by Surface and Body Forces








 
 

wdV
f
w
Q
u
Q
u
Q
u
Q
edV 4
4
3
3
2
2
1
1

 




L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T
(Four Degrees of Freedom)
Beam Approximation Functions
To approximate deflection and slope at each
node requires approximation of the form
3
4
2
3
2
1
)
( x
c
x
c
x
c
c
x
w 



Evaluating deflection and slope at each node
allows the determination of ci thus leading to
Functions
ion
Approximat
Cubic
Hermite
the
are
where
,
)
(
)
(
)
(
)
(
)
( 4
4
3
3
2
2
1
1
i
u
x
u
x
u
x
u
x
x
w
f
f

f

f

f

Beam Element Equation

 




L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T















4
3
2
1
}
{
u
u
u
u
d ]
[
]
[
]
[ 4
3
2
1
dx
d
dx
d
dx
d
dx
d
dx
d f
f
f
f


N
B



















 
2
2
2
2
3
0
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
]
[
]
[
]
[
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
dx
EI
L
B
B
K T































































L
L
fL
Q
Q
Q
Q
u
u
u
u
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
6
6
12
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
4
3
2
1
4
3
2
1
2
2
2
2
3






























f
f
f
f
 

L
L
fL
dx
f
dx
f
L
L
T
6
6
12
]
[
0
4
3
2
1
0
N
FEA Beam Problem
f
a b
Uniform EI
































































































0
0
0
0
6
6
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
2 )
1
(
4
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
EI
1
Element







































































)
2
(
4
)
2
(
3
)
2
(
2
)
2
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
Q
Q
Q
Q
U
U
U
U
U
U
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
EI
2
Element
(1) (3)
(2)
1 2
FEA Beam Problem



















































































































)
2
(
4
)
2
(
3
)
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
3
2
2
3
2
2
3
3
2
2
3
2
3
0
0
6
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
0
0
/
1
/
3
/
2
0
0
/
3
/
6
/
3
/
6
2
Q
Q
Q
Q
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
a
a
a
a
a
a
a
EI
System
Assembled
Global
0
,
0
,
0 )
2
(
4
)
2
(
3
)
1
(
1
2
)
1
(
1
1 


q


 Q
Q
U
w
U
Conditions
Boundary
0
,
0 )
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3 


 Q
Q
Q
Q
Conditions
Matching






































































0
0
0
0
0
0
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
2
4
3
2
1
2
3
2
3
3
2
2
3
3
a
fa
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
EI
System
Reduced
Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4
Nodal Forces Q1 and Q2 Can Then Be Determined
(1) (3)
(2)
1 2
Special Features of Beam FEA
Analytical Solution Gives
Cubic Deflection Curve
Analytical Solution Gives
Quartic Deflection Curve
FEA Using Hermit Cubic Interpolation
Will Yield Results That Match Exactly
With Cubic Analytical Solutions
Truss Element
Generalization of Bar Element With Arbitrary Orientation
x
y
k=AE/L
q

q
 cos
,
sin c
s
Frame Element
Generalization of Bar and Beam Element with Arbitrary Orientation

(1) (2)
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
2
P
1
P
1
u 2
u





































q
q






































4
3
2
2
1
1
2
2
2
1
1
1
2
2
2
3
2
3
2
2
2
3
2
3
4
6
0
2
6
0
6
12
0
6
12
0
0
0
0
0
2
6
0
4
6
0
6
12
0
6
12
0
0
0
0
0
Q
Q
P
Q
Q
P
w
u
w
u
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
Some Standard FEA References
Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995.
Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993
Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990.
Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987.
Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002.
Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley,
1989.
Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979.
Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001.
Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986.
Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994.
Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993.
Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992.
Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003.
Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992.
Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986.
Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998.
Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993.
Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993.
Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985.
Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.

More Related Content

PPTX
Finite Element Methods
PPT
Introduction to finite element method(fem)
PDF
Me2353 finite-element-analysis-lecture-notes
PDF
Introduction to Finite Element Method
PPT
Stages of fea in cad environment
PPT
Finite Element Analysis - UNIT-1
PPT
Intro to fea software
PPTX
Introduction to FEA
Finite Element Methods
Introduction to finite element method(fem)
Me2353 finite-element-analysis-lecture-notes
Introduction to Finite Element Method
Stages of fea in cad environment
Finite Element Analysis - UNIT-1
Intro to fea software
Introduction to FEA

What's hot (20)

PDF
Unit 1 notes-final
PDF
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
PPSX
Finite Element Analysis -Dr.P.Parandaman
PDF
Finite Element Method
PPT
Introduction to FEA
PPTX
Introduction fea
PDF
Introduction to finite element analysis
PPTX
Fea unit 1
PDF
Isoparametric Elements 4.pdf
PPT
Finite Element Analysis - UNIT-4
PPT
An Introduction to the Finite Element Method
PDF
Shape functions
PPSX
Non linear analysis
PPTX
Lect14
PPTX
Compatibility equation and Airy's stress function of theory of elasticity
PPTX
INTRODUCTION TO FINITE ELEMENT ANALYSIS
PPTX
CE72.52 - Lecture 2 - Material Behavior
PDF
FEA Basic Introduction Training By Praveen
PPTX
Unit 1 notes-final
ME6603 - FINITE ELEMENT ANALYSIS FORMULA BOOK
Finite Element Analysis -Dr.P.Parandaman
Finite Element Method
Introduction to FEA
Introduction fea
Introduction to finite element analysis
Fea unit 1
Isoparametric Elements 4.pdf
Finite Element Analysis - UNIT-4
An Introduction to the Finite Element Method
Shape functions
Non linear analysis
Lect14
Compatibility equation and Airy's stress function of theory of elasticity
INTRODUCTION TO FINITE ELEMENT ANALYSIS
CE72.52 - Lecture 2 - Material Behavior
FEA Basic Introduction Training By Praveen
Ad

Similar to Fem lecture (20)

PPT
PPT
INTRODUCTION TO FINITE ELEMENT METHODS PPT
PPT
Finite element method
PPTX
tuttuturtCH 1 and 2 FEM ppt finite el.pptx
PDF
Lecture 01 - Introduction to Finite EM.pdf
PPTX
Introduction to finite element method
PDF
Fem notes
PPTX
chapter 1- introduction to finite element method
PPT
Introduction to Finite Elements
PPTX
Fem utkarsh
PDF
Introduction_to_exament_Methods.pdf
PDF
Lecture on Introduction to finite element methods & its contents
PPTX
Finite Element Method.pptx
PPTX
Introduction of finite element analysis1
PPT
Introduction to FEA and applications
PPT
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
DOCX
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
PPT
FEA_Theory.ppt
PDF
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
INTRODUCTION TO FINITE ELEMENT METHODS PPT
Finite element method
tuttuturtCH 1 and 2 FEM ppt finite el.pptx
Lecture 01 - Introduction to Finite EM.pdf
Introduction to finite element method
Fem notes
chapter 1- introduction to finite element method
Introduction to Finite Elements
Fem utkarsh
Introduction_to_exament_Methods.pdf
Lecture on Introduction to finite element methods & its contents
Finite Element Method.pptx
Introduction of finite element analysis1
Introduction to FEA and applications
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
FEA_Theory.ppt
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
Ad

Recently uploaded (20)

PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Soil Improvement Techniques Note - Rabbi
PDF
737-MAX_SRG.pdf student reference guides
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
communication and presentation skills 01
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Nature of X-rays, X- Ray Equipment, Fluoroscopy
UNIT 4 Total Quality Management .pptx
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Information Storage and Retrieval Techniques Unit III
Categorization of Factors Affecting Classification Algorithms Selection
R24 SURVEYING LAB MANUAL for civil enggi
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Safety Seminar civil to be ensured for safe working.
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Soil Improvement Techniques Note - Rabbi
737-MAX_SRG.pdf student reference guides
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
communication and presentation skills 01

Fem lecture

  • 1. MCE 565 Wave Motion & Vibration in Continuous Media Spring 2005 Professor M. H. Sadd Introduction to Finite Element Methods
  • 2. Need for Computational Methods • Solutions Using Either Strength of Materials or Theory of Elasticity Are Normally Accomplished for Regions and Loadings With Relatively Simple Geometry • Many Applicaitons Involve Cases with Complex Shape, Boundary Conditions and Material Behavior • Therefore a Gap Exists Between What Is Needed in Applications and What Can Be Solved by Analytical Closed- form Methods • This Has Lead to the Development of Several Numerical/Computational Schemes Including: Finite Difference, Finite Element and Boundary Element Methods
  • 3. Introduction to Finite Element Analysis The finite element method is a computational scheme to solve field problems in engineering and science. The technique has very wide application, and has been used on problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, electrical and magnetic fields, etc. The fundamental concept involves dividing the body under study into a finite number of pieces (subdomains) called elements (see Figure). Particular assumptions are then made on the variation of the unknown dependent variable(s) across each element using so-called interpolation or approximation functions. This approximated variation is quantified in terms of solution values at special element locations called nodes. Through this discretization process, the method sets up an algebraic system of equations for unknown nodal values which approximate the continuous solution. Because element size, shape and approximating scheme can be varied to suit the problem, the method can accurately simulate solutions to problems of complex geometry and loading and thus this technique has become a very useful and practical tool.
  • 4. Advantages of Finite Element Analysis - Models Bodies of Complex Shape - Can Handle General Loading/Boundary Conditions - Models Bodies Composed of Composite and Multiphase Materials - Model is Easily Refined for Improved Accuracy by Varying Element Size and Type (Approximation Scheme) - Time Dependent and Dynamic Effects Can Be Included - Can Handle a Variety Nonlinear Effects Including Material Behavior, Large Deformations, Boundary Conditions, Etc.
  • 5. Basic Concept of the Finite Element Method Any continuous solution field such as stress, displacement, temperature, pressure, etc. can be approximated by a discrete model composed of a set of piecewise continuous functions defined over a finite number of subdomains. Exact Analytical Solution x T Approximate Piecewise Linear Solution x T One-Dimensional Temperature Distribution
  • 7. Discretization Concepts x T Exact Temperature Distribution, T(x) Finite Element Discretization Linear Interpolation Model (Four Elements) Quadratic Interpolation Model (Two Elements) T1 T2 T2 T3 T3 T4 T4 T5 T1 T2 T3 T4 T5 Piecewise Linear Approximation T x T1 T2 T3 T3 T4 T5 T T1 T2 T3 T4 T5 Piecewise Quadratic Approximation x Temperature Continuous but with Discontinuous Temperature Gradients Temperature and Temperature Gradients Continuous
  • 8. Common Types of Elements One-Dimensional Elements Line Rods, Beams, Trusses, Frames Two-Dimensional Elements Triangular, Quadrilateral Plates, Shells, 2-D Continua Three-Dimensional Elements Tetrahedral, Rectangular Prism (Brick) 3-D Continua
  • 10. Basic Steps in the Finite Element Method Time Independent Problems - Domain Discretization - Select Element Type (Shape and Approximation) - Derive Element Equations (Variational and Energy Methods) - Assemble Element Equations to Form Global System [K]{U} = {F} [K] = Stiffness or Property Matrix {U} = Nodal Displacement Vector {F} = Nodal Force Vector - Incorporate Boundary and Initial Conditions - Solve Assembled System of Equations for Unknown Nodal Displacements and Secondary Unknowns of Stress and Strain Values
  • 11. Common Sources of Error in FEA • Domain Approximation • Element Interpolation/Approximation • Numerical Integration Errors (Including Spatial and Time Integration) • Computer Errors (Round-Off, Etc., )
  • 12. Measures of Accuracy in FEA Accuracy Error = |(Exact Solution)-(FEM Solution)| Convergence Limit of Error as: Number of Elements (h-convergence) or Approximation Order (p-convergence) Increases Ideally, Error  0 as Number of Elements or Approximation Order  
  • 13. Two-Dimensional Discretization Refinement (Discretization with 228 Elements) (Discretization with 912 Elements) (Triangular Element) (Node)   
  • 14. One Dimensional Examples Static Case 1 2 u1 u2 Bar Element Uniaxial Deformation of Bars Using Strength of Materials Theory Beam Element Deflection of Elastic Beams Using Euler-Bernouli Theory 1 2 w1 w2 q2 q1 dx du a u q cu au dx d , : ion Specificat Condtions Boundary 0 ) ( : Equation al Differenti     ) ( , , , : ion Specificat Condtions Boundary ) ( ) ( : Equation al Differenti 2 2 2 2 2 2 2 2 dx w d b dx d dx w d b dx dw w x f dx w d b dx d  
  • 15. Two Dimensional Examples u1 u2 1 2 3 u3 v1 v2 v3 1 2 3 f1 f2 f3 Triangular Element Scalar-Valued, Two-Dimensional Field Problems Triangular Element Vector/Tensor-Valued, Two- Dimensional Field Problems y x n y n x dn d y x f y x  f    f   f f   f    f  , : ion Specificat Condtions Boundary ) , ( : Equation ial Different Example 2 2 2 2 y x y y x x y x n y v C x u C n x v y u C T n x v y u C n y v C x u C T F y v x u y E v F y v x u x E u                                                                                                     22 12 66 66 12 11 2 2 Conditons Boundary 0 ) 1 ( 2 0 ) 1 ( 2 ents Displacem of Terms in Equations Field Elasticity
  • 16. Development of Finite Element Equation • The Finite Element Equation Must Incorporate the Appropriate Physics of the Problem • For Problems in Structural Solid Mechanics, the Appropriate Physics Comes from Either Strength of Materials or Theory of Elasticity • FEM Equations are Commonly Developed Using Direct, Variational- Virtual Work or Weighted Residual Methods Variational-Virtual Work Method Based on the concept of virtual displacements, leads to relations between internal and external virtual work and to minimization of system potential energy for equilibrium Weighted Residual Method Starting with the governing differential equation, special mathematical operations develop the “weak form” that can be incorporated into a FEM equation. This method is particularly suited for problems that have no variational statement. For stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that found by variational methods. Direct Method Based on physical reasoning and limited to simple cases, this method is worth studying because it enhances physical understanding of the process
  • 17. Simple Element Equation Example Direct Stiffness Derivation 1 2 k u1 u2 F1 F2 } { } ]{ [ rm Matrix Fo in or 2 Node at m Equilibriu 1 Node at m Equilibriu 2 1 2 1 2 1 2 2 1 1 F u K F F u u k k k k ku ku F ku ku F                              Stiffness Matrix Nodal Force Vector
  • 18. Common Approximation Schemes One-Dimensional Examples Linear Quadratic Cubic Polynomial Approximation Most often polynomials are used to construct approximation functions for each element. Depending on the order of approximation, different numbers of element parameters are needed to construct the appropriate function. Special Approximation For some cases (e.g. infinite elements, crack or other singular elements) the approximation function is chosen to have special properties as determined from theoretical considerations
  • 19. One-Dimensional Bar Element            udV f u P u P edV j j i i } ]{ [ : Law Strain - Stress } ]{ [ } { ] [ ) ( : Strain } { ] [ ) ( : ion Approximat d B d B d N d N E Ee dx d u x dx d dx du e u x u k k k k k k                         L T T j i T L T T fdx A P P dx E A 0 0 ] [ } { } { } { ] [ ] [ } { N δd δd d B B δd     L T L T fdx A dx E A 0 0 ] [ } { } { ] [ ] [ N P d B B Vector ent Displacem Nodal } { Vector Loading ] [ } { Matrix Stiffness ] [ ] [ ] [ 0 0                      j i L T j i L T u u fdx A P P dx E A K d N F B B } { } ]{ [ F d K 
  • 20. One-Dimensional Bar Element A = Cross-sectional Area E = Elastic Modulus f(x) = Distributed Loading dV u F dS u T dV e i V i S i n i ij V ij t          Virtual Strain Energy = Virtual Work Done by Surface and Body Forces For One-Dimensional Case           udV f u P u P edV j j i i  (i) (j) Axial Deformation of an Elastic Bar Typical Bar Element dx du AE P i i   dx du AE P j j   i u j u L x (Two Degrees of Freedom)
  • 21. Linear Approximation Scheme   Vector ent Displacem Nodal } { Matrix Function ion Approximat ] [ } ]{ [ 1 ) ( ) ( 1 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1                                                        d N d N nt Displaceme Elastic e Approximat u u L x L x u u u u x u x u L x u L x x L u u u u L a a u a u x a a u x (local coordinate system) (1) (2) i u j u L x (1) (2) u(x) x (1) (2) 1(x) 2(x) 1 k(x) – Lagrange Interpolation Functions
  • 22. Element Equation Linear Approximation Scheme, Constant Properties Vector ent Displacem Nodal } { 1 1 2 ] [ } { 1 1 1 1 1 1 1 1 ] [ ] [ ] [ ] [ ] [ 2 1 2 1 0 2 1 0 2 1 0 0                                                                                    u u L Af P P dx L x L x Af P P fdx A P P L AE L L L L L AE dx AE dx E A K o L o L T L T L T d N F B B B B                               1 1 2 1 1 1 1 } { } ]{ [ 2 1 2 1 L Af P P u u L AE o F d K
  • 23. Quadratic Approximation Scheme   } ]{ [ ) ( ) ( ) ( 4 2 3 2 1 3 2 1 3 3 2 2 1 1 2 3 2 1 3 2 3 2 1 2 1 1 2 3 2 1 d N nt Displaceme Elastic e Approximat                                 u u u u u x u x u x u L a L a a u L a L a a u a u x a x a a u x (1) (3) 1 u 3 u (2) 2 u L u(x) x (1) (3) (2) x (1) (3) (2) 1 1(x) 3(x) 2(x)                                    3 2 1 3 2 1 7 8 1 8 16 8 1 8 7 3 F F F u u u L AE Equation Element
  • 24. Lagrange Interpolation Functions Using Natural or Normalized Coordinates 1 1      (1) (2) ) 1 ( 2 1 ) 1 ( 2 1 2 1         ) 1 ( 2 1 ) 1 )( 1 ( ) 1 ( 2 1 3 2 1                  ) 1 )( 3 1 )( 3 1 ( 16 9 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 3 1 )( 1 ( 16 9 4 3 2 1                                    (1) (2) (3)  (1) (2) (3) (4)         j i j i j i , 0 , 1 ) (
  • 25. Simple Example P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2                                  0 0 0 0 0 1 1 0 1 1 1 Element Equation Global ) 1 ( 2 ) 1 ( 1 3 2 1 1 1 1 P P U U U L E A                                  ) 2 ( 2 ) 2 ( 1 3 2 1 2 2 2 0 1 1 0 1 1 0 0 0 0 2 Element Equation Global P P U U U L E A                                                         3 2 1 ) 2 ( 2 ) 2 ( 1 ) 1 ( 2 ) 1 ( 1 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 Equation System Global Assembled P P P P P P P U U U L E A L E A L E A L E A L E A L E A L E A L E A 0 Loading ed Distribut Zero Take  f
  • 26. Simple Example Continued P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2 0 0 Conditions Boundary ) 2 ( 1 ) 1 ( 2 ) 2 ( 2 1     P P P P U                                             P P U U L E A L E A L E A L E A L E A L E A L E A L E A 0 0 0 0 Equation System Global Reduced ) 1 ( 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1                             P U U L E A L E A L E A L E A L E A 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 L E A , , Properties m For Unifor                      P U U L AE 0 1 1 1 2 3 2 P P AE PL U AE PL U      ) 1 ( 1 3 2 , 2 , Solving
  • 27. One-Dimensional Beam Element Deflection of an Elastic Beam 2 2 4 2 3 1 1 2 1 1 2 2 2 4 2 2 2 3 1 2 2 2 1 2 2 1 , , , , , dx dw u w u dx dw u w u dx w d EI Q dx w d EI dx d Q dx w d EI Q dx w d EI dx d Q   q     q                                         I = Section Moment of Inertia E = Elastic Modulus f(x) = Distributed Loading  (1) (2) Typical Beam Element 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V x Virtual Strain Energy = Virtual Work Done by Surface and Body Forces              wdV f w Q u Q u Q u Q edV 4 4 3 3 2 2 1 1        L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T (Four Degrees of Freedom)
  • 28. Beam Approximation Functions To approximate deflection and slope at each node requires approximation of the form 3 4 2 3 2 1 ) ( x c x c x c c x w     Evaluating deflection and slope at each node allows the determination of ci thus leading to Functions ion Approximat Cubic Hermite the are where , ) ( ) ( ) ( ) ( ) ( 4 4 3 3 2 2 1 1 i u x u x u x u x x w f f  f  f  f 
  • 29. Beam Element Equation        L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T                4 3 2 1 } { u u u u d ] [ ] [ ] [ 4 3 2 1 dx d dx d dx d dx d dx d f f f f   N B                      2 2 2 2 3 0 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 ] [ ] [ ] [ L L L L L L L L L L L L L EI dx EI L B B K T                                                                L L fL Q Q Q Q u u u u L L L L L L L L L L L L L EI 6 6 12 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 4 3 2 1 4 3 2 1 2 2 2 2 3                               f f f f    L L fL dx f dx f L L T 6 6 12 ] [ 0 4 3 2 1 0 N
  • 30. FEA Beam Problem f a b Uniform EI                                                                                                 0 0 0 0 6 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 2 ) 1 ( 4 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 Q Q Q Q a a fa U U U U U U a a a a a a a a a a a a a a a a EI 1 Element                                                                        ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 2 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 Q Q Q Q U U U U U U b b b b b b b b b b b b b b b b EI 2 Element (1) (3) (2) 1 2
  • 31. FEA Beam Problem                                                                                                                    ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 3 2 2 3 2 2 3 3 2 2 3 2 3 0 0 6 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 0 0 / 1 / 3 / 2 0 0 / 3 / 6 / 3 / 6 2 Q Q Q Q Q Q Q Q a a fa U U U U U U a a a a a b a a a b a b a a a a a a a a EI System Assembled Global 0 , 0 , 0 ) 2 ( 4 ) 2 ( 3 ) 1 ( 1 2 ) 1 ( 1 1    q    Q Q U w U Conditions Boundary 0 , 0 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3     Q Q Q Q Conditions Matching                                                                       0 0 0 0 0 0 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 2 4 3 2 1 2 3 2 3 3 2 2 3 3 a fa U U U U a a a a a b a a a b a b a EI System Reduced Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4 Nodal Forces Q1 and Q2 Can Then Be Determined (1) (3) (2) 1 2
  • 32. Special Features of Beam FEA Analytical Solution Gives Cubic Deflection Curve Analytical Solution Gives Quartic Deflection Curve FEA Using Hermit Cubic Interpolation Will Yield Results That Match Exactly With Cubic Analytical Solutions
  • 33. Truss Element Generalization of Bar Element With Arbitrary Orientation x y k=AE/L q  q  cos , sin c s
  • 34. Frame Element Generalization of Bar and Beam Element with Arbitrary Orientation  (1) (2) 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V 2 P 1 P 1 u 2 u                                      q q                                       4 3 2 2 1 1 2 2 2 1 1 1 2 2 2 3 2 3 2 2 2 3 2 3 4 6 0 2 6 0 6 12 0 6 12 0 0 0 0 0 2 6 0 4 6 0 6 12 0 6 12 0 0 0 0 0 Q Q P Q Q P w u w u L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
  • 35. Some Standard FEA References Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995. Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993 Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990. Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987. Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002. Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley, 1989. Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979. Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001. Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986. Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994. Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993. Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992. Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003. Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992. Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986. Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993. Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993. Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.