SlideShare a Scribd company logo
2
Most read
8
Most read
9
Most read
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Initial Value Problems
Mohammad Tawfik
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Understand the applications of initial-value
problems
• Be able to apply the Euler method for
solving initial value problems
• Be able to apply the Runge-Kutta method
for solving initial value problem
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example Problem
dt
dv
mmaF 
cvmgFFF UD 
cvmgvm
dt
dv
m  
m
cvmg
v

    mct
e
c
mg
tv /
1 

Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Exact Solution
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Approximate Solution
12
12
tt
vv
t
v
dt
dv






m
cvmg
tt
vv 



12
12
m
cvmg
tt
vv 1
12
12 



Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Approximate Solution
 
m
cvmg
ttvv 1
1212


Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Euler Method
• Given the differential
equation:
• We may write:
• Giving:
 tyf
dt
dy
,
 tyf
t
yy
t
y
dt
dy ttt
,





 
 tytfyy ttt ,
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example
• Given the differential
equation:
• The exact solution is:
• At t=0, y=2
• Find y(4) using Euler
method with step
t=1
ye
dt
dy t
5.04 8.0

  tt
eety 5.08.0
08.108.3 

Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Solution
ye
dt
dy t
5.04 8.0
  yetyy t
tttt 5.04 8.0
 
 
  5142
5.04 0
0
01

 yeyy  
  4.115.245
5.04
8.0
1
8.0
12


e
yeyy
 
  5.254.11*5.044.11
5.04
6.1
2
2*8.0
23


e
yeyy
 
  8.565.25*5.045.25
5.04
4.2
3
3*8.0
34


e
yeyy
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Convergence!
0
10
20
30
40
50
60
70
80
0 0.5 1 1.5 2 2.5 3 3.5 4
Time
y(t)
Exact
Dt=1.0
Dt=0.5
Dt=0.1
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Runge-Kutta Methods
• The Runge-Kutta methods achieves the
Taylor series accuracy
• Many forms of the method are available;
we will use 2nd order and 3rd order
methods only
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
2nd Order Runge-Kutta method
• For the DE:
• The 2nd order R.K. solution
is:
• Where:
 tyf
dt
dy
,
 21
2
kk
t
yy ttt 


 tyfk t ,1 
 tttkyfk t  ,12
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example
• Given the differential
equation:
• The exact solution is:
• At t=0, y=2
• Find y(4) using 2nd
order R.K. method
with step t=1
ye
dt
dy t
5.04 8.0

  tt
eety 5.08.0
08.108.3 

Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Solution
• At t=0
32*5.04 0
1  ek
 
  4.61*325.04 108.0
2  
ek
  7.6
2
2101 

 kk
t
yy
• Repeat for all t
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Solution
yk2k1t
20
6.7010826.40216431
16.3197813.685785.5516232
37.1992530.106711.652243
83.3377766.7839625.493084
yk2k1t
20
3.8043254.21729930.5
6.3165385.9837174.0651361
9.9240688.6862255.7438951.5
15.196312.770498.3184342
22.9759418.9045812.213982.5
34.5149228.0876718.068263
51.6768141.8123226.835253.5
77.2385262.3066739.940184
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Convergence
0
10
20
30
40
50
60
70
80
90
0 0.5 1 1.5 2 2.5 3 3.5 4
Time
y(t)
Exact
Dt=1.0
Dt=0.5
Dt=0.1
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
3rd Order Runge-Kutta method
• For the DE:
• The 3rd order R.K.
solution is:
• Where:
 tyf
dt
dy
,
 321 4
6
kkk
t
yy ttt 


 tyfk t ,1 





 



2
,
2
1
2
t
t
tk
yfk t
 tttktkyfk t  ,2 213
Initial Value Problems
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Assignment
• Solve:
• Given y(0)=1
1. Analytically
2. Using Euler method until t=2, with t=0.5
3. Repeat part 2 using 2nd order RK method
4. Repeat part 2 using 3rd order RK method
5. Repeat parts 2 through 4 using t=0.25
6. Compare results of all parts above
yyt
dt
dy
2.12


More Related Content

PPTX
Finite difference method
PPT
Fourier series
PPTX
Initial value problems
PPTX
Analytic function
PPTX
System of linear equations
PPTX
Numerical differentiation
PPTX
presentation on Euler and Modified Euler method ,and Fitting of curve
PDF
Gram schmidt orthogonalization | Orthonormal Process
Finite difference method
Fourier series
Initial value problems
Analytic function
System of linear equations
Numerical differentiation
presentation on Euler and Modified Euler method ,and Fitting of curve
Gram schmidt orthogonalization | Orthonormal Process

What's hot (20)

PDF
Point Collocation Method used in the solving of Differential Equations, parti...
PPTX
Numerical integration;Gaussian integration one point, two point and three poi...
PPT
1st order differential equations
PPTX
Ode powerpoint presentation1
PPTX
Runge kutta
PPTX
PPT
Numerical solution of ordinary differential equations GTU CVNM PPT
PPTX
Applications of differential equations(by Anil.S.Nayak)
PPTX
Runge Kutta Method
PPT
Numerical integration
PDF
Numerical Solution of Ordinary Differential Equations
PDF
Numerical Methods - Power Method for Eigen values
PPTX
Second order homogeneous linear differential equations
PDF
Curve fitting - Lecture Notes
PPTX
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
PPTX
Euler and runge kutta method
PPTX
Fourier series
PPTX
ORDINARY DIFFERENTIAL EQUATION
DOCX
Laplace transform
PPT
Ch05 4
Point Collocation Method used in the solving of Differential Equations, parti...
Numerical integration;Gaussian integration one point, two point and three poi...
1st order differential equations
Ode powerpoint presentation1
Runge kutta
Numerical solution of ordinary differential equations GTU CVNM PPT
Applications of differential equations(by Anil.S.Nayak)
Runge Kutta Method
Numerical integration
Numerical Solution of Ordinary Differential Equations
Numerical Methods - Power Method for Eigen values
Second order homogeneous linear differential equations
Curve fitting - Lecture Notes
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Euler and runge kutta method
Fourier series
ORDINARY DIFFERENTIAL EQUATION
Laplace transform
Ch05 4
Ad

Similar to Initial Value Problems (10)

PDF
Initial valueproblems
PDF
System of Initial Value Problems
PDF
Newmark Time Integration
PDF
Roots of Nonlinear Equations - Open Methods
PDF
Boundary Value Problems - Finite Difference
PDF
Introduction to Numerical Analysis
PDF
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
PPT
11 initial value problems system
PDF
Multiple Degree of Freedom (MDOF) Systems
PDF
Bracketing Methods
Initial valueproblems
System of Initial Value Problems
Newmark Time Integration
Roots of Nonlinear Equations - Open Methods
Boundary Value Problems - Finite Difference
Introduction to Numerical Analysis
01introductiontocomputationalmaterialengineering 101108031216-phpapp01
11 initial value problems system
Multiple Degree of Freedom (MDOF) Systems
Bracketing Methods
Ad

More from Mohammad Tawfik (20)

PDF
Supply Chain Management for Engineers - INDE073
PDF
Supply Chain Management 01 - Introduction
PDF
Supply Chain Management 02 - Logistics
PDF
Supply Chain Management 03 - Inventory Management
PDF
Creative problem solving and decision making
PDF
Digital content for teaching introduction
PDF
Crisis Management Basics
PDF
DISC Personality Model
PDF
Training of Trainers
PDF
Effective Delegation Skills
PDF
Train The Trainer
PDF
Business Management - Marketing
PDF
Stress Management
PDF
Project Management (CAPM) - Integration
PDF
Project Management (CAPM) - The Framework
PDF
Project Management (CAPM) - Introduction
PDF
The Creative Individual
PDF
Introduction to Wind Energy
PDF
Finite Element for Trusses in 2-D
PDF
Future of Drones ITW'16
Supply Chain Management for Engineers - INDE073
Supply Chain Management 01 - Introduction
Supply Chain Management 02 - Logistics
Supply Chain Management 03 - Inventory Management
Creative problem solving and decision making
Digital content for teaching introduction
Crisis Management Basics
DISC Personality Model
Training of Trainers
Effective Delegation Skills
Train The Trainer
Business Management - Marketing
Stress Management
Project Management (CAPM) - Integration
Project Management (CAPM) - The Framework
Project Management (CAPM) - Introduction
The Creative Individual
Introduction to Wind Energy
Finite Element for Trusses in 2-D
Future of Drones ITW'16

Recently uploaded (20)

PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PDF
Classroom Observation Tools for Teachers
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Pre independence Education in Inndia.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Cell Types and Its function , kingdom of life
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Basic Mud Logging Guide for educational purpose
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
01-Introduction-to-Information-Management.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
Classroom Observation Tools for Teachers
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
TR - Agricultural Crops Production NC III.pdf
Pre independence Education in Inndia.pdf
Supply Chain Operations Speaking Notes -ICLT Program
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPH.pptx obstetrics and gynecology in nursing
Cell Types and Its function , kingdom of life
Final Presentation General Medicine 03-08-2024.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Basic Mud Logging Guide for educational purpose
Microbial disease of the cardiovascular and lymphatic systems
Module 4: Burden of Disease Tutorial Slides S2 2025
01-Introduction-to-Information-Management.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf

Initial Value Problems

  • 1. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Initial Value Problems Mohammad Tawfik
  • 2. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Understand the applications of initial-value problems • Be able to apply the Euler method for solving initial value problems • Be able to apply the Runge-Kutta method for solving initial value problem
  • 3. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example Problem dt dv mmaF  cvmgFFF UD  cvmgvm dt dv m   m cvmg v      mct e c mg tv / 1  
  • 4. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Exact Solution
  • 5. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Approximate Solution 12 12 tt vv t v dt dv       m cvmg tt vv     12 12 m cvmg tt vv 1 12 12    
  • 6. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Approximate Solution   m cvmg ttvv 1 1212  
  • 7. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Euler Method • Given the differential equation: • We may write: • Giving:  tyf dt dy ,  tyf t yy t y dt dy ttt ,         tytfyy ttt ,
  • 8. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example • Given the differential equation: • The exact solution is: • At t=0, y=2 • Find y(4) using Euler method with step t=1 ye dt dy t 5.04 8.0    tt eety 5.08.0 08.108.3  
  • 9. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Solution ye dt dy t 5.04 8.0   yetyy t tttt 5.04 8.0       5142 5.04 0 0 01   yeyy     4.115.245 5.04 8.0 1 8.0 12   e yeyy     5.254.11*5.044.11 5.04 6.1 2 2*8.0 23   e yeyy     8.565.25*5.045.25 5.04 4.2 3 3*8.0 34   e yeyy
  • 10. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Convergence! 0 10 20 30 40 50 60 70 80 0 0.5 1 1.5 2 2.5 3 3.5 4 Time y(t) Exact Dt=1.0 Dt=0.5 Dt=0.1
  • 11. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Runge-Kutta Methods • The Runge-Kutta methods achieves the Taylor series accuracy • Many forms of the method are available; we will use 2nd order and 3rd order methods only
  • 12. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com 2nd Order Runge-Kutta method • For the DE: • The 2nd order R.K. solution is: • Where:  tyf dt dy ,  21 2 kk t yy ttt     tyfk t ,1   tttkyfk t  ,12
  • 13. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example • Given the differential equation: • The exact solution is: • At t=0, y=2 • Find y(4) using 2nd order R.K. method with step t=1 ye dt dy t 5.04 8.0    tt eety 5.08.0 08.108.3  
  • 14. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Solution • At t=0 32*5.04 0 1  ek     4.61*325.04 108.0 2   ek   7.6 2 2101    kk t yy • Repeat for all t
  • 15. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Solution yk2k1t 20 6.7010826.40216431 16.3197813.685785.5516232 37.1992530.106711.652243 83.3377766.7839625.493084 yk2k1t 20 3.8043254.21729930.5 6.3165385.9837174.0651361 9.9240688.6862255.7438951.5 15.196312.770498.3184342 22.9759418.9045812.213982.5 34.5149228.0876718.068263 51.6768141.8123226.835253.5 77.2385262.3066739.940184
  • 16. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Convergence 0 10 20 30 40 50 60 70 80 90 0 0.5 1 1.5 2 2.5 3 3.5 4 Time y(t) Exact Dt=1.0 Dt=0.5 Dt=0.1
  • 17. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com 3rd Order Runge-Kutta method • For the DE: • The 3rd order R.K. solution is: • Where:  tyf dt dy ,  321 4 6 kkk t yy ttt     tyfk t ,1            2 , 2 1 2 t t tk yfk t  tttktkyfk t  ,2 213
  • 18. Initial Value Problems Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Assignment • Solve: • Given y(0)=1 1. Analytically 2. Using Euler method until t=2, with t=0.5 3. Repeat part 2 using 2nd order RK method 4. Repeat part 2 using 3rd order RK method 5. Repeat parts 2 through 4 using t=0.25 6. Compare results of all parts above yyt dt dy 2.12 