SlideShare a Scribd company logo
2
Most read
4
Most read
12
Most read
Second Order Homogeneous Linear
Differential Equation
Linear Differential Equations of Second Order
• The general second order Linear Differential Equation is
or
where P(x) ,Q(x) and R (x) are functions of
only.
2
2
( ) ( ) ( )
d y dy
P x Q x y R x
dx dx
  
( ) ( ) ( ) (1)y P x y Q x y R x        
x
• The term R(x) in the above equation is isolated from
others and written on right side because it does not
contain the dependent variable y or any of its derivatives.
•If R(x) is Zero then,
•The solution of eq.(2) which is homogeneous linear
differential equation is given by,
( ) ( ) 0 (2)y P x y Q x y        
1 1 2 2y c y c y 
where c1 and c2 are arbitary constants
• Two solutions are linearly independent .Their linear
combination provides an infinity of new solutions.
•Wronskian test - Test whether two solutions of a
homogeneous differential equation are linearly independent.
Define: Wronskian of solutions to be the 2
by 2 determinant
1 2,y y
1 2 1 2( ) ( ) ( ) ( ) ( )W x y x y x y x y x  
1 2
1 2
( ) ( )
( ) ( )
y x y x
y x y x

 
• Example:- are solutions of
:linearly independent.
 Reduction of Order
A method for finding the second independent
homogeneous solution when given the first one .
1 2( ) cos , ( ) siny x x y x x 
0y y 
1 2
1 2
2 2
( ) ( ) cos sin
( )
( ) ( ) sin cos
cos sin 1 0
y x y x x x
W x
y x y x x x
x x
 
  
   
1 2,y y
2y 1y
• Let
Substituting into
Let (separable)
6
2 1( ) ( ) ( )y x u x y x
2 1 1 2 1 1 1, 2y u y uy y u y u y uy            
( ) ( ) 0y P x y Q x y   
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1
2 [ ] 0
[2 ] [ ] 0
[2 ] 0
u y uy P u y uy Quy
u y Py u y Py Qy
u y Py
u y
u y
u y
        
       
   



1 1
1
2
0 ( ) 0
y Py
u u u G x u
y
 
       
( ) 0v u v G x v    
( )
( )
G x dx
v x ce

let c = 1,
: independent solutions
7
( )
0
G x dx
u v e
   
( )
( )
G x dx
u x dxe
  
( )
2 1 1( ) ( ) ( ) ( )
G x dx
y x u x y x y x dxe
  
1 2 1 2 1 1 1 1 1
2 2
1 11 1 1 1 1 1
( )
0
( ) y y y y uy u y y uy
u y vy
W x y
y uy y u y y uy
       
  

    
1 2 1,y y uy
。 Example 2.4:
: a solution
Let
4 4 0, (3)y y y    
2
( ) x
y x e

2
2 1( ) ( ) ( ) ( ) x
y x u x y x u x e
 
Substituting into (3),
take c = 1, d = 0
: independent
The general solution:
8
2 2
2 2 ,x x
y u e e u 
    2 2 2
2 4 4x x x
y u e e u u e  
    
2 2 2 2 2 2
4( ) 4 04 4 2x x x x x x
uu e e u u e u e e u e     
      
2 2
0, 0, 0, ( )x x
u x cx du e e u 
     
( )u x x 
2 2
2 ( ) ( ) x x
y x u x e xe 

2 2
4
2 2 2
0
2
( )
2
x x
x
x x x
x
e xe
W x e
e e e
 

  


 

2 2
1 2( ) x x
c xy x c e e 

2 2
1 2,x x
y y xe e 

Second order Linear Homogeneous Differential
Equations with constant coefficients
a,b are numbers ------(4)
Let
Substituting into (4)
( Auxilliary Equation)
--------(5)
The general solution of homogeneous D.E. (4) is
obtained depending on the nature of the two roots of the
auxilliary equation as follows :
0y ay by   
( ) mx
y x e
2
0mx mx mx
m am be e e  
2
0m am b  
2
1 2, 4 ) / 2(m a a bm   
Case 1 : Two distinct real roots if and only if
in this case we get two solutions &
Solution is
Case 2 : Equal real roots if
Solution is
Case 3 : Distinct complex roots if and only if
In this case & can be written in the form of
Solution is
2
4 0a b 
1m x
e 2m x
e
 1 2
1 2( ) m x m x
y x c ce e 
2
4 0a b 
 1 2 1 2( ) ( )mx mx mx
y x c c x c c xe e e   
2
4 0a b 
1m 2m
p iq
 1
2( ) [ cos sin ]px
y x e c qx c qx 
Case Roots Basis of solutions General Solution
1 Distinct real m1 and
m2
em1x, em2x c1em1x+c2em2x
2 Repeated root m emx, xemx c1emx+c2xemx
3 Complex roots
m1=p+iq, m2=p–iq
e(p+iq)x, e(p–iq)x epx(c1cos qx+c2sin qx)
Example for Case 1 :
Let then,
From (6) ,
The general solution:
6 0 (6)y y y    
( ) mx
y x e 2
,mx mx
y me y m e  
2 2
6 0 6 0mx mx mx
m m m me e e       
1 2( 2)( 3) 0 2, 3m m m m      
2 3
1 2( ) x x
y x c ce e
 
Example for Case 2 :
Characteristic eq. :
The repeated root:
The general solution:
Example for Case 3 :
Characteristic equation:
Roots:
The general solution:
6 9 0y y y   
2 2
6 9 0 ( 3) 0m m m     
3m 
3
1 2( ) ( ) x
y x c c x e 
2 6 0y y y   
2
2 6 0m m  
1 21 5 , 1 5m i m i     
( 1 5 ) ( 1 5 )
1 2( ) i x i x
y x c ce e   
 

More Related Content

PDF
Higher order differential equations
PPT
first order ode with its application
PPTX
Linear differential equation of second order
PPTX
formulation of first order linear and nonlinear 2nd order differential equation
PPTX
Differential equations of first order
PPT
Introduction to differential equation
PPSX
Methods of solving ODE
PPTX
Series solution to ordinary differential equations
Higher order differential equations
first order ode with its application
Linear differential equation of second order
formulation of first order linear and nonlinear 2nd order differential equation
Differential equations of first order
Introduction to differential equation
Methods of solving ODE
Series solution to ordinary differential equations

What's hot (20)

PPTX
Ordinary differential equation
PPTX
Partial differential equations
PPTX
DIFFERENTIAL EQUATIONS
PDF
First Order Differential Equations
PPTX
Differential equations
PPTX
First order linear differential equation
PPTX
ORDINARY DIFFERENTIAL EQUATION
PPTX
Cauchy integral theorem & formula (complex variable & numerical method )
PPTX
Ordinary differential equations
PPT
1st order differential equations
PPT
Linear differential equation with constant coefficient
PPTX
Higher order ODE with applications
DOCX
1 d wave equation
PPTX
Analytic function
PPTX
Differential equations of first order
PPTX
Ode powerpoint presentation1
PPTX
Fourier series
PDF
Higher Order Differential Equation
PPTX
Homogeneous Linear Differential Equations
PPTX
introduction to differential equations
Ordinary differential equation
Partial differential equations
DIFFERENTIAL EQUATIONS
First Order Differential Equations
Differential equations
First order linear differential equation
ORDINARY DIFFERENTIAL EQUATION
Cauchy integral theorem & formula (complex variable & numerical method )
Ordinary differential equations
1st order differential equations
Linear differential equation with constant coefficient
Higher order ODE with applications
1 d wave equation
Analytic function
Differential equations of first order
Ode powerpoint presentation1
Fourier series
Higher Order Differential Equation
Homogeneous Linear Differential Equations
introduction to differential equations
Ad

Similar to Second order homogeneous linear differential equations (20)

PPTX
K12105 sharukh...
PPTX
160280102031 c2 aem
PDF
cursul 3.pdf
PPT
Ordinary differential equation Presentation
PPTX
3.1 Ordinary Differential equation Higher Order
PDF
3c3 nonhomgen lineqns-stuhuhuhuhuhh
PDF
UNIT-III.pdf
PDF
Higher Differential Equation
PDF
PDF
Differential equation study guide for exam (formula sheet)
PDF
Answers to Problems for Advanced Engineering Mathematics, 6th Edition – Denni...
PPTX
non homogeneous equation btech math .pptx
PPTX
Higher order differential equation
PPTX
Network Analysis Introduction class.pptx
PPT
Ch04 2
PDF
Maths Notes - Differential Equations
PPTX
Differential equations
PDF
51556 0131469657 ism-15
PDF
First Order Differential Equations
PDF
Elementary Differential Equations 11th Edition Boyce Solutions Manual
K12105 sharukh...
160280102031 c2 aem
cursul 3.pdf
Ordinary differential equation Presentation
3.1 Ordinary Differential equation Higher Order
3c3 nonhomgen lineqns-stuhuhuhuhuhh
UNIT-III.pdf
Higher Differential Equation
Differential equation study guide for exam (formula sheet)
Answers to Problems for Advanced Engineering Mathematics, 6th Edition – Denni...
non homogeneous equation btech math .pptx
Higher order differential equation
Network Analysis Introduction class.pptx
Ch04 2
Maths Notes - Differential Equations
Differential equations
51556 0131469657 ism-15
First Order Differential Equations
Elementary Differential Equations 11th Edition Boyce Solutions Manual
Ad

Recently uploaded (20)

PPT
Occupational Health and Safety Management System
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPTX
Artificial Intelligence
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
Current and future trends in Computer Vision.pptx
PPTX
communication and presentation skills 01
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Software Engineering and software moduleing
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Occupational Health and Safety Management System
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Artificial Intelligence
Fundamentals of safety and accident prevention -final (1).pptx
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Current and future trends in Computer Vision.pptx
communication and presentation skills 01
Categorization of Factors Affecting Classification Algorithms Selection
Software Engineering and software moduleing
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
737-MAX_SRG.pdf student reference guides
Module 8- Technological and Communication Skills.pptx
Exploratory_Data_Analysis_Fundamentals.pdf
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Abrasive, erosive and cavitation wear.pdf
August 2025 - Top 10 Read Articles in Network Security & Its Applications

Second order homogeneous linear differential equations

  • 1. Second Order Homogeneous Linear Differential Equation
  • 2. Linear Differential Equations of Second Order • The general second order Linear Differential Equation is or where P(x) ,Q(x) and R (x) are functions of only. 2 2 ( ) ( ) ( ) d y dy P x Q x y R x dx dx    ( ) ( ) ( ) (1)y P x y Q x y R x         x
  • 3. • The term R(x) in the above equation is isolated from others and written on right side because it does not contain the dependent variable y or any of its derivatives. •If R(x) is Zero then, •The solution of eq.(2) which is homogeneous linear differential equation is given by, ( ) ( ) 0 (2)y P x y Q x y         1 1 2 2y c y c y 
  • 4. where c1 and c2 are arbitary constants • Two solutions are linearly independent .Their linear combination provides an infinity of new solutions. •Wronskian test - Test whether two solutions of a homogeneous differential equation are linearly independent. Define: Wronskian of solutions to be the 2 by 2 determinant 1 2,y y 1 2 1 2( ) ( ) ( ) ( ) ( )W x y x y x y x y x   1 2 1 2 ( ) ( ) ( ) ( ) y x y x y x y x   
  • 5. • Example:- are solutions of :linearly independent.  Reduction of Order A method for finding the second independent homogeneous solution when given the first one . 1 2( ) cos , ( ) siny x x y x x  0y y  1 2 1 2 2 2 ( ) ( ) cos sin ( ) ( ) ( ) sin cos cos sin 1 0 y x y x x x W x y x y x x x x x          1 2,y y 2y 1y
  • 6. • Let Substituting into Let (separable) 6 2 1( ) ( ) ( )y x u x y x 2 1 1 2 1 1 1, 2y u y uy y u y u y uy             ( ) ( ) 0y P x y Q x y    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 [ ] 0 [2 ] [ ] 0 [2 ] 0 u y uy P u y uy Quy u y Py u y Py Qy u y Py u y u y u y                         1 1 1 2 0 ( ) 0 y Py u u u G x u y           ( ) 0v u v G x v     ( ) ( ) G x dx v x ce 
  • 7. let c = 1, : independent solutions 7 ( ) 0 G x dx u v e     ( ) ( ) G x dx u x dxe    ( ) 2 1 1( ) ( ) ( ) ( ) G x dx y x u x y x y x dxe    1 2 1 2 1 1 1 1 1 2 2 1 11 1 1 1 1 1 ( ) 0 ( ) y y y y uy u y y uy u y vy W x y y uy y u y y uy                  1 2 1,y y uy 。 Example 2.4: : a solution Let 4 4 0, (3)y y y     2 ( ) x y x e  2 2 1( ) ( ) ( ) ( ) x y x u x y x u x e  
  • 8. Substituting into (3), take c = 1, d = 0 : independent The general solution: 8 2 2 2 2 ,x x y u e e u      2 2 2 2 4 4x x x y u e e u u e        2 2 2 2 2 2 4( ) 4 04 4 2x x x x x x uu e e u u e u e e u e             2 2 0, 0, 0, ( )x x u x cx du e e u        ( )u x x  2 2 2 ( ) ( ) x x y x u x e xe   2 2 4 2 2 2 0 2 ( ) 2 x x x x x x x e xe W x e e e e            2 2 1 2( ) x x c xy x c e e   2 2 1 2,x x y y xe e  
  • 9. Second order Linear Homogeneous Differential Equations with constant coefficients a,b are numbers ------(4) Let Substituting into (4) ( Auxilliary Equation) --------(5) The general solution of homogeneous D.E. (4) is obtained depending on the nature of the two roots of the auxilliary equation as follows : 0y ay by    ( ) mx y x e 2 0mx mx mx m am be e e   2 0m am b   2 1 2, 4 ) / 2(m a a bm   
  • 10. Case 1 : Two distinct real roots if and only if in this case we get two solutions & Solution is Case 2 : Equal real roots if Solution is Case 3 : Distinct complex roots if and only if In this case & can be written in the form of Solution is 2 4 0a b  1m x e 2m x e  1 2 1 2( ) m x m x y x c ce e  2 4 0a b   1 2 1 2( ) ( )mx mx mx y x c c x c c xe e e    2 4 0a b  1m 2m p iq  1 2( ) [ cos sin ]px y x e c qx c qx 
  • 11. Case Roots Basis of solutions General Solution 1 Distinct real m1 and m2 em1x, em2x c1em1x+c2em2x 2 Repeated root m emx, xemx c1emx+c2xemx 3 Complex roots m1=p+iq, m2=p–iq e(p+iq)x, e(p–iq)x epx(c1cos qx+c2sin qx) Example for Case 1 : Let then, From (6) , The general solution: 6 0 (6)y y y     ( ) mx y x e 2 ,mx mx y me y m e   2 2 6 0 6 0mx mx mx m m m me e e        1 2( 2)( 3) 0 2, 3m m m m       2 3 1 2( ) x x y x c ce e  
  • 12. Example for Case 2 : Characteristic eq. : The repeated root: The general solution: Example for Case 3 : Characteristic equation: Roots: The general solution: 6 9 0y y y    2 2 6 9 0 ( 3) 0m m m      3m  3 1 2( ) ( ) x y x c c x e  2 6 0y y y    2 2 6 0m m   1 21 5 , 1 5m i m i      ( 1 5 ) ( 1 5 ) 1 2( ) i x i x y x c ce e     