SlideShare a Scribd company logo
Azure AI
El camino a las Cloud Native Apps - Azure AI
El camino a las Cloud Native Apps - Azure AI
El camino a las Cloud Native Apps - Azure AI
Agenda
Introduction: AI, ML, DL & Azure
Cognitive Services
• Catalog
• Demo
• Real case
Azure Databricks
• Main features
• Demo
Azure ML Workspace
• Introduction
• Portal
• Demo
What are we going to talk about today?
Artificial Inteligence is more than an
experiment.
Introduction – AI, ML & DL
Integration with the rest of the portfolio and
growing
Different projects different solutions
Introduction - Azure
Cognitive Services are a set of machine learning algorithms that Microsoft has developed to
solve problems in the field of Artificial Intelligence (AI).
When to use Cognitive Services? Whenever the project can be solved using one of these
solutions. Very good results in exchange of very little development
Cognitive Services
El camino a las Cloud Native Apps - Azure AI
Different tasks related with image analysis. Such as:
• Objects and people detection
• Image tagging
• Content moderator
• Faces, age and emotions recognition
Try it out!
Computer Vision
Text Analytics
A wide rango of tasks related with text analysis,
such as: sentiment analysis, language detection,
keywords, entity recognition…
Try it out!
• Cognitive Search
• LUIS (Language Understanding)
• Anomaly detector
• Custom Vision
Other Services
Real Case - JFK Files
JFK Files takes complex files including photos,
handwriting, government documents, and more—then
uses Cognitive Search to extract information.
-Text Analytics API
Cognitive Services Demo
Azure Databricks is an Apache Spark-based analytics
platform optimized for the Microsoft Azure cloud services
platform. Designed with the founders of Apache Spark,
Databricks is integrated with Azure to provide one-click
setup, streamlined workflows, and an interactive
workspace that enables collaboration between data
scientists, data engineers, and business analysts.
Azure Databricks
Main features:
- Easy infrastructure for Big Data
- Collaboration
- Automated Jobs
- Fully connected with Azure
When to use Azure Databricks?
Big Data projects, Experiments, Pipelines
Azure Databricks
-ETL + job
-NLP Model
-AutoML
Azure Databricks Demo
Azure ML workspace is a tool designed to ease the whole process of a
ML/DL Project.
When to use Azure ML Workspace?
Practically always
Azure Machine Learning Workspace
• Experiment tracking and remote execution
on demand
• Model version registry
• Predictive Image creation and registry
• Deployment of the image
Azure Machine Learning
Workspace main advantages
-Experiment
-Predictive Image & Deploy
-Pipeline
Demo Azure ML Workspace
El camino a las Cloud Native Apps - Azure AI

More Related Content

PPTX
Introduction to Machine learning and Deep Learning
PDF
.Net development with Azure Machine Learning (AzureML) Nov 2014
PPTX
Microsoft AI Platform - AETHER Introduction
PPTX
AzureML TechTalk
PPTX
Overkill Analytics
PPTX
Azure data lake for super developers radu vunvulea 2017 codecamp
PPTX
Azure Machine Learning - A Full Journey
PDF
Udaykiran tippireddy resume_n
Introduction to Machine learning and Deep Learning
.Net development with Azure Machine Learning (AzureML) Nov 2014
Microsoft AI Platform - AETHER Introduction
AzureML TechTalk
Overkill Analytics
Azure data lake for super developers radu vunvulea 2017 codecamp
Azure Machine Learning - A Full Journey
Udaykiran tippireddy resume_n

What's hot (20)

PDF
Ai platform at scale
PDF
BingyuWang
PPTX
AI Solutions with Macnica.ai - AI Expo 2018 Tokyo Japan
PPTX
Azure Con Cortana Analytics Suite
PDF
Using Azure Cognitive Search to Dive into the CIA Archives
PDF
Resume_Jaimin_Sanghvi_FullStack_Developer
PDF
March HelsinkiOS meetup - CoreML
PDF
Spark Summit Europe 2016 Keynote - Databricks CEO
PPTX
Machine Learning on the Microsoft Stack
PDF
Operationalizing Machine Learning at Scale at Starbucks
PDF
How to implement chatbots for Alexa and Facebook Messenger
PPTX
Azure synapse analytics overview elasta cloud3
PPTX
Using Premium Data - for Business Analysts
PDF
Imagery Bundles for ArcGIS
PDF
Loading Data into Azure SQL DW (Synapse Analytics)
PPTX
Solucion de BI en Azure
PPTX
Big Data with hadoop, Spark and BigQuery (Google cloud next Extended 2017 Kar...
PPTX
Distributed Tracing: New DevOps Foundation
PPTX
Oracle OpenWorld 2014 Review Part One - Overview
PDF
Introducción al Aprendizaje Automatico con H2O-3 (1)
Ai platform at scale
BingyuWang
AI Solutions with Macnica.ai - AI Expo 2018 Tokyo Japan
Azure Con Cortana Analytics Suite
Using Azure Cognitive Search to Dive into the CIA Archives
Resume_Jaimin_Sanghvi_FullStack_Developer
March HelsinkiOS meetup - CoreML
Spark Summit Europe 2016 Keynote - Databricks CEO
Machine Learning on the Microsoft Stack
Operationalizing Machine Learning at Scale at Starbucks
How to implement chatbots for Alexa and Facebook Messenger
Azure synapse analytics overview elasta cloud3
Using Premium Data - for Business Analysts
Imagery Bundles for ArcGIS
Loading Data into Azure SQL DW (Synapse Analytics)
Solucion de BI en Azure
Big Data with hadoop, Spark and BigQuery (Google cloud next Extended 2017 Kar...
Distributed Tracing: New DevOps Foundation
Oracle OpenWorld 2014 Review Part One - Overview
Introducción al Aprendizaje Automatico con H2O-3 (1)
Ad

Similar to El camino a las Cloud Native Apps - Azure AI (20)

PDF
Making Data Scientists Productive in Azure
PPTX
Ai & Data Analytics 2018 - Azure Databricks for data scientist
PPTX
Machine Learning and AI
PDF
Big Data Adavnced Analytics on Microsoft Azure
PPTX
The Microsoft AI platform: a State of the Union
PPTX
AI for Good at Microsoft
PPTX
Global AI Bootcamp Madrid - Azure Databricks
PDF
Azure AI Conference Report
PPTX
CC -Unit4.pptx
PPTX
Deep Learning Technical Pitch Deck
PPTX
Data analytics on Azure
PDF
The Data Science Process - Do we need it and how to apply?
PPTX
Building Powerful and Intelligent Applications with Azure Machine Learning
PDF
Introduction to AI and Cognitive Services For Microsoft 365 Developers and In...
PDF
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
PPTX
Hyf project ideas_02
PDF
201908 Overview of Automated ML
PDF
Sergii Baidachnyi ITEM 2018
PDF
MLflow and Azure Machine Learning—The Power Couple for ML Lifecycle Management
PDF
How Azure Databricks helped make IoT Analytics a Reality with Janath Manohara...
Making Data Scientists Productive in Azure
Ai & Data Analytics 2018 - Azure Databricks for data scientist
Machine Learning and AI
Big Data Adavnced Analytics on Microsoft Azure
The Microsoft AI platform: a State of the Union
AI for Good at Microsoft
Global AI Bootcamp Madrid - Azure Databricks
Azure AI Conference Report
CC -Unit4.pptx
Deep Learning Technical Pitch Deck
Data analytics on Azure
The Data Science Process - Do we need it and how to apply?
Building Powerful and Intelligent Applications with Azure Machine Learning
Introduction to AI and Cognitive Services For Microsoft 365 Developers and In...
[第35回 Machine Learning 15minutes!] Microsoft AI Updates
Hyf project ideas_02
201908 Overview of Automated ML
Sergii Baidachnyi ITEM 2018
MLflow and Azure Machine Learning—The Power Couple for ML Lifecycle Management
How Azure Databricks helped make IoT Analytics a Reality with Janath Manohara...
Ad

More from Plain Concepts (20)

PPTX
R y Python con Power BI, la ciencia y el análisis de datos, juntos
PDF
Video kills the radio star: e-mail is crap and needed disruption
PPTX
Cómo redefinir tu organización con IA
PPTX
Dx29: assisting genetic disease diagnosis with physician-focused AI pipelines
PDF
¿Qué es real? Cuando la IA intenta engañar al ojo humano
PPTX
Inteligencia artificial para detectar el cáncer de mama
PPTX
¿Está tu compañía preparada para el reto de la Inteligencia Artificial?
PDF
Cognitive Services en acción
PDF
El Hogar Inteligente. De los datos de IoT a los hábitos de una familia a trav...
PDF
What if AI was your daughter?
PPTX
Recomendación Basada en Contenidos con Deep Learning: Qué queríamos hacer, Qu...
PPTX
Revolucionando la experiencia de cliente con Big Data e IA
PPTX
IA Score en InfoJobs
PPTX
Recuperación de información para solicitantes de empleo
PPTX
La nueva revolución Industrial: Inteligencia Artificial & IoT Edge
PDF
DotNet 2019 | Sherry List - Azure Cognitive Services with Native Script
PDF
DotNet 2019 | Quique Fernández - Potenciando VUE con TypeScript, Inversify, V...
PDF
DotNet 2019 | Daniela Solís y Manuel Rodrigo Cabello - IoT, una Raspberry Pi ...
PPTX
El camino a las Cloud Native Apps - Introduction
PPTX
El camino a las Cloud Native Apps - Application modernization on Azure with c...
R y Python con Power BI, la ciencia y el análisis de datos, juntos
Video kills the radio star: e-mail is crap and needed disruption
Cómo redefinir tu organización con IA
Dx29: assisting genetic disease diagnosis with physician-focused AI pipelines
¿Qué es real? Cuando la IA intenta engañar al ojo humano
Inteligencia artificial para detectar el cáncer de mama
¿Está tu compañía preparada para el reto de la Inteligencia Artificial?
Cognitive Services en acción
El Hogar Inteligente. De los datos de IoT a los hábitos de una familia a trav...
What if AI was your daughter?
Recomendación Basada en Contenidos con Deep Learning: Qué queríamos hacer, Qu...
Revolucionando la experiencia de cliente con Big Data e IA
IA Score en InfoJobs
Recuperación de información para solicitantes de empleo
La nueva revolución Industrial: Inteligencia Artificial & IoT Edge
DotNet 2019 | Sherry List - Azure Cognitive Services with Native Script
DotNet 2019 | Quique Fernández - Potenciando VUE con TypeScript, Inversify, V...
DotNet 2019 | Daniela Solís y Manuel Rodrigo Cabello - IoT, una Raspberry Pi ...
El camino a las Cloud Native Apps - Introduction
El camino a las Cloud Native Apps - Application modernization on Azure with c...

Recently uploaded (20)

PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
A Presentation on Artificial Intelligence
PDF
Machine learning based COVID-19 study performance prediction
PDF
Approach and Philosophy of On baking technology
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
Big Data Technologies - Introduction.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
KodekX | Application Modernization Development
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
Cloud computing and distributed systems.
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
A Presentation on Artificial Intelligence
Machine learning based COVID-19 study performance prediction
Approach and Philosophy of On baking technology
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
“AI and Expert System Decision Support & Business Intelligence Systems”
Review of recent advances in non-invasive hemoglobin estimation
Reach Out and Touch Someone: Haptics and Empathic Computing
Big Data Technologies - Introduction.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Chapter 3 Spatial Domain Image Processing.pdf
Empathic Computing: Creating Shared Understanding
Advanced methodologies resolving dimensionality complications for autism neur...
Mobile App Security Testing_ A Comprehensive Guide.pdf
KodekX | Application Modernization Development
NewMind AI Weekly Chronicles - August'25 Week I
Cloud computing and distributed systems.
Unlocking AI with Model Context Protocol (MCP)
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Agricultural_Statistics_at_a_Glance_2022_0.pdf

El camino a las Cloud Native Apps - Azure AI

  • 5. Agenda Introduction: AI, ML, DL & Azure Cognitive Services • Catalog • Demo • Real case Azure Databricks • Main features • Demo Azure ML Workspace • Introduction • Portal • Demo
  • 6. What are we going to talk about today? Artificial Inteligence is more than an experiment. Introduction – AI, ML & DL
  • 7. Integration with the rest of the portfolio and growing Different projects different solutions Introduction - Azure
  • 8. Cognitive Services are a set of machine learning algorithms that Microsoft has developed to solve problems in the field of Artificial Intelligence (AI). When to use Cognitive Services? Whenever the project can be solved using one of these solutions. Very good results in exchange of very little development Cognitive Services
  • 10. Different tasks related with image analysis. Such as: • Objects and people detection • Image tagging • Content moderator • Faces, age and emotions recognition Try it out! Computer Vision
  • 11. Text Analytics A wide rango of tasks related with text analysis, such as: sentiment analysis, language detection, keywords, entity recognition… Try it out!
  • 12. • Cognitive Search • LUIS (Language Understanding) • Anomaly detector • Custom Vision Other Services
  • 13. Real Case - JFK Files JFK Files takes complex files including photos, handwriting, government documents, and more—then uses Cognitive Search to extract information.
  • 15. Azure Databricks is an Apache Spark-based analytics platform optimized for the Microsoft Azure cloud services platform. Designed with the founders of Apache Spark, Databricks is integrated with Azure to provide one-click setup, streamlined workflows, and an interactive workspace that enables collaboration between data scientists, data engineers, and business analysts. Azure Databricks
  • 16. Main features: - Easy infrastructure for Big Data - Collaboration - Automated Jobs - Fully connected with Azure When to use Azure Databricks? Big Data projects, Experiments, Pipelines Azure Databricks
  • 17. -ETL + job -NLP Model -AutoML Azure Databricks Demo
  • 18. Azure ML workspace is a tool designed to ease the whole process of a ML/DL Project. When to use Azure ML Workspace? Practically always Azure Machine Learning Workspace
  • 19. • Experiment tracking and remote execution on demand • Model version registry • Predictive Image creation and registry • Deployment of the image Azure Machine Learning Workspace main advantages
  • 20. -Experiment -Predictive Image & Deploy -Pipeline Demo Azure ML Workspace