SlideShare a Scribd company logo
Average	
  	
  
difference	
  
Coefficient	
  	
  	
  
βi	
  	
  
Significance	
  
	
  (%)	
  
Conclusions	
  	
  
(Best	
  condi;ons	
  among	
  the	
  levels)	
  
Encapsula;on	
  	
  
Efficiency	
  (EE)	
  **	
  
Type	
  of	
  
membrane	
  
1	
  =	
  SPG;	
  2	
  =	
  Nylon;	
  	
  
3	
  =	
  Cellulose	
  ester	
  
1	
  -­‐	
  3	
   1,46	
   42,8	
  *	
  
Not	
   significant	
   differences	
   among	
  
type	
  of	
  membranes.	
  
2	
  -­‐	
  3	
   1,97	
   35,8	
  *	
  
Type	
  of	
  
complex	
  
1	
  Complex	
  I;	
  
	
  2	
  =	
  Complex	
  II	
  
1	
  -­‐	
  3	
   -­‐0,42	
   77,5	
  *	
  
Not	
   significant	
   differences	
  	
  	
  	
  
between	
  complexes.	
  
Ra;o	
  	
  
oil	
  :	
  wall	
  
material	
  
1	
  =	
  1:4;	
  2	
  =	
  1:3;	
  	
  
3	
  =	
  1:2;	
  4	
  =	
  1:1	
  
1	
  -­‐	
  4	
   6,76	
   1,4	
   1 : 4	
   r a O o	
   p r o v i d e s	
   h i g h e r	
  
encapsulaOon	
   efficiency	
   than	
   the	
  
others.	
  
	
  
Maximum	
  =	
  90,36	
  %	
  
Minimum	
  =	
  75,42	
  %	
  
2	
  -­‐	
  4	
   4,39	
   6,8	
  *	
  
3	
  -­‐	
  4	
   2,28	
   29,2	
  *	
  
Wall	
  material	
  
	
  
1	
  =	
  Maltodextrin;	
  
	
  2	
  =	
  Starch;	
  
	
  3=	
  Sodium	
  Caseinate;	
  	
  
4	
  =	
  Arabic	
  gum	
  
1	
  -­‐	
  4	
   -­‐2,98	
   18,3	
  *	
  
Arabic	
   gum	
   provides	
   a	
   significantly	
  
higher	
   encapsulaOon	
   efficiency	
  
than	
  starch.	
  
2	
  -­‐	
  4	
   -­‐4,53	
   6,2	
  *	
  
3	
  -­‐	
  4	
   -­‐1,16	
   57,8	
  *	
  
[1]	
  K.	
  Ziani,	
  Y.	
  Fang,	
  D.	
  McClements	
  (2012);	
  Fabrica;on	
  and	
  stability	
  of	
  colloidal	
  delivery	
  systems	
  for	
  flavor	
  oils:	
  Food	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  Research	
  Intena;onal,	
  46,	
  209-­‐216	
  
[2]	
  J.	
  M.	
  Rodríguez,	
  A.	
  Pilosof	
  (2011);	
  Protein-­‐polysaccharide	
  interac;ons	
  at	
  fluid	
  interfaces:	
  Food	
  Hydrocolloids,	
  25,	
  	
  
	
  	
  	
  	
  	
  	
  1925-­‐1937.	
  
[3]	
  A.	
  Tren;n,	
  S.	
  De	
  Lamo,	
  C.	
  Güell,	
  F.	
  López,	
  M.	
  Ferrando	
  (2011);	
  Protein-­‐stabilized	
  emulsions	
  containing	
  beta-­‐carotene	
  	
  
	
  	
  	
  	
  	
  	
  produced	
  by	
  premix	
  membrane	
  emulsifica;on,	
  J.	
  Food	
  Eng.	
  106,	
  267–274	
  
[4]	
  V.	
  Paramita,	
  T.	
  Furuta,	
  and	
  H.	
  Yoshii	
  (2012);	
  High-­‐Oil-­‐Load	
  Encapsula;on	
  of	
  Medium-­‐Chain	
  Triglycerides	
  and	
  d-­‐	
  
	
  	
  	
  	
  	
  	
  Limonene	
  Mixture	
  in	
  Modified	
  Starch	
  by	
  	
  Spray	
  Drying.	
  J.	
  Food	
  Sci.	
  77,	
  E38-­‐44.	
  
	
  
Lemon	
  	
  
essen;al	
  oil	
  
Spray	
  drying	
  
(Water	
  removed)	
  
Microcapsule	
  
Wall	
  material	
  addi;on	
  
Membrane	
  
Fine	
  emulsion	
  
Coarse	
  emulsion	
  
Low	
  pressure	
  
Mechanical	
  s;rring	
  	
  
(15000	
  rpm,	
  3	
  min)	
  
	
  
	
  
!
Encapsula;on	
  of	
  lemon	
  essen;al	
  oil	
  using	
  protein-­‐polysaccharide	
  	
  
complexes	
  as	
  emulsifiers	
  and	
  combining	
  oil-­‐in-­‐water	
  	
  
membrane	
  emulsifica;on	
  with	
  spray-­‐drying	
  
J.	
  Carmona,	
  C.	
  Güell*,	
  J.	
  Ferré+	
  and	
  M.	
  Ferrando	
  
Departament	
  d’Enginyeria	
  Química	
  
+	
  Departament	
  de	
  Química	
  AnalíOca	
  i	
  Química	
  Orgànica,	
  	
  
Universitat	
  Rovira	
  i	
  Virgili,	
  Spain	
  Avda.	
  Països	
  Catalans,	
  26,	
  43007	
  Tarragona	
  (Spain)	
  
Tel:	
  +34977558504;	
  email:	
  carme.guell@urv.cat	
  
	
  	
  
Protein-­‐polysaccharide	
  complexes	
  as	
  emulsifiers	
  
Materials	
  &	
  Methods	
  
Introduc;on	
  &	
  Aim	
  
Flavour	
   is	
   one	
   of	
   the	
   most	
   important	
   characterisOcs	
   of	
   a	
   food	
   product.	
   The	
   need	
   for	
   food	
   products	
  	
  	
  	
  	
  	
  	
  
that	
   are	
   tasty,	
   healthy	
   and	
   convenient	
   will	
   conOnue	
   to	
   demand	
   improved	
   aroma	
   delivery	
   systems,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
which	
  might	
  be	
  achieved	
  by	
  modifying	
  the	
  exisOng	
  encapsulaOon	
  processes	
  or	
  by	
  combining	
  the	
  exisOng	
  
ones	
  [1].	
  
The	
  aim	
  of	
  this	
  study	
  was	
  to	
  produce	
  microcapsules	
  of	
  lemon	
  essenOal	
  oil	
  using	
  protein-­‐polysaccharide	
  
complexes	
   replacing	
   convenOonal	
   emulsifiers	
   [2]	
   with	
   Premix	
   membrane	
   emulsificaOon	
   (ME)	
   [3]	
   to	
  
obtain	
   oil-­‐in-­‐water	
   (O/W)	
   emulsions	
   and,	
   subsequently,	
   applying	
   spray-­‐drying	
   [4].	
   An	
   Asymmetric	
  
Screening	
   Design	
   was	
   used	
   to	
   idenOfy	
   the	
   operaOng	
   condiOons	
   having	
   a	
   major	
   impact	
   on	
   the	
  
encapsulaOon	
  efficiency	
  (for	
  example,	
  wall	
  material	
  or	
  type	
  of	
  protein-­‐polysaccharide	
  complex).	
  
Membrane	
  	
  
Emulsifica;on	
  	
  	
  
(Three	
  cycles)	
  
Experimental	
  design	
  
Conclusions	
  
The	
   authors	
   acknowledge	
   funding	
   from	
   the	
   Spanish	
   Ministry	
   of	
   Economy	
   and	
   Compe;;veness	
   for	
   suppor;ng	
   this	
   research	
   work	
   (Project	
  
funding	
  CTQ2011-­‐22793	
  and	
  AGL2011-­‐264566)	
  and	
  Dallant	
  S.A	
  for	
  providing	
  the	
  essen;al	
  oil	
  and	
  technical	
  support.	
  Jaume	
  Carmona	
  thanks	
  
Universitat	
  Rovira	
  i	
  Virgili	
  for	
  his	
  scholarship.	
  
Factor 1 Factor 2 Factor 3 Factor 4
Type
of membrane
Wall material
Ratio
Lemon oil : Wall material
Type
of complex
SPG	
   MD	
  (ME	
  -­‐	
  20)	
   1:4	
  
Complex	
  1	
  
Nylon	
   Midó	
   1:3	
  
Cellulose	
  ester	
   NaCAS	
   1:2	
  
SPG	
   Arabic	
  gum	
   1:1	
  
SPG	
   Midó	
   1:2	
  
Complex	
  2	
  
Nylon	
   MD	
  (ME	
  -­‐	
  20)	
   1:1	
  
Cellulose	
  ester	
   Arabic	
  gum	
   1:4	
  
SPG	
   NaCAS	
   1:3	
  
SPG	
   NaCAS	
   1:1	
  
Complex	
  1	
  
Nylon	
   Arabic	
  gum	
   1:2	
  
Cellulose	
  ester	
   MD	
  (ME	
  -­‐	
  20)	
   1:3	
  
SPG	
   Midó	
   1:4	
  
SPG	
   Arabic	
  gum	
   1:3	
  
Complex	
  2	
  
Nylon	
   NaCAS	
   1:4	
  
Cellulose	
  ester	
   Midó	
   1:1	
  
SPG	
   MD	
  (ME	
  -­‐	
  20)	
   1:2	
  
Fluxes	
  during	
  Premix	
  membrane	
  emulsifica;on	
  
References	
  
Premix	
  ME	
  in	
  combinaOon	
  with	
  spray-­‐drying	
  enable	
  to	
  successfully	
  encapsulate	
  lemon	
  essenOal	
  oil	
  when	
  WPI-­‐polysaccharide	
  
complexes	
  	
  were	
  used	
  as	
  emulsifiers.	
  
The	
  results	
  from	
  the	
  asymmetric	
  screening	
  design	
  showed	
  that	
  only	
  the	
  type	
  of	
  membrane	
  had	
  a	
  significant	
  impact	
  on	
  the	
  
emulsion	
  droplet	
  size.	
  	
  
Regarding	
  encapsulaOon	
  efficiency,	
  both	
  wall	
  material	
  and	
  oil	
  to	
  wall	
  material	
  raOo	
  exhibited	
  a	
  significant	
  effect.	
  
	
  
	
  
	
  
Results	
  
Droplet	
  size	
  (D3,2)	
  during	
  Premix	
  membrane	
  emulsifica;on	
  
Cellulose	
  ester	
  
Figure	
  3.	
  	
  ESEM	
  images	
  of	
  external	
  and	
  internal	
  morphology	
  of	
  lemon	
  oil	
  microcapsules:	
  a)	
  Complex	
  I,	
  raOo	
  1:1,	
  NaCAS	
  and	
  glass	
  membrane;	
  b)	
  Complex	
  II,	
  raOo	
  1:1,	
  
starch	
  and	
  cellulose	
  ester	
  membrane.	
  
Figure	
  1.	
  	
  Emulsion	
  flux	
  for	
  each	
  emulsificaOon	
  cycle	
  using	
  Nylon	
  (a)	
  and	
  Cellulose	
  ester	
  membrane	
  (b)	
  with	
  different	
  complexes.	
  
Membrane
Porous
size
(μm)
Membrane
configuration
Diameter/ length
(mm)
Type
of membrane
Wettability
Working
pressure
(MPa)
Nylon 0,8	
   Flat	
   47	
   Organic	
   Hydrophillic	
   0,7	
  
Cellulose
ester
0,8	
   Flat	
   47	
   Organic	
   Hydrophillic	
   0,7	
  
SPG* 1,0	
   Tubular	
   100	
   Inorganic	
   Hydrophillic	
   0,2	
  
Experimental	
  condi;ons	
  during	
  Premix	
  ME	
  
Model:	
  Asymmetric	
  Screening	
  Design	
  
	
  
	
  	
  	
  	
  Responses	
  of	
  interest:	
  droplet	
  size	
  (D3,2)	
  at	
  the	
  end	
  of	
  Premix	
  ME	
  and	
  oil	
  encapsulaOon	
  efficiency	
  (EE)	
  	
  
	
  	
  	
  	
  Number	
  of	
  experiments:	
  16	
  plus	
  4	
  replicates	
  	
  
	
  	
  	
  	
  Number	
  of	
  factors:	
  4	
  	
  
	
  	
  	
  	
  Factor	
  levels:	
  Factor	
  1:	
  3	
  levels;	
  Factor	
  2:	
  4	
  levels;	
  Factor	
  3:	
  4	
  levels;	
  Factor	
  4:	
  2	
  levels	
  	
  
	
  
This	
  model	
  enables	
  to	
  idenOfy	
  the	
  factors	
  having	
  a	
  major	
  impact	
  on	
  the	
  responses	
  using	
  equaOon	
  1.	
  
	
  
Xvx	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eq.	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Y	
  =	
  b0	
  +	
  b11	
  ·∙	
  x11	
  +	
  b12	
  ·∙	
  x12	
  	
  +	
  b13	
  ·∙	
  x13	
  	
  +	
  …	
  +	
  bn	
  ·∙	
  xn	
  	
  
	
  
Where	
  Y	
  is	
  the	
  predicted	
  response;	
  b0	
  is	
  the	
  intercept	
  term;	
  bn	
  is	
  the	
  linear	
  coefficients;	
  xn	
  is	
  the	
  average	
  
values	
  for	
  each	
  factor	
  fixed.	
  
Experiments	
  
Figure	
  2.	
   	
  Progress	
  of	
  mean	
  droplet	
  size	
  during	
  Premix	
  membrane	
  emulsificaOon	
  using	
  Nylon,	
  Cellulose	
  ester	
  and	
  SPG	
  membranes	
  
with	
  Complex	
  I	
  (a)	
  and	
  Complex	
  II	
  (b).	
  Droplet	
  size	
  of	
  the	
  coarse	
  emulsion	
  corresponds	
  to	
  Cycle	
  0.	
  
(a)	
   (b)	
  
Results	
  of	
  the	
  Asymmetric	
  Screening	
  Design	
  
External	
  and	
  internal	
  morphology	
  of	
  lemon	
  oil	
  microcapsules	
  
Acknowledgment	
  
	
  
(b)	
  (a)	
  
Response	
   Factor	
   Levels	
  
Average	
  	
  
difference	
  
Coefficient	
  	
  	
  
bn	
  	
  
Significance	
  
	
  (%)	
  
Conclusions	
  	
  
Droplet	
  size	
  (D3,2)	
  of	
  	
  
the	
  end	
  of	
  Premix	
  ME	
  
Type	
  	
  
of	
  membrane	
  
1	
  =	
  SPG;	
  	
  
2	
  =	
  Nylon;	
  	
  
3	
  =	
  Cellulose	
  ester	
  
1	
  -­‐	
  3	
   -­‐0,13	
   87,0	
  *	
  
Only	
   significant	
   differences	
  	
  	
  	
  
between	
   Nylon	
   and	
   Cellulose	
   ester	
  
membranes.	
  	
  
Nylon	
   membranes	
   produces	
  	
  	
  	
  
smaller	
  droplets.	
  
2	
  -­‐	
  3	
   -­‐2,21	
   4,02	
  	
  
Type	
  
of	
  complex	
  
1	
  =	
  Complex	
  I;	
  
2	
  =	
  Complex	
  II	
  
1	
  -­‐	
  3	
   0,75	
   25,6	
  *	
  
Not	
  significant	
  differences	
  between	
  
complexes.	
  
*	
  Significance	
  values	
  above	
  than	
  5%	
  are	
  not	
  significant.	
  
**	
  The	
  encapsulaOon	
  efficiency	
  (EE)	
  was	
  calculated	
  with	
  this	
  equaOon:	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eq.	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  EE	
  =	
  ((TO	
  -­‐	
  SO)	
  /	
  TO)	
  ·∙	
  100	
  	
  
	
  
	
  	
  	
  	
  	
  	
  Where	
  TO	
  is	
  the	
  total	
  amount	
  of	
  lemon	
  essenOal	
  oil	
  in	
  the	
  microcapsule	
  and	
  SO	
  on	
  the	
  surface.	
  	
  	
  
	
  Protein	
   Polysaccharide	
  
pH	
  =	
  7.0	
  
Acidifica;on	
  
pH	
  =	
  3.8	
  
	
  
Oil	
  phase	
  Water	
  phase	
  
Interphase	
  
Complex	
  
forma;on	
  
Complex Protein (wt/wt %) Polysaccharide (wt/wt %)
I Whey	
  Protein	
  Isolate*	
  (0,5	
  %)	
   Carboxymethyl	
  Cellulose	
  (0,25	
  %)	
  
II Whey	
  Protein	
  Isolate*	
  (0,5%)	
   Arabic	
  gum	
  (0,5	
  %)	
  	
  
Produc;on	
  of	
  lemon	
  essen;al	
  oil	
  microcapsules	
  
0,0	
  
0,5	
  
1,0	
  
1,5	
  
2,0	
  
2,5	
  
3,0	
  
3,5	
  
4,0	
  
1	
   2	
   3	
  
Flux	
  (Kg/m2·∙s)	
  
Premix	
  ME	
  Cycle	
  
Complex	
  I	
  	
  
20%	
  oil	
  +	
  Nylon	
  
20%	
  oil	
  +	
  Metricel	
  
0,0	
  
0,5	
  
1,0	
  
1,5	
  
2,0	
  
2,5	
  
3,0	
  
3,5	
  
4,0	
  
1	
   2	
   3	
  
Flux	
  (Kg/m2·∙s)	
  
Premix	
  ME	
  Cycle	
  
Complex	
  II	
  
20%	
  oil	
  +	
  Nylon	
  
20%	
  +	
  Metricel	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
14	
  
0	
   1	
   2	
   3	
  
D	
  3,2	
  
Premix	
  ME	
  Cycle	
  
	
  Complex	
  I	
  
20%	
  oil	
  +	
  Nylon	
  
20%	
  oil	
  +	
  Metricel	
  
20%	
  +	
  SPG	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
14	
  
0	
   1	
   2	
   3	
  
D	
  3,2	
  
Premix	
  ME	
  Cycle	
  
	
  Complex	
  II	
  
20%	
  oil	
  +	
  Nylon	
  
20%	
  oil	
  +	
  Metricel	
  
20%	
  oil	
  +	
  SPG	
  
Cellulose	
  ester	
  
Water	
  	
  
+	
  	
  
Complex	
  
Inlet	
  Temperature	
  =	
  170	
  oC	
  
Outlet	
  Temperature	
  =	
  60	
  oC	
  
	
  	
  Pump	
  rate	
  =	
  6	
  mL/	
  min	
  
Air	
  flow	
  rate	
  =	
  35	
  m3/	
  h	
  
Cellulose	
  ester	
  
Cellulose	
  ester	
  
*	
  Shirasu	
  porous-­‐glass.	
  	
  	
  
Table	
  1.	
  	
  Levels	
  for	
  each	
  factor	
  as	
  a	
  result	
  of	
  the	
  asymmetric	
  screening	
  design	
  model.	
  	
  
b	
  a	
  
*	
  WPI.	
  	
  	
  
oil	
  +	
  Cellulose	
  ester	
  
oil	
  +	
  SPG	
  
a	
  

More Related Content

PPTX
ppt on published research paper
PPTX
ppt on published research paper
DOCX
Abstract
PPT
Adewole J. K SPE-SAS 2013_21-05-2013
PDF
Shrinkage of Polyester Fibre in Selected Chlorinated Solvents and Effects on ...
PPT
Solubilisation of Quinazoline drugs by using Beta cyclodextrin complex formation
PDF
Modified Terminalia randii gum as a binder in metronidazole tablet formulation
PDF
Degradation of poly-L-lactide. Part 1, IMechE, 2004
ppt on published research paper
ppt on published research paper
Abstract
Adewole J. K SPE-SAS 2013_21-05-2013
Shrinkage of Polyester Fibre in Selected Chlorinated Solvents and Effects on ...
Solubilisation of Quinazoline drugs by using Beta cyclodextrin complex formation
Modified Terminalia randii gum as a binder in metronidazole tablet formulation
Degradation of poly-L-lactide. Part 1, IMechE, 2004

What's hot (20)

PDF
Design and Development of Gefitinib Microemulsion by applying CCRD-RSM model
PDF
POLYMERS IN SOLID STATE, PHARMACEUTICAL APPLICATIONS OF POLYMERS AND RECENT A...
PDF
Intjdc cor e rugosidade
PPTX
Preformulation and physicochemical property of the drug
PPT
Preformulation testing of solid dosage forms
PPTX
RESEARCH ARTICLE ON INCLUSION COMPLEX WITH SBE-B-CD
PDF
2201 preformulation considerations manik
PDF
Formulation and invitro evaluation of gastro retentive based micro beads of v...
PDF
H045047053
PDF
Formulation Development and Characterization of Topical Gel for Psoriasis
DOCX
PREFORMULATION CONCEPTS AND OPTIMIZATION IN PHARMACEUTICAL FORMULATION
PPTX
Preformulation Studies
PPT
Preformulation by Dhiraj Shrestha
PPTX
Preformulation studies
PPTX
Preformulation/pharmaceutical preformulation
PPTX
Preformulation concept
PDF
Non-regulated Accelerator (DCBS/DBBS) Incorporated Natural Rubber Formulation...
PPT
preformulation study
PDF
PPTX
Seminar on Preformulation studies
Design and Development of Gefitinib Microemulsion by applying CCRD-RSM model
POLYMERS IN SOLID STATE, PHARMACEUTICAL APPLICATIONS OF POLYMERS AND RECENT A...
Intjdc cor e rugosidade
Preformulation and physicochemical property of the drug
Preformulation testing of solid dosage forms
RESEARCH ARTICLE ON INCLUSION COMPLEX WITH SBE-B-CD
2201 preformulation considerations manik
Formulation and invitro evaluation of gastro retentive based micro beads of v...
H045047053
Formulation Development and Characterization of Topical Gel for Psoriasis
PREFORMULATION CONCEPTS AND OPTIMIZATION IN PHARMACEUTICAL FORMULATION
Preformulation Studies
Preformulation by Dhiraj Shrestha
Preformulation studies
Preformulation/pharmaceutical preformulation
Preformulation concept
Non-regulated Accelerator (DCBS/DBBS) Incorporated Natural Rubber Formulation...
preformulation study
Seminar on Preformulation studies
Ad

Similar to Encapsulation_LEO (20)

PDF
Póster Eng. Membranes
PDF
Reviewed journal
PDF
The International Journal of Engineering and Science (The IJES)
PDF
PDF
Coating 5
PDF
Quantitative Modeling Of Formation Damage On The Reservoir During Microbial E...
PDF
1-s2.0-S2238785422007591-main.pdf
PDF
Shemesh - PAT - 2014
PDF
crosslinked chitosan
PDF
Effect of Nanoclay on the Structure and Properties of High Density Polyethyle...
PDF
ACETITE DE CANELA.pdf
PDF
Influence of Wall Material Composition on Microencapsulation Efficiency of Co...
PDF
Poster presentation NN12
PDF
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...
PDF
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...
PDF
11.design and development of niosomal delivery system for ketoprofen
PDF
Design and development of niosomal delivery system for ketoprofen
PPTX
Viva waseem 4402.pptx
PDF
Póster Eng. Membranes
Reviewed journal
The International Journal of Engineering and Science (The IJES)
Coating 5
Quantitative Modeling Of Formation Damage On The Reservoir During Microbial E...
1-s2.0-S2238785422007591-main.pdf
Shemesh - PAT - 2014
crosslinked chitosan
Effect of Nanoclay on the Structure and Properties of High Density Polyethyle...
ACETITE DE CANELA.pdf
Influence of Wall Material Composition on Microencapsulation Efficiency of Co...
Poster presentation NN12
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...
Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Ch...
11.design and development of niosomal delivery system for ketoprofen
Design and development of niosomal delivery system for ketoprofen
Viva waseem 4402.pptx
Ad

Encapsulation_LEO

  • 1. Average     difference   Coefficient       βi     Significance    (%)   Conclusions     (Best  condi;ons  among  the  levels)   Encapsula;on     Efficiency  (EE)  **   Type  of   membrane   1  =  SPG;  2  =  Nylon;     3  =  Cellulose  ester   1  -­‐  3   1,46   42,8  *   Not   significant   differences   among   type  of  membranes.   2  -­‐  3   1,97   35,8  *   Type  of   complex   1  Complex  I;    2  =  Complex  II   1  -­‐  3   -­‐0,42   77,5  *   Not   significant   differences         between  complexes.   Ra;o     oil  :  wall   material   1  =  1:4;  2  =  1:3;     3  =  1:2;  4  =  1:1   1  -­‐  4   6,76   1,4   1 : 4   r a O o   p r o v i d e s   h i g h e r   encapsulaOon   efficiency   than   the   others.     Maximum  =  90,36  %   Minimum  =  75,42  %   2  -­‐  4   4,39   6,8  *   3  -­‐  4   2,28   29,2  *   Wall  material     1  =  Maltodextrin;    2  =  Starch;    3=  Sodium  Caseinate;     4  =  Arabic  gum   1  -­‐  4   -­‐2,98   18,3  *   Arabic   gum   provides   a   significantly   higher   encapsulaOon   efficiency   than  starch.   2  -­‐  4   -­‐4,53   6,2  *   3  -­‐  4   -­‐1,16   57,8  *   [1]  K.  Ziani,  Y.  Fang,  D.  McClements  (2012);  Fabrica;on  and  stability  of  colloidal  delivery  systems  for  flavor  oils:  Food                        Research  Intena;onal,  46,  209-­‐216   [2]  J.  M.  Rodríguez,  A.  Pilosof  (2011);  Protein-­‐polysaccharide  interac;ons  at  fluid  interfaces:  Food  Hydrocolloids,  25,                1925-­‐1937.   [3]  A.  Tren;n,  S.  De  Lamo,  C.  Güell,  F.  López,  M.  Ferrando  (2011);  Protein-­‐stabilized  emulsions  containing  beta-­‐carotene                produced  by  premix  membrane  emulsifica;on,  J.  Food  Eng.  106,  267–274   [4]  V.  Paramita,  T.  Furuta,  and  H.  Yoshii  (2012);  High-­‐Oil-­‐Load  Encapsula;on  of  Medium-­‐Chain  Triglycerides  and  d-­‐              Limonene  Mixture  in  Modified  Starch  by    Spray  Drying.  J.  Food  Sci.  77,  E38-­‐44.     Lemon     essen;al  oil   Spray  drying   (Water  removed)   Microcapsule   Wall  material  addi;on   Membrane   Fine  emulsion   Coarse  emulsion   Low  pressure   Mechanical  s;rring     (15000  rpm,  3  min)       ! Encapsula;on  of  lemon  essen;al  oil  using  protein-­‐polysaccharide     complexes  as  emulsifiers  and  combining  oil-­‐in-­‐water     membrane  emulsifica;on  with  spray-­‐drying   J.  Carmona,  C.  Güell*,  J.  Ferré+  and  M.  Ferrando   Departament  d’Enginyeria  Química   +  Departament  de  Química  AnalíOca  i  Química  Orgànica,     Universitat  Rovira  i  Virgili,  Spain  Avda.  Països  Catalans,  26,  43007  Tarragona  (Spain)   Tel:  +34977558504;  email:  carme.guell@urv.cat       Protein-­‐polysaccharide  complexes  as  emulsifiers   Materials  &  Methods   Introduc;on  &  Aim   Flavour   is   one   of   the   most   important   characterisOcs   of   a   food   product.   The   need   for   food   products               that   are   tasty,   healthy   and   convenient   will   conOnue   to   demand   improved   aroma   delivery   systems,                           which  might  be  achieved  by  modifying  the  exisOng  encapsulaOon  processes  or  by  combining  the  exisOng   ones  [1].   The  aim  of  this  study  was  to  produce  microcapsules  of  lemon  essenOal  oil  using  protein-­‐polysaccharide   complexes   replacing   convenOonal   emulsifiers   [2]   with   Premix   membrane   emulsificaOon   (ME)   [3]   to   obtain   oil-­‐in-­‐water   (O/W)   emulsions   and,   subsequently,   applying   spray-­‐drying   [4].   An   Asymmetric   Screening   Design   was   used   to   idenOfy   the   operaOng   condiOons   having   a   major   impact   on   the   encapsulaOon  efficiency  (for  example,  wall  material  or  type  of  protein-­‐polysaccharide  complex).   Membrane     Emulsifica;on       (Three  cycles)   Experimental  design   Conclusions   The   authors   acknowledge   funding   from   the   Spanish   Ministry   of   Economy   and   Compe;;veness   for   suppor;ng   this   research   work   (Project   funding  CTQ2011-­‐22793  and  AGL2011-­‐264566)  and  Dallant  S.A  for  providing  the  essen;al  oil  and  technical  support.  Jaume  Carmona  thanks   Universitat  Rovira  i  Virgili  for  his  scholarship.   Factor 1 Factor 2 Factor 3 Factor 4 Type of membrane Wall material Ratio Lemon oil : Wall material Type of complex SPG   MD  (ME  -­‐  20)   1:4   Complex  1   Nylon   Midó   1:3   Cellulose  ester   NaCAS   1:2   SPG   Arabic  gum   1:1   SPG   Midó   1:2   Complex  2   Nylon   MD  (ME  -­‐  20)   1:1   Cellulose  ester   Arabic  gum   1:4   SPG   NaCAS   1:3   SPG   NaCAS   1:1   Complex  1   Nylon   Arabic  gum   1:2   Cellulose  ester   MD  (ME  -­‐  20)   1:3   SPG   Midó   1:4   SPG   Arabic  gum   1:3   Complex  2   Nylon   NaCAS   1:4   Cellulose  ester   Midó   1:1   SPG   MD  (ME  -­‐  20)   1:2   Fluxes  during  Premix  membrane  emulsifica;on   References   Premix  ME  in  combinaOon  with  spray-­‐drying  enable  to  successfully  encapsulate  lemon  essenOal  oil  when  WPI-­‐polysaccharide   complexes    were  used  as  emulsifiers.   The  results  from  the  asymmetric  screening  design  showed  that  only  the  type  of  membrane  had  a  significant  impact  on  the   emulsion  droplet  size.     Regarding  encapsulaOon  efficiency,  both  wall  material  and  oil  to  wall  material  raOo  exhibited  a  significant  effect.         Results   Droplet  size  (D3,2)  during  Premix  membrane  emulsifica;on   Cellulose  ester   Figure  3.    ESEM  images  of  external  and  internal  morphology  of  lemon  oil  microcapsules:  a)  Complex  I,  raOo  1:1,  NaCAS  and  glass  membrane;  b)  Complex  II,  raOo  1:1,   starch  and  cellulose  ester  membrane.   Figure  1.    Emulsion  flux  for  each  emulsificaOon  cycle  using  Nylon  (a)  and  Cellulose  ester  membrane  (b)  with  different  complexes.   Membrane Porous size (μm) Membrane configuration Diameter/ length (mm) Type of membrane Wettability Working pressure (MPa) Nylon 0,8   Flat   47   Organic   Hydrophillic   0,7   Cellulose ester 0,8   Flat   47   Organic   Hydrophillic   0,7   SPG* 1,0   Tubular   100   Inorganic   Hydrophillic   0,2   Experimental  condi;ons  during  Premix  ME   Model:  Asymmetric  Screening  Design            Responses  of  interest:  droplet  size  (D3,2)  at  the  end  of  Premix  ME  and  oil  encapsulaOon  efficiency  (EE)            Number  of  experiments:  16  plus  4  replicates            Number  of  factors:  4            Factor  levels:  Factor  1:  3  levels;  Factor  2:  4  levels;  Factor  3:  4  levels;  Factor  4:  2  levels       This  model  enables  to  idenOfy  the  factors  having  a  major  impact  on  the  responses  using  equaOon  1.     Xvx                                                                                              Eq.  1                                      Y  =  b0  +  b11  ·∙  x11  +  b12  ·∙  x12    +  b13  ·∙  x13    +  …  +  bn  ·∙  xn       Where  Y  is  the  predicted  response;  b0  is  the  intercept  term;  bn  is  the  linear  coefficients;  xn  is  the  average   values  for  each  factor  fixed.   Experiments   Figure  2.    Progress  of  mean  droplet  size  during  Premix  membrane  emulsificaOon  using  Nylon,  Cellulose  ester  and  SPG  membranes   with  Complex  I  (a)  and  Complex  II  (b).  Droplet  size  of  the  coarse  emulsion  corresponds  to  Cycle  0.   (a)   (b)   Results  of  the  Asymmetric  Screening  Design   External  and  internal  morphology  of  lemon  oil  microcapsules   Acknowledgment     (b)  (a)   Response   Factor   Levels   Average     difference   Coefficient       bn     Significance    (%)   Conclusions     Droplet  size  (D3,2)  of     the  end  of  Premix  ME   Type     of  membrane   1  =  SPG;     2  =  Nylon;     3  =  Cellulose  ester   1  -­‐  3   -­‐0,13   87,0  *   Only   significant   differences         between   Nylon   and   Cellulose   ester   membranes.     Nylon   membranes   produces         smaller  droplets.   2  -­‐  3   -­‐2,21   4,02     Type   of  complex   1  =  Complex  I;   2  =  Complex  II   1  -­‐  3   0,75   25,6  *   Not  significant  differences  between   complexes.   *  Significance  values  above  than  5%  are  not  significant.   **  The  encapsulaOon  efficiency  (EE)  was  calculated  with  this  equaOon:                                                                                            Eq.  2                  EE  =  ((TO  -­‐  SO)  /  TO)  ·∙  100                  Where  TO  is  the  total  amount  of  lemon  essenOal  oil  in  the  microcapsule  and  SO  on  the  surface.        Protein   Polysaccharide   pH  =  7.0   Acidifica;on   pH  =  3.8     Oil  phase  Water  phase   Interphase   Complex   forma;on   Complex Protein (wt/wt %) Polysaccharide (wt/wt %) I Whey  Protein  Isolate*  (0,5  %)   Carboxymethyl  Cellulose  (0,25  %)   II Whey  Protein  Isolate*  (0,5%)   Arabic  gum  (0,5  %)     Produc;on  of  lemon  essen;al  oil  microcapsules   0,0   0,5   1,0   1,5   2,0   2,5   3,0   3,5   4,0   1   2   3   Flux  (Kg/m2·∙s)   Premix  ME  Cycle   Complex  I     20%  oil  +  Nylon   20%  oil  +  Metricel   0,0   0,5   1,0   1,5   2,0   2,5   3,0   3,5   4,0   1   2   3   Flux  (Kg/m2·∙s)   Premix  ME  Cycle   Complex  II   20%  oil  +  Nylon   20%  +  Metricel   0   2   4   6   8   10   12   14   0   1   2   3   D  3,2   Premix  ME  Cycle    Complex  I   20%  oil  +  Nylon   20%  oil  +  Metricel   20%  +  SPG   0   2   4   6   8   10   12   14   0   1   2   3   D  3,2   Premix  ME  Cycle    Complex  II   20%  oil  +  Nylon   20%  oil  +  Metricel   20%  oil  +  SPG   Cellulose  ester   Water     +     Complex   Inlet  Temperature  =  170  oC   Outlet  Temperature  =  60  oC      Pump  rate  =  6  mL/  min   Air  flow  rate  =  35  m3/  h   Cellulose  ester   Cellulose  ester   *  Shirasu  porous-­‐glass.       Table  1.    Levels  for  each  factor  as  a  result  of  the  asymmetric  screening  design  model.     b  a   *  WPI.       oil  +  Cellulose  ester   oil  +  SPG   a