SlideShare a Scribd company logo
The International Journal Of Engineering And Science (IJES)
||Volume||2 ||Issue|| 9||Pages|| 01-06||2013||
ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805
www.theijes.com The IJES Page 1
Characterization of fluted pumpkin (telfiariaoccidentalis hook f)
seeds oil emulsion
V. E. Okpashi, O.U. Njoku , V. N. Ogugua and E. A. Ugian
Department of Biochemistry University of Nigeria Nsukka
----------------------------------------------- ABSTRACT-----------------------------------------------------------
Oil-in-water emulsions were produced from the oil extracts as well as with olive oil. Some of the properties
characterized were droplets size concentration and distribution which ranged from 28µm to 142µm. Visible
layer boundaries of emulsion rose from 0.00mm to 3mm. Emulsion stability of samples were 38.46% (olive oil),
35.71% (n-hexane oil) and 34.97% (petroleum ether oil). Emulsion capacity of olive oil was 35.7%, while that
of n-hexane and petroleum ether oil were 32.1% and30.4% respectively. Emulsion stability indices for olive oil,
n-hexane and petroleum ether extracts oil were 0.65±0.02, 0.71±0.18, and 0.69±0.12 respectively. Microbial
contamination was 2.67x104
cells/ml for olive oil emulsion, 2.67x105
cells/ml from-hexane and petroleum ether
oil emulsion. These results indicate potential and good emulsion stability. It is suggested that fluted pumpkin
seed oil may be used in emulsion production due to its great stability.
----------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 31 July ,2013 Date of Acceptance:10,September 2013
----------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
Emulsion consists of two or more completely or partially immiscible liquids, such as fat or oil and
water, where one liquid is dispersed in the other in the form of droplets (Dickinson, 1992). At the interface of
each droplet, the molecules of the two liquids are in direct contact with each other, which is thermodynamically
highly unfavorable. Although the entropy of the system increases as the emulsion is homogenized (increased
entropy of mixing), this effect is not sufficient to balance the unfavorable enthalpy increase that arises because
of the contact between hydrophilic and hydrophobic molecules (Hiemenz and Rajagalopan, 1997). The system
has the tendency to separate and attain a configuration in which the contact area between the two phases, and
subsequently the free energy of the system, is minimal. Surfactant molecules that adsorb at liquid-liquid
interfaces can decrease the enthalpy contribution to the overall free energy increase and thus reduce the
tendency of the emulsion to destabilize (Weiss, 1999). However, surfactant molecules can reduce the tendency
of an emulsion to destabilize; they are not able to completely prevent it from a thermodynamic perspective, and
emulsion destabilization is inevitable. Fortunately, emulsion breakdown does not occur instantaneously. A
finite time is required for droplets to collide, merge, coalesce or grow, and eventually phase separate. If this
process occurs over a long period of time that exceeds the intended life-time of the product, the emulsion is
considered to be kinetically stable (Robins, 2000).
In the broadest sense, stability of emulsions is defined as maintenance of an initial state that was
attained after homogenization of the two (or more) liquids (Sjoblom, 1996). The initial state of the emulsion
can be defined by a set of internal parameters ( Peña, 2004). The primary parameters used to describe the state
of an emulsion are droplet size distribution and concentration, since the bulk properties of emulsions such as
colour, texture, and taste are primarily a function of these two colloidal parameters (McClements, 1999). In
selected cases it may be necessary to include additional parameters such as pH and microbial load to further
define the initial state of the emulsion.The lifetime of emulsions is a function of various extrinsic parameters.
During production, transport, and storage, emulsions are subject to a variety of fluctuating external stresses that
can alter the initial state of the system and eventually cause the emulsion to become unstable. The goal of any
emulsion stability test should be to closely model stress conditions encountered in an actual application setting.
Most emulsion stability tests focus on the measurement of droplet size as a function of storage time at a specific
temperature. Emulsions may be subject to a variety of chemical, physical, and microbiological stresses in
addition to temperature (Miller, 1988). All these stresses can have profound effects on the macroscopic and
colloidal properties of the emulsions (Sjoblom, 1996) and (Jing, et al (2006). It should be noted that
measurements of bulk properties such as rheology and color as a function of time can be used to determine the
stability of emulsions as well (Serra and Casamitjana, 1998); However, interpreting bulk emulsion properties to
obtain information about changes on the colloidal level is much more difficult than measuring colloidal
properties to predict changes on the macroscopic level.
Characterization of fluted pumpkin-----
www.theijes.com The IJES Page 2
II. METHODOLOGYS
Plants materials
Fluted Pumpkin seeds: The fluted pumpkin (Telfairiaoccidentalis Hook F) seed used for this research
were purchase from Nsukka area of Enugu State, Nigeria, and identified by Mr O. U.Ozioko of Bioresource
Development and Conservation Programme (BDCP) Resource Centre, Nsukka.
Chemicals
All chemicals used were of analytical grade and were products of British Drug House (BDH) Chemical
limited, Poole England.
Statistical analysis
All investigations were carried out in triplicate and data obtained were presented as mean ± standard
deviation using descriptive statistics. Student T – test was used to compare mean variance. Significance was
accepted at p<0.05 level using SPSS v16.
III. RESULT
Characterization of emulsions
The results of the characterization of emulsions are shown in table 1.Emulsion stability index; emulsion
capacity and emulsion stability do not differ significantly with olive oil emulsion.
Table 1 Characterization of emulsions
oil samples ESI EC (%) ES (%)
olive oil 0.65±0.02 35.7 38.46
Fluted pumpkin oil n-hexane extracts 0.71±0.18 32.1 35.71
Fluted pumpkin oil, pet ether extracts 0.69±0.12 30.4 34.97
Result of droplet size of fluted pumpkin seed oil emulsions stabilized by 20% (w/v) tween 80
Table 2 show the result of emulsion droplet sizes. The droplet size of all the emulsions ranges
from 28 μm to 100μm.
Table 2 Droplets size of fluted pumpkin seed oil emulsions stabilized by 20% (w/v) tween 80
Droplets size of fluted pumpkin
seed oil emulsions (n-hexane
extract (μm)
Droplets size of fluted pumpkin seed
oil emulsions (petroleum ether
extract (μm)
Droplets size of olive oil
emulsions (μm) (standaed
reference oil).
48 38 28
49 47
60 77 53
71 88 59
89 97 71
102 100 82
142 137 100
Time dependent height increase of the visible creaming layer boundary of olive oil emulsion.
Figure 1 shows the height increase of the visible layer boundary of olive oil emulsions at 3mm and a delay time
of 199 minutes.
Figure 1 Time dependent height increase of the visible creaming layer boundary of olive oil emulsion.
Characterization of fluted pumpkin-----
www.theijes.com The IJES Page 3
Time dependent height increase of the visible creaming layer boundary of oil extracted
with petroleum ether
Figure 2 shows that the creaming layer boundary of emulsion produced from fluted pumpkin seed oil extracted
with petroleum ether had a delay time of 250 munites and height increase of 4mm.
0
1
2
3
4
5
6
0 100 200 300 400 500 600
Heightofvisiblelayerboundaries(mm)
Time (mins)
Figure 2 Time dependent height increase of the visible creaming layer boundary
of oil extracted with petroleum ether.
Time dependent height increase of the visible creaming layer boundary of oil extracted with n-hexane
The Figure 3 shows the creaming layer boundary of emulsion produced from fluted pumpkin seed oil
extracted with n-hexane. The result showed that the emulsion had taken a short time to sediment or cream that is
two hundred minutes to cream to three millimeters height.
Figure 3 Time dependent height increase of the visible creaming layer boundary
of oil extracted with n-hexane.
Time dependent height increase of the visible creaming layers of olive oil, oil extracted with n-hexane and
petroleum ether emulsions.
1
Characterization of fluted pumpkin-----
www.theijes.com The IJES Page 4
Figure 4 shows creaming layer boundary of emulsion produced from fluted pumpkin seed oil extracted with
petroleum ether, n-hexane and olive oil emulsion. The result showed that the emulsion had taken both short and
long time to sediment or cream. The average delay time is 200 minutes with a height increase of 4mm.
0
1
2
3
4
5
6
0 100 200 300 400 500 600
Heightofvisiblelayerboundaries
(mm)
Time (mins)
Height of visible layer boundaries
of oil Exnhx and oil Expet ether
Figure 4 Time dependent height increase of the visible creaming layers of olive oil,
oil extracted with n-hexane and petroleum ether.
Density of olive oil emulsion at 1 bar atmospheric pressure as a function of temperature.
Figure 5 shows the density of olive oil emulsion at 1 bar atmospheric pressure as a function of temperature. The
figure showed that the density of emulsion decreases as the temperature is increased. Increased temperature at
60o
C to 70o
C destabilized the emulsion completely.
0.929
0.93
0.931
0.932
0.933
0.934
0.935
0.936
0.937
0.938
0 20 40 60 80 100
EmulsionDensity(kg/m3)
Temperature (oc)
olive oil
Figure 5 Density of Olive Oil emulsion at 1 bar atmospheric pressure as a function of temperature.
Density of fluted pumpkin seed oil emulsion extracted with petroleum ether at 1 bar atmospheric
pressure as a function of temperature
Figure 6 shows the density of fluted pumpkin seed oil emulsion extracted with petroleum ether at 1
bar atmospheric pressure as a function of temperature. The figure showed that the density of emulsion decreases
as the temperature is increased. At high temperature 60o
C to 80o
C, the emulsion is destabilized.
Figure 6 Density of fluted pumpkin seed oil emulsion extracted with petroleum ether at 1 bar
atmospheric pressure as a function of temperature.
Characterization of fluted pumpkin-----
www.theijes.com The IJES Page 5
Density of fluted pumpkin seed oil emulsion extracted with n-hexane at 1 bar atmospheric pressure as a
function of temperature
Figure 7 shows the density of fluted pumpkin seed oil emulsion extracted with n-hexane at 1 bar atmospheric
pressure as a function of temperature.
The figure showed that the density of emulsion decreases as the temperature is increased.
Figure 7 Density of fluted pumpkin seed oil emulsion extracted with n-hexane at 1 bar atmospheric
pressure as a function of temperature.
Density of olive oil, oil extracted with n-hexane and petroleum ether emulsions at 1 bar atmospheric
pressure as a function of temperature Figure 8 Shows the density of fluted pumpkin seed oil emulsion
extracted petroleum ether, n-hexane and olive oil at 1 bar atmospheric pressure as a function of temperature.
The figure showed that the density of emulsion decreases as the temperature is increased and showed
differences in emulsion density. Also n-haxane extract and petroleum ether extract had almost the same values
and which completely merged to form a single line graph.
0.925
0.93
0.935
0.94
0.945
0.95
0.955
0 20 40 60 80 100
Emulsiondensity(kg/m3)
Temperature oc
oil Exnhx and pet-ether
olive oil
Figure 8 Density of olive oil, oil extracted with n-hexane and petroleum ether emulsions
at 1 bar atmospheric pressure as a function of temperature.
Microbiological analysis:The type of organism identified as a contaminant in emulsion was E-coli.
IV. DISCUSSION
Droplet size measurement of emulsions as a function of storage time. The result illustrates that both the
emulsion produced from oil extracted with n-hexane, petroleum ether and olive oil, increases at the upper level
and decreases at the bottom as the emulsion ages. The spatial distributions of both emulsions droplets size
change profoundly as the emulsion destabilizes. Another interesting result showed that stability test of droplet
size increased proportionally on different emulsions. This can best explain the frequency of droplet collision
(Robins, 2000). Since the droplet size of the emulsions increases, the probability for droplet-droplet collision
resulting in coalescence also increases. This property demonstrates that storage stability test is extremely useful
as they allow emulsion manufacturer to accurately follow even small changes in emulsion properties. Droplet
size determination as a function of storage time can be used to determine the kinetics of the instability process
and to determine the shelf life of the product by setting out to reduce droplet size to 0.1um to 100um. So, this
result indicates that comparatively, the emulsion properties are quite stable and can have an extended shelf life
thus promoting emulsion stability.
Characterization of fluted pumpkin-----
www.theijes.com The IJES Page 6
Result of time-dependent height increase of the visible layer (creaming or sedimentation test) is
showed. This property is usually used to study the instability mechanism in emulsions. This study evaluated the
effect of polyethylene glycol sorbitanmonooleate (tween 80) on the stability of fluted pumpkin seed oils
extracted with n-hexane, petroleum ether and olive oil. All were oil-in-water emulsions stabilized by 20% (w/v)
polyethylene glycol sorbitanmonooleate (tween 80) at 35o
C. Result showed that the height visible boundary
layer increases as the emulsion ages, indicating that a compact cream layer was formed in the bottom of the
container suggesting minimal coagulation of droplet and the delay in sedimentation indicate the onset of
flocculation of the emulsion. These results are typical of emulsions that become depletion flocculated at low
surfactant concentrations and stabilized at high surfactant concentrations. Depletion flocculation is the result of
non-homogeneous distribution of surfactant molecule throughout the colloidal system (Chanamai and
McClements, 2001).
The bulk properties of the emulsions. The initial state of the emulsion can be defined by a set of
internal parameters. Some of the bulk parameters used to describe the state of an emulsion is droplet size and
concentration. Since the bulk properties of emulsions such as color, texture and taste are primarily the function
of these two colloidal parameters (McClements, 1999) and (Serra, and Casamitjana, (1998). parameters such as
pH and microbial load can further define the initial state of the emulsions. This result also showed that
emulsions produced from olive oil had the least microbial load or contamination of 6.67x104
cell/ml when
compared to fluted pumpkin seed oil, this suggest that olive oil is refined while oil extracted from fluted
pumpkin seeds is crude. Oil extracted with petroleum ether and hexane had the same microbial contamination of
2.67x105
cells/ml. This result indicate that the shelf life of olive oil emulsions is least affected by bacterial
growth. And its half life can be extended. Compared to the emulsions produced from oils extracted with n-
hexane and petroleum ether. However, the major organism that grows prominent in the emulsion was identified
as E-coli. The implication of the presence of this organism in emulsion is that it promotes rancidity and
facilitates destabilization of emulsion (Rousseau, 2000). The effect of temperature on emulsion density. This
illustrate that the density of emulsion does not destabilize spontaneously at different temperature. Instead, the
emulsions disintegrate gradually with response to variable temperature, to produce a curve, Israelachvili, (1992).
The above figure also indicates that at 70o
C to 80o
C, the emulsions densities decreases rapidly. Suggesting that
at that temperature change, the emulsion losses its integrity.
The results of apparent emulsion densities difference between the olive oil emulsions and fluted
pumpkin seed oils emulsions extracted with n-hexane and petroleum ether respectively, showed that emulsions
produced from fluted pumpkin seed oil was denser than emulsions produced from olive oil. Thus, a slight
separation of the two curves lies parallel to each other. This result described the relationship between the density
of the continuous phase, the emulsion density, and the volume which is the measure of the oil droplet
concentration. An essential part of this measurement was the precise determination of density, as small
temperature fluctuations can result in large errors in calculating densities of emulsion. Though temperature
affects the stability of emulsions, we do not feel it was the only factor.
REFERENCES
[1]. Chanamai, R. and McClements, D.J. (2001). Depletion flocculation of beverage emulsions by gum Arabic and modified starch.
Journal Food Science. 66: 457-463.
[2]. Dickinson, E. (1992). Introduction to food Colloids. Oxford University Press, Oxford. 3rd
edition. Pp: 23
[3]. Hiemenz, P.C. and Rajagalopan, R. (1997). Principles of Colloid and Surface Chemistry. Marcel Dekker, New York. 3rd
ed. Pp:
125
[4]. Israelachvili, J.N. (1992). Intermolecular and Surface Forces. Academic Press, London. 1st
ed.Pp: 65-72.
[5]. Jing, G., Qing-ping, L., Hai-yuan, Y. and Da, Y. (2006). A Model for predicting phase inversion in oil-water two phase pipe
flow. Journal of Hydrodynamics.18(3): 310-314.
[6]. Latreille, B. and Paquin, P. (1990). Evaluation of emulsion stability by centrifugation with conductivity measurements. Journal
of Food Science. 55: 1666-1672.
[7]. McClements, D.J. (1999). Food Emulsions: Principles, Practice and Techniques CRC Press.. New York: 2nd
ed.Pp: 234.
[8]. Miller, C.A. (1988), Spontaneous emulsification produced by diffusion - a review. Colloids and Surfaces, 29: 89-
102.
[9]. Nishimi, T. and Miller, C.A. (2001). Spontaneous emulsification produced by chemical reactions. Journal of Colloid Interface
Sciences. 237: 259-266.
[10]. Peña, A.A. (2004). Dynamic aspects of emulsion stability. PhD thesis. Houston: Rice University. Pp. 24.
[11]. Robins, M.M. (2000). Emulsion creaming phenomena. Curr. Opin. Colloid Interface Sci. 5: 265-273.
[12]. Rousseau, D. (2000). Fat crystals and emulsion stability: A review. Food Res. Int. 33: 3-14.
[13]. Schramm, L.L. (1992), Petroleum Emulsion: Basic Principles: In Emulsions Fundamentals and Applications in the Petroleum
Industry. Schramm, L. L. Editor. Advances in Chemistry Series-231, Washington DC, Pp 123-145.
[14]. Serra, T. and Casamitjana, X. (1998). Effect of shear and volume fraction on break-up of fractal aggregates in shear flow.
American Institute of Chemical. English Journal. 44 : 1724-1730.
[15]. Sjoblom, J. (1996). Emulsion and Emulsion stability. Marcel Dekker, New York.
[16]. Weiss, J. (1999). Effect of mass transport processes on physicochemical properties of surfactant stabilized emulsions.
Department of Food Science, University of Massachusetts, Amherst. Pp: 280-282.

More Related Content

PDF
Microemulgel Article
PDF
Microemulsion based emulgel a novel topical drug delivery system
PPTX
Emulgel by parth
PPTX
Self Emulsifying Drug Delivery System (SEDDS)
PPTX
Deepak sharma final
PPTX
PPT
Formulation and Evaluation of Self-emulsifying Drug Delivery System of Aceclo...
PDF
Microemulgel Article
Microemulsion based emulgel a novel topical drug delivery system
Emulgel by parth
Self Emulsifying Drug Delivery System (SEDDS)
Deepak sharma final
Formulation and Evaluation of Self-emulsifying Drug Delivery System of Aceclo...

What's hot (20)

PDF
Self-nanoemulsifying drug delivery system (SNEDDS) of Amomum compactum essent...
PPTX
self micro emulsifying drug delivery system
PPTX
Self emulsifying drug delivery systems
PPTX
Plotting of ternery phase diagram for preparation of SMEDDS
PPT
Emulgel
PDF
Self Micro Emulsifying Drug Delivery System (SMEDDS): A Review
PPT
Smedds seminaaar final
PPTX
Self micro-emulsifying drug delivery system
PPTX
Self emulsifying drug delivery system
PPTX
Self Micro Emulsifying Drug Delivery System
DOCX
Smedds, self micro emulsifying drug delivery system
PDF
Characterization of Self-Microemulsifying Dosage Form: Special Emphasis on Ze...
PDF
Self Nano-emulsifying drug delivery system (SNEDDS)
PPTX
Seeds presentation
PPTX
Self micro emulsifying drug delivery system
PPTX
Computer aided formulation development
PDF
Basics of self micro emulsifying drug delivery system
PPTX
Self emulsifying drug delivery system in solubility enhancement
PPTX
PPTX
Self emulsifing drug delivary systems (SEDDS)
Self-nanoemulsifying drug delivery system (SNEDDS) of Amomum compactum essent...
self micro emulsifying drug delivery system
Self emulsifying drug delivery systems
Plotting of ternery phase diagram for preparation of SMEDDS
Emulgel
Self Micro Emulsifying Drug Delivery System (SMEDDS): A Review
Smedds seminaaar final
Self micro-emulsifying drug delivery system
Self emulsifying drug delivery system
Self Micro Emulsifying Drug Delivery System
Smedds, self micro emulsifying drug delivery system
Characterization of Self-Microemulsifying Dosage Form: Special Emphasis on Ze...
Self Nano-emulsifying drug delivery system (SNEDDS)
Seeds presentation
Self micro emulsifying drug delivery system
Computer aided formulation development
Basics of self micro emulsifying drug delivery system
Self emulsifying drug delivery system in solubility enhancement
Self emulsifing drug delivary systems (SEDDS)
Ad

Viewers also liked (19)

PDF
C0333012017
PDF
J03401059064
PDF
C03402021028
PDF
The International Journal of Engineering and Science (The IJES)
PDF
F03406035040
PDF
D03405029037
PDF
N0333068074
PDF
J0333050055
PDF
The International Journal of Engineering and Science (The IJES)
PDF
L030101066072
PDF
A03302001006
PDF
D03401022028
PDF
G030101038042
PDF
J030101053059
PDF
F030102038043
PDF
The International Journal of Engineering and Science (The IJES)
PDF
B0334008019
PDF
The International Journal of Engineering and Science (The IJES)
PDF
C030102011023
C0333012017
J03401059064
C03402021028
The International Journal of Engineering and Science (The IJES)
F03406035040
D03405029037
N0333068074
J0333050055
The International Journal of Engineering and Science (The IJES)
L030101066072
A03302001006
D03401022028
G030101038042
J030101053059
F030102038043
The International Journal of Engineering and Science (The IJES)
B0334008019
The International Journal of Engineering and Science (The IJES)
C030102011023
Ad

Similar to The International Journal of Engineering and Science (The IJES) (20)

PDF
The International Journal of Engineering and Science (The IJES)
PDF
Effect of Carom Seed Oil on the Antimicrobial, Physicochemical and Mechanical...
PDF
Encapsulation_LEO
PDF
Papamich politis rekkas aaps 2012 v5 12oct2012
PDF
Moringa oil characteristics
PDF
Moringa oil characteristics
PDF
B0440509
PDF
C0410912
PDF
Facial Acne Therapy by Using Pumpkin Seed Oil with Its Physicochemical Proper...
PDF
Doe 2015
PDF
Moringa Oleifera and linoleic acids
PDF
Ak044241248
PPT
Emulsion
PDF
Diffusion rate analysis in palm kernel oil extraction
PPT
Emulsion technology, a review.
PPTX
Basics of emulsions
PDF
Diffusion rate analysis in palm kernel oil extraction using different extrac...
PDF
Effect of Starch and Honey Coating on the Shelf Life of Pomegranate Arils in ...
PPTX
Butter analysis
The International Journal of Engineering and Science (The IJES)
Effect of Carom Seed Oil on the Antimicrobial, Physicochemical and Mechanical...
Encapsulation_LEO
Papamich politis rekkas aaps 2012 v5 12oct2012
Moringa oil characteristics
Moringa oil characteristics
B0440509
C0410912
Facial Acne Therapy by Using Pumpkin Seed Oil with Its Physicochemical Proper...
Doe 2015
Moringa Oleifera and linoleic acids
Ak044241248
Emulsion
Diffusion rate analysis in palm kernel oil extraction
Emulsion technology, a review.
Basics of emulsions
Diffusion rate analysis in palm kernel oil extraction using different extrac...
Effect of Starch and Honey Coating on the Shelf Life of Pomegranate Arils in ...
Butter analysis

Recently uploaded (20)

PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Modernizing your data center with Dell and AMD
PDF
Chapter 3 Spatial Domain Image Processing.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Approach and Philosophy of On baking technology
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Electronic commerce courselecture one. Pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
cuic standard and advanced reporting.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Machine learning based COVID-19 study performance prediction
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
NewMind AI Weekly Chronicles - August'25 Week I
MYSQL Presentation for SQL database connectivity
Spectral efficient network and resource selection model in 5G networks
NewMind AI Monthly Chronicles - July 2025
Modernizing your data center with Dell and AMD
Chapter 3 Spatial Domain Image Processing.pdf
The AUB Centre for AI in Media Proposal.docx
Approach and Philosophy of On baking technology
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Advanced methodologies resolving dimensionality complications for autism neur...
Electronic commerce courselecture one. Pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
cuic standard and advanced reporting.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Machine learning based COVID-19 study performance prediction

The International Journal of Engineering and Science (The IJES)

  • 1. The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 9||Pages|| 01-06||2013|| ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805 www.theijes.com The IJES Page 1 Characterization of fluted pumpkin (telfiariaoccidentalis hook f) seeds oil emulsion V. E. Okpashi, O.U. Njoku , V. N. Ogugua and E. A. Ugian Department of Biochemistry University of Nigeria Nsukka ----------------------------------------------- ABSTRACT----------------------------------------------------------- Oil-in-water emulsions were produced from the oil extracts as well as with olive oil. Some of the properties characterized were droplets size concentration and distribution which ranged from 28µm to 142µm. Visible layer boundaries of emulsion rose from 0.00mm to 3mm. Emulsion stability of samples were 38.46% (olive oil), 35.71% (n-hexane oil) and 34.97% (petroleum ether oil). Emulsion capacity of olive oil was 35.7%, while that of n-hexane and petroleum ether oil were 32.1% and30.4% respectively. Emulsion stability indices for olive oil, n-hexane and petroleum ether extracts oil were 0.65±0.02, 0.71±0.18, and 0.69±0.12 respectively. Microbial contamination was 2.67x104 cells/ml for olive oil emulsion, 2.67x105 cells/ml from-hexane and petroleum ether oil emulsion. These results indicate potential and good emulsion stability. It is suggested that fluted pumpkin seed oil may be used in emulsion production due to its great stability. ---------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 31 July ,2013 Date of Acceptance:10,September 2013 ---------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION Emulsion consists of two or more completely or partially immiscible liquids, such as fat or oil and water, where one liquid is dispersed in the other in the form of droplets (Dickinson, 1992). At the interface of each droplet, the molecules of the two liquids are in direct contact with each other, which is thermodynamically highly unfavorable. Although the entropy of the system increases as the emulsion is homogenized (increased entropy of mixing), this effect is not sufficient to balance the unfavorable enthalpy increase that arises because of the contact between hydrophilic and hydrophobic molecules (Hiemenz and Rajagalopan, 1997). The system has the tendency to separate and attain a configuration in which the contact area between the two phases, and subsequently the free energy of the system, is minimal. Surfactant molecules that adsorb at liquid-liquid interfaces can decrease the enthalpy contribution to the overall free energy increase and thus reduce the tendency of the emulsion to destabilize (Weiss, 1999). However, surfactant molecules can reduce the tendency of an emulsion to destabilize; they are not able to completely prevent it from a thermodynamic perspective, and emulsion destabilization is inevitable. Fortunately, emulsion breakdown does not occur instantaneously. A finite time is required for droplets to collide, merge, coalesce or grow, and eventually phase separate. If this process occurs over a long period of time that exceeds the intended life-time of the product, the emulsion is considered to be kinetically stable (Robins, 2000). In the broadest sense, stability of emulsions is defined as maintenance of an initial state that was attained after homogenization of the two (or more) liquids (Sjoblom, 1996). The initial state of the emulsion can be defined by a set of internal parameters ( Peña, 2004). The primary parameters used to describe the state of an emulsion are droplet size distribution and concentration, since the bulk properties of emulsions such as colour, texture, and taste are primarily a function of these two colloidal parameters (McClements, 1999). In selected cases it may be necessary to include additional parameters such as pH and microbial load to further define the initial state of the emulsion.The lifetime of emulsions is a function of various extrinsic parameters. During production, transport, and storage, emulsions are subject to a variety of fluctuating external stresses that can alter the initial state of the system and eventually cause the emulsion to become unstable. The goal of any emulsion stability test should be to closely model stress conditions encountered in an actual application setting. Most emulsion stability tests focus on the measurement of droplet size as a function of storage time at a specific temperature. Emulsions may be subject to a variety of chemical, physical, and microbiological stresses in addition to temperature (Miller, 1988). All these stresses can have profound effects on the macroscopic and colloidal properties of the emulsions (Sjoblom, 1996) and (Jing, et al (2006). It should be noted that measurements of bulk properties such as rheology and color as a function of time can be used to determine the stability of emulsions as well (Serra and Casamitjana, 1998); However, interpreting bulk emulsion properties to obtain information about changes on the colloidal level is much more difficult than measuring colloidal properties to predict changes on the macroscopic level.
  • 2. Characterization of fluted pumpkin----- www.theijes.com The IJES Page 2 II. METHODOLOGYS Plants materials Fluted Pumpkin seeds: The fluted pumpkin (Telfairiaoccidentalis Hook F) seed used for this research were purchase from Nsukka area of Enugu State, Nigeria, and identified by Mr O. U.Ozioko of Bioresource Development and Conservation Programme (BDCP) Resource Centre, Nsukka. Chemicals All chemicals used were of analytical grade and were products of British Drug House (BDH) Chemical limited, Poole England. Statistical analysis All investigations were carried out in triplicate and data obtained were presented as mean ± standard deviation using descriptive statistics. Student T – test was used to compare mean variance. Significance was accepted at p<0.05 level using SPSS v16. III. RESULT Characterization of emulsions The results of the characterization of emulsions are shown in table 1.Emulsion stability index; emulsion capacity and emulsion stability do not differ significantly with olive oil emulsion. Table 1 Characterization of emulsions oil samples ESI EC (%) ES (%) olive oil 0.65±0.02 35.7 38.46 Fluted pumpkin oil n-hexane extracts 0.71±0.18 32.1 35.71 Fluted pumpkin oil, pet ether extracts 0.69±0.12 30.4 34.97 Result of droplet size of fluted pumpkin seed oil emulsions stabilized by 20% (w/v) tween 80 Table 2 show the result of emulsion droplet sizes. The droplet size of all the emulsions ranges from 28 μm to 100μm. Table 2 Droplets size of fluted pumpkin seed oil emulsions stabilized by 20% (w/v) tween 80 Droplets size of fluted pumpkin seed oil emulsions (n-hexane extract (μm) Droplets size of fluted pumpkin seed oil emulsions (petroleum ether extract (μm) Droplets size of olive oil emulsions (μm) (standaed reference oil). 48 38 28 49 47 60 77 53 71 88 59 89 97 71 102 100 82 142 137 100 Time dependent height increase of the visible creaming layer boundary of olive oil emulsion. Figure 1 shows the height increase of the visible layer boundary of olive oil emulsions at 3mm and a delay time of 199 minutes. Figure 1 Time dependent height increase of the visible creaming layer boundary of olive oil emulsion.
  • 3. Characterization of fluted pumpkin----- www.theijes.com The IJES Page 3 Time dependent height increase of the visible creaming layer boundary of oil extracted with petroleum ether Figure 2 shows that the creaming layer boundary of emulsion produced from fluted pumpkin seed oil extracted with petroleum ether had a delay time of 250 munites and height increase of 4mm. 0 1 2 3 4 5 6 0 100 200 300 400 500 600 Heightofvisiblelayerboundaries(mm) Time (mins) Figure 2 Time dependent height increase of the visible creaming layer boundary of oil extracted with petroleum ether. Time dependent height increase of the visible creaming layer boundary of oil extracted with n-hexane The Figure 3 shows the creaming layer boundary of emulsion produced from fluted pumpkin seed oil extracted with n-hexane. The result showed that the emulsion had taken a short time to sediment or cream that is two hundred minutes to cream to three millimeters height. Figure 3 Time dependent height increase of the visible creaming layer boundary of oil extracted with n-hexane. Time dependent height increase of the visible creaming layers of olive oil, oil extracted with n-hexane and petroleum ether emulsions. 1
  • 4. Characterization of fluted pumpkin----- www.theijes.com The IJES Page 4 Figure 4 shows creaming layer boundary of emulsion produced from fluted pumpkin seed oil extracted with petroleum ether, n-hexane and olive oil emulsion. The result showed that the emulsion had taken both short and long time to sediment or cream. The average delay time is 200 minutes with a height increase of 4mm. 0 1 2 3 4 5 6 0 100 200 300 400 500 600 Heightofvisiblelayerboundaries (mm) Time (mins) Height of visible layer boundaries of oil Exnhx and oil Expet ether Figure 4 Time dependent height increase of the visible creaming layers of olive oil, oil extracted with n-hexane and petroleum ether. Density of olive oil emulsion at 1 bar atmospheric pressure as a function of temperature. Figure 5 shows the density of olive oil emulsion at 1 bar atmospheric pressure as a function of temperature. The figure showed that the density of emulsion decreases as the temperature is increased. Increased temperature at 60o C to 70o C destabilized the emulsion completely. 0.929 0.93 0.931 0.932 0.933 0.934 0.935 0.936 0.937 0.938 0 20 40 60 80 100 EmulsionDensity(kg/m3) Temperature (oc) olive oil Figure 5 Density of Olive Oil emulsion at 1 bar atmospheric pressure as a function of temperature. Density of fluted pumpkin seed oil emulsion extracted with petroleum ether at 1 bar atmospheric pressure as a function of temperature Figure 6 shows the density of fluted pumpkin seed oil emulsion extracted with petroleum ether at 1 bar atmospheric pressure as a function of temperature. The figure showed that the density of emulsion decreases as the temperature is increased. At high temperature 60o C to 80o C, the emulsion is destabilized. Figure 6 Density of fluted pumpkin seed oil emulsion extracted with petroleum ether at 1 bar atmospheric pressure as a function of temperature.
  • 5. Characterization of fluted pumpkin----- www.theijes.com The IJES Page 5 Density of fluted pumpkin seed oil emulsion extracted with n-hexane at 1 bar atmospheric pressure as a function of temperature Figure 7 shows the density of fluted pumpkin seed oil emulsion extracted with n-hexane at 1 bar atmospheric pressure as a function of temperature. The figure showed that the density of emulsion decreases as the temperature is increased. Figure 7 Density of fluted pumpkin seed oil emulsion extracted with n-hexane at 1 bar atmospheric pressure as a function of temperature. Density of olive oil, oil extracted with n-hexane and petroleum ether emulsions at 1 bar atmospheric pressure as a function of temperature Figure 8 Shows the density of fluted pumpkin seed oil emulsion extracted petroleum ether, n-hexane and olive oil at 1 bar atmospheric pressure as a function of temperature. The figure showed that the density of emulsion decreases as the temperature is increased and showed differences in emulsion density. Also n-haxane extract and petroleum ether extract had almost the same values and which completely merged to form a single line graph. 0.925 0.93 0.935 0.94 0.945 0.95 0.955 0 20 40 60 80 100 Emulsiondensity(kg/m3) Temperature oc oil Exnhx and pet-ether olive oil Figure 8 Density of olive oil, oil extracted with n-hexane and petroleum ether emulsions at 1 bar atmospheric pressure as a function of temperature. Microbiological analysis:The type of organism identified as a contaminant in emulsion was E-coli. IV. DISCUSSION Droplet size measurement of emulsions as a function of storage time. The result illustrates that both the emulsion produced from oil extracted with n-hexane, petroleum ether and olive oil, increases at the upper level and decreases at the bottom as the emulsion ages. The spatial distributions of both emulsions droplets size change profoundly as the emulsion destabilizes. Another interesting result showed that stability test of droplet size increased proportionally on different emulsions. This can best explain the frequency of droplet collision (Robins, 2000). Since the droplet size of the emulsions increases, the probability for droplet-droplet collision resulting in coalescence also increases. This property demonstrates that storage stability test is extremely useful as they allow emulsion manufacturer to accurately follow even small changes in emulsion properties. Droplet size determination as a function of storage time can be used to determine the kinetics of the instability process and to determine the shelf life of the product by setting out to reduce droplet size to 0.1um to 100um. So, this result indicates that comparatively, the emulsion properties are quite stable and can have an extended shelf life thus promoting emulsion stability.
  • 6. Characterization of fluted pumpkin----- www.theijes.com The IJES Page 6 Result of time-dependent height increase of the visible layer (creaming or sedimentation test) is showed. This property is usually used to study the instability mechanism in emulsions. This study evaluated the effect of polyethylene glycol sorbitanmonooleate (tween 80) on the stability of fluted pumpkin seed oils extracted with n-hexane, petroleum ether and olive oil. All were oil-in-water emulsions stabilized by 20% (w/v) polyethylene glycol sorbitanmonooleate (tween 80) at 35o C. Result showed that the height visible boundary layer increases as the emulsion ages, indicating that a compact cream layer was formed in the bottom of the container suggesting minimal coagulation of droplet and the delay in sedimentation indicate the onset of flocculation of the emulsion. These results are typical of emulsions that become depletion flocculated at low surfactant concentrations and stabilized at high surfactant concentrations. Depletion flocculation is the result of non-homogeneous distribution of surfactant molecule throughout the colloidal system (Chanamai and McClements, 2001). The bulk properties of the emulsions. The initial state of the emulsion can be defined by a set of internal parameters. Some of the bulk parameters used to describe the state of an emulsion is droplet size and concentration. Since the bulk properties of emulsions such as color, texture and taste are primarily the function of these two colloidal parameters (McClements, 1999) and (Serra, and Casamitjana, (1998). parameters such as pH and microbial load can further define the initial state of the emulsions. This result also showed that emulsions produced from olive oil had the least microbial load or contamination of 6.67x104 cell/ml when compared to fluted pumpkin seed oil, this suggest that olive oil is refined while oil extracted from fluted pumpkin seeds is crude. Oil extracted with petroleum ether and hexane had the same microbial contamination of 2.67x105 cells/ml. This result indicate that the shelf life of olive oil emulsions is least affected by bacterial growth. And its half life can be extended. Compared to the emulsions produced from oils extracted with n- hexane and petroleum ether. However, the major organism that grows prominent in the emulsion was identified as E-coli. The implication of the presence of this organism in emulsion is that it promotes rancidity and facilitates destabilization of emulsion (Rousseau, 2000). The effect of temperature on emulsion density. This illustrate that the density of emulsion does not destabilize spontaneously at different temperature. Instead, the emulsions disintegrate gradually with response to variable temperature, to produce a curve, Israelachvili, (1992). The above figure also indicates that at 70o C to 80o C, the emulsions densities decreases rapidly. Suggesting that at that temperature change, the emulsion losses its integrity. The results of apparent emulsion densities difference between the olive oil emulsions and fluted pumpkin seed oils emulsions extracted with n-hexane and petroleum ether respectively, showed that emulsions produced from fluted pumpkin seed oil was denser than emulsions produced from olive oil. Thus, a slight separation of the two curves lies parallel to each other. This result described the relationship between the density of the continuous phase, the emulsion density, and the volume which is the measure of the oil droplet concentration. An essential part of this measurement was the precise determination of density, as small temperature fluctuations can result in large errors in calculating densities of emulsion. Though temperature affects the stability of emulsions, we do not feel it was the only factor. REFERENCES [1]. Chanamai, R. and McClements, D.J. (2001). Depletion flocculation of beverage emulsions by gum Arabic and modified starch. Journal Food Science. 66: 457-463. [2]. Dickinson, E. (1992). Introduction to food Colloids. Oxford University Press, Oxford. 3rd edition. Pp: 23 [3]. Hiemenz, P.C. and Rajagalopan, R. (1997). Principles of Colloid and Surface Chemistry. Marcel Dekker, New York. 3rd ed. Pp: 125 [4]. Israelachvili, J.N. (1992). Intermolecular and Surface Forces. Academic Press, London. 1st ed.Pp: 65-72. [5]. Jing, G., Qing-ping, L., Hai-yuan, Y. and Da, Y. (2006). A Model for predicting phase inversion in oil-water two phase pipe flow. Journal of Hydrodynamics.18(3): 310-314. [6]. Latreille, B. and Paquin, P. (1990). Evaluation of emulsion stability by centrifugation with conductivity measurements. Journal of Food Science. 55: 1666-1672. [7]. McClements, D.J. (1999). Food Emulsions: Principles, Practice and Techniques CRC Press.. New York: 2nd ed.Pp: 234. [8]. Miller, C.A. (1988), Spontaneous emulsification produced by diffusion - a review. Colloids and Surfaces, 29: 89- 102. [9]. Nishimi, T. and Miller, C.A. (2001). Spontaneous emulsification produced by chemical reactions. Journal of Colloid Interface Sciences. 237: 259-266. [10]. Peña, A.A. (2004). Dynamic aspects of emulsion stability. PhD thesis. Houston: Rice University. Pp. 24. [11]. Robins, M.M. (2000). Emulsion creaming phenomena. Curr. Opin. Colloid Interface Sci. 5: 265-273. [12]. Rousseau, D. (2000). Fat crystals and emulsion stability: A review. Food Res. Int. 33: 3-14. [13]. Schramm, L.L. (1992), Petroleum Emulsion: Basic Principles: In Emulsions Fundamentals and Applications in the Petroleum Industry. Schramm, L. L. Editor. Advances in Chemistry Series-231, Washington DC, Pp 123-145. [14]. Serra, T. and Casamitjana, X. (1998). Effect of shear and volume fraction on break-up of fractal aggregates in shear flow. American Institute of Chemical. English Journal. 44 : 1724-1730. [15]. Sjoblom, J. (1996). Emulsion and Emulsion stability. Marcel Dekker, New York. [16]. Weiss, J. (1999). Effect of mass transport processes on physicochemical properties of surfactant stabilized emulsions. Department of Food Science, University of Massachusetts, Amherst. Pp: 280-282.