SlideShare a Scribd company logo
Chapter 1- Static engineering systems
 1.1 Simply supported beams
  1.1.1   determination of shear force
  1.1.2   bending moment and stress due to bending
  1.1.3   radius of curvature in simply supported beams subjected to
          concentrated and uniformly distributed loads
  1.1.4   eccentric loading of columns
  1.1.5   stress distribution
  1.1.6   middle third rule


  1.2 Beams and columns
  1.2.1   elastic section modulus for beams
  1.2.2   standard section tables for rolled steel beams
  1.2.3   selection of standard sections (eg slenderness ratio for
          compression members, standard section and allowable
          stress tables for rolled steel columns, selection of standard
          sections)
                                                                          1
Stresses in beams


•   Stresses in the beam are functions of x and y
•   If we were to cut a beam at a point x, we would find a distribution of
    direct stresses σ(y) and shear stresses σxy(y)
•   Summing these individual moments over the area of the cross-section is
    the definition of the moment resultant M,


•   Summing the shear stresses on the cross-section is the definition of the
    shear resultant V,

•   The sum of all direct stresses acting on the cross-section is known as N,

                                                                         2
• Direct stress distribution in the beam due to bending



• Note that the bending stress in beam theory is linear
  through the beam thickness. The maximum bending
  stress occurs at the point furthest away from the neutral
  axis, y = c




                                                              3
Flexure formula




•                                  
    Stresses calculated from the flexure formula are called bending
    stresses or flexural stresses.
                                                 

•   The maximum tensile and compressive bending stresses occur at
    points (c1 and c2) furthest from the neutral surface




•   where S1 and S2 are called section moduli (units: in3, m3) of the cross-
    sectional area. Section moduli are commonly listed in design
                                                                           4
    handbooks
Euler’s Formula for Pin-Ended Beams

       v           v
  v
               v       v




           l
                           Putting



 l v




                                     5
6
7
8
Design of columns under centric loads

                          • Experimental data demonstrate
                              - for large Le/k σcr follows 
                                          le /r,
                (le/k)2         Euler’s formula and depends 
                                upon E but not σY.
                             - for small L/k σcr is 
                                         le e/r,
                               determined by the yield 
                               strength σY and not E.

                            - for intermediate Le/k σcr 
                                               le /r,
                              depends on both σY and E.  




                                                            9
• For Le/r > Cc
                                              l e/k
        Structural Steel
                                                      π 2E                σ
                                           σ cr =                  σ all = cr
American Inst. of Steel Construction                ( Le/kr ) 2           FS
                                                      l /
                                           FS = 1.92


                                              l e/k
                                        • For Le/r > Cc
                                                       ( Le /kr ) 2 
                                                           le /                    σ
                                           σ cr = σ Y 1 −      2 
                                                                            σ all = cr
                                                      
                                                           2Cc                  FS
                                                                            3
                                               5 3 Le/kr 1  Le/k 
                                                   l /       l /r
                                           FS = + e −  e 
                                               3 8 Cc    8  Cc 
                                                                 

                                 le/k   • At Le/k = Cc
                                             le /r
                                                                        2
                                                                   2 2π E
                                           σ cr = 1 σ Y           Cc =
                                                  2                    σY
                                                                                 10
Sample problem
                                       SOLUTION:
                                       • With the diameter unknown, the 
                                         slenderness ration can not be evaluated.  
                                         Must make an assumption on which 
                                         slenderness ratio regime to utilize.

                                       • Calculate required diameter for 
                                         assumed slenderness ratio regime.

                                       • Evaluate slenderness ratio and verify 
                                         initial assumption.  Repeat if 
Using the aluminum alloy2014-T6,         necessary.
determine the smallest diameter rod 
which can be used to support the centric 
load P = 60 kN if  a) L = 750 mm,  
b) L = 300 mm
                                                                              11
• For L = 750 mm, assume L/r > 55

                          • Determine cylinder radius:
                                     P 372 × 103 MPa
                              σ all = =
                                     A     ( L r)2
                              60 × 103 N       372 × 103 MPa
                                      2
                                           =                  2
                                                                  c = 18.44 mm
                                 πc              0.750 m 
                                                         
                                                 c/2 

                          • Check slenderness ratio assumption:
c = cylinder radius
                              L   L     750mm
r = radius of  gyration         =    =            = 81.3 > 55
                              r c / 2 (18.44 mm )
      I   πc 4 4 c          assumption was correct
 =      =     2
                =
      A    πc     2
                              d = 2c = 36.9 mm
                                                                                 12
• For L = 300 mm, assume L/r < 55

• Determine cylinder radius:
               P              L 
    σ all =     = 212 − 1.585  MPa
               A              r 
     60 × 103 N                 0.3 m      6
                  = 212 − 1.585        × 10 Pa
        πc 2                    c / 2 
     c = 12.00 mm

• Check slenderness ratio assumption:
     L   L     300 mm
       =    =            = 50 < 55
     r c / 2 (12.00 mm )

  assumption was correct
     d = 2c = 24.0 mm
                                                     13
Eccentric loading of columns
• Generally, columns are designed so
  that the axial load is inline with the
  column
• There are situations that the load will
  be off center and cause a bending in
  the column in addition to the
                                            Pin-Pin Column 
  compression. This type of loading is
  called eccentric load                     with Eccentric 
                                            Axial Load 
• When a column is load off center,
  bending can be sever problem and
  may be more important than the
  compression stress or buckling                     14
Analysis of eccentric loads
• At the cut surface, there will be both an internal
  moment, m, and the axial load P. This partial
  section of the column must still be equilibrium,
  and moments can be summed at the cut
  surface, giving,
     ΣM = 0
     m + P (e + v) = 0

• bending in a structure can be modeled as m =
  EI d2v/dx2, giving
      EI d2v/dx2 + Pv = -Pe

• This is a classical differential equation that can
  be solved using the general solution,
       v = C2 sin kx + C1 cos kx - e
  where k = (P/EI)0.5. The constants C1 and C2 can
  be determined using the boundary conditions          15
•   First, the deflection, v=0, at x = 0
          0 = C2 0 + C1 1 - e
       C1 = e
•   The second boundary condition specifies the deflection, v=0, at X = L
          0 = C2 sin kL + e cos kL - e
          C2=e tan (kL/2)




•   Maximum deflection
     – The maximum deflection occurs at the column center, x = L/2, since both
       ends are pinned.




                                                                             16
Maximum stress: secant formula
• Unlike basic column buckling, eccentric
  loaded columns bend and must
  withstand both bending stresses and
  axial compression stresses.
• The axial load P, will produce a
  compression stress P/A. Since the load
  P is not at the center, it will cause a
  bending stress My/I.


•    The maximum moment, Mmax, is at
    the mid-point of the column (x = L/2),
        Mmax = P (e + vmax)

                                             17
• Combining the above equations gives




• But I = Ar2. This gives the final form of the secant formula as



• The stress maximum, σmax, is generally the yield stress or
  allowable stress of the column material, which is known.
• The geometry of the column, length L, area A, radius of
  gyration r, and maximum distance from the neutral axis c
  are also known. The eccentricity, e, and material stiffness,
  E, are considered known.
                                                              18
19
Design of columns under an eccentric load
                     • An eccentric load P can be replaced by a 
                       centric load P and a couple M = Pe.

                     • Normal stresses can be found from 
                       superposing the stresses due to the 
                       centric load and couple,
                        σ = σ centric + σ bending
                                  P Mc
                        σ max =    +
                                  A I

                     • Allowable stress method:
                        P Mc
                         +   ≤ σ all
                        A I

                     • Interaction method:
                             P A               Mc I
                                        +                     ≤1
                        ( σ all ) centric ( σ all ) bending
                                                                   20
Example
          The uniform column consists of an 8-ft section 
          of structural tubing having the cross-section 
          shown.

          a) Using Euler’s formula and a factor of safety 
             of two, determine the allowable centric load 
             for the column and the corresponding 
             normal stress.
          b) Assuming that the allowable load, found in 
             part a, is applied at a point 0.75 in. from the 
             geometric axis of the column, determine the 
             horizontal deflection of the top of the 
             column and the maximum normal stress in 
             the column.



                                                       21
SOLUTION:
• Maximum allowable centric load:
- Effective length,
   Le = 2( 8 ft ) = 16 ft = 192 in.


- Critical load,

   Pcr =
           π 2 EI
               =
                       (              )(
                    π 2 29 × 106  psi 8.0 in 4   )
             2
            Le              (192 in ) 2
       = 62.1 kips

- Allowable load,
         P     62.1 kips          Pall = 31.1 kips
   Pall = cr =
         FS        2
      P      31.1 kips
   σ = all =                      σ = 8.79 ksi
       A     3.54 in 2                               22
• Eccentric load:
 - End deflection,
             π P  
     ym = e sec       
                 2 P  − 1
                   cr   
                         π  
        = ( 0.075 in ) sec  − 1
                        2 2 
     ym = 0.939 in.


 - Maximum normal stress,
           P  ec  π P 
    σm =     1 + 2 sec
                        2 P 
                               
           A r            cr  

          31.1 kips  ( 0.75 in )( 2 in )  π 
        =         2 
                     1+                  sec     
          3.54 in       (1.50 in ) 2        2 2 

    σ m = 22.0 ksi
                                              23
Example
Determine the maximum flexural stress produced by a resisting Moment Mr of
+5000ft.lb if the beam has cross section shown in the figure.




 Locate the neutral axis from the bottom end




                                                                             24
25
• Work out the rest of example here




                                      26

More Related Content

PPTX
Members under compression – concept of columns and struts, concept of buckling
PDF
Moment of inertia of non symmetric object
PPTX
Problems on simply supported beams
PDF
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
PPTX
Eccentric Loading In Welded Connections
PPT
Solving statically determinate structures
PPTX
Frequency-Dependent Rubber Bushing Model
PDF
Engineering Mechanics
Members under compression – concept of columns and struts, concept of buckling
Moment of inertia of non symmetric object
Problems on simply supported beams
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Eccentric Loading In Welded Connections
Solving statically determinate structures
Frequency-Dependent Rubber Bushing Model
Engineering Mechanics

What's hot (20)

PDF
Trusses
PPT
Finite Element Analysis - UNIT-3
PPTX
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
PPTX
Introduction to FEA
PPTX
Lec10 finite element_beam_structures 2
DOCX
Machine Foundation Design - An Introduction
PDF
02 determinate structures
PPT
44558176 chapter-2-stress-and-strain-axial-loading
PPT
Wind provisions
PPT
Flexural design of Beam...PRC-I
PPTX
Trusses, frames &amp; machines
PDF
structure problems
PDF
Lecture 12 deflection in beams
PPTX
Truss Analysis using Finite Element method ppt
PDF
Chapter 6-structural-analysis-8th-edition-solution
PPTX
Theories of failure
PDF
Hibbeler chapter5
PDF
Unki Warehouse Portal Frame Design - Prokon Design Sheets REV01
PPT
Ansys beam problem
PPT
Analysis of Truss
Trusses
Finite Element Analysis - UNIT-3
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
Introduction to FEA
Lec10 finite element_beam_structures 2
Machine Foundation Design - An Introduction
02 determinate structures
44558176 chapter-2-stress-and-strain-axial-loading
Wind provisions
Flexural design of Beam...PRC-I
Trusses, frames &amp; machines
structure problems
Lecture 12 deflection in beams
Truss Analysis using Finite Element method ppt
Chapter 6-structural-analysis-8th-edition-solution
Theories of failure
Hibbeler chapter5
Unki Warehouse Portal Frame Design - Prokon Design Sheets REV01
Ansys beam problem
Analysis of Truss
Ad

Viewers also liked (12)

PPTX
10 columns
PDF
Topic%20 compression
PPTX
Design of compression members
PDF
Mechanics of Materials II Thin-Walled Pressure Vessels and Torsion
PPTX
Column design biaxial 10.01.03.048
PPT
Steel design ce 408
PPTX
Unsymmetrical bending.ppt
PPTX
Bearing stress
PDF
Structural Mechanics: Shear stress in Beams (1st-Year)
PPTX
Particle size distribution
PPTX
Axial Stress-Strain Curve & Modulus of Elasticity
PDF
Module4 plastic theory- rajesh sir
10 columns
Topic%20 compression
Design of compression members
Mechanics of Materials II Thin-Walled Pressure Vessels and Torsion
Column design biaxial 10.01.03.048
Steel design ce 408
Unsymmetrical bending.ppt
Bearing stress
Structural Mechanics: Shear stress in Beams (1st-Year)
Particle size distribution
Axial Stress-Strain Curve & Modulus of Elasticity
Module4 plastic theory- rajesh sir
Ad

Similar to Engineering science lesson 5 (20)

PPSX
ECNG 6503 #1
PPTX
Columnsmechanicalcolummsppt23459874.pptx
PPT
Aes
PPSX
SA-I_Column & Strut
PDF
12 ac bridges rev 3 080423
PPTX
Chapter-three network materials ppt.pptx
PDF
Dynamic model of pmsm dal y.ohm
PDF
Dynamic model of pmsm (lq and la)
DOCX
Torsional vibrations and buckling of thin WALLED BEAMS
PDF
Pvp 61030 Perl Bernstein Linked In
PPTX
column and strut
DOC
#26 Key
PPT
99995069.ppt
PDF
Uniten iccbt 08 a serviceability approach to the design of scc beams
PPT
Ch5 epfm
PPTX
Mcrowave and Radar engineering
PDF
Complex strains (2nd year)
PPTX
Waveguiding Structures Part 2 (Attenuation).pptx
PDF
Packed Bed Reactor Lumped
PDF
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
ECNG 6503 #1
Columnsmechanicalcolummsppt23459874.pptx
Aes
SA-I_Column & Strut
12 ac bridges rev 3 080423
Chapter-three network materials ppt.pptx
Dynamic model of pmsm dal y.ohm
Dynamic model of pmsm (lq and la)
Torsional vibrations and buckling of thin WALLED BEAMS
Pvp 61030 Perl Bernstein Linked In
column and strut
#26 Key
99995069.ppt
Uniten iccbt 08 a serviceability approach to the design of scc beams
Ch5 epfm
Mcrowave and Radar engineering
Complex strains (2nd year)
Waveguiding Structures Part 2 (Attenuation).pptx
Packed Bed Reactor Lumped
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010

More from Shahid Aaqil (17)

PPT
Engineering science lesson 5
PPT
Engineering science lesson 4
PPT
Engineering science lesson 1
PPT
Engineering science lesson 10 1
PPT
Engineering science lesson 6 1
PPT
Engineering science lesson 11
PPT
Engineering science lesson 10
PPT
Engineering science lesson 9
PPT
Engineering science lesson 8 1
PPT
Engineering science lesson 8
PPT
Engineering science lesson 7
PPT
Engineering science lesson 6 2
PPT
Engineering science presentation final
PPT
Engineering science lesson 3
PPT
Engineering science lesson 2
PPT
Engineering science lesson 4
PPT
Engineering science lesson 1
Engineering science lesson 5
Engineering science lesson 4
Engineering science lesson 1
Engineering science lesson 10 1
Engineering science lesson 6 1
Engineering science lesson 11
Engineering science lesson 10
Engineering science lesson 9
Engineering science lesson 8 1
Engineering science lesson 8
Engineering science lesson 7
Engineering science lesson 6 2
Engineering science presentation final
Engineering science lesson 3
Engineering science lesson 2
Engineering science lesson 4
Engineering science lesson 1

Recently uploaded (20)

PDF
01-Introduction-to-Information-Management.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Cell Structure & Organelles in detailed.
PDF
Complications of Minimal Access Surgery at WLH
PDF
Trump Administration's workforce development strategy
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
RMMM.pdf make it easy to upload and study
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
01-Introduction-to-Information-Management.pdf
Computing-Curriculum for Schools in Ghana
Cell Structure & Organelles in detailed.
Complications of Minimal Access Surgery at WLH
Trump Administration's workforce development strategy
GDM (1) (1).pptx small presentation for students
Weekly quiz Compilation Jan -July 25.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Yogi Goddess Pres Conference Studio Updates
RMMM.pdf make it easy to upload and study
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Final Presentation General Medicine 03-08-2024.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student

Engineering science lesson 5

  • 1. Chapter 1- Static engineering systems 1.1 Simply supported beams 1.1.1 determination of shear force 1.1.2 bending moment and stress due to bending 1.1.3 radius of curvature in simply supported beams subjected to concentrated and uniformly distributed loads 1.1.4 eccentric loading of columns 1.1.5 stress distribution 1.1.6 middle third rule 1.2 Beams and columns 1.2.1 elastic section modulus for beams 1.2.2 standard section tables for rolled steel beams 1.2.3 selection of standard sections (eg slenderness ratio for compression members, standard section and allowable stress tables for rolled steel columns, selection of standard sections) 1
  • 2. Stresses in beams • Stresses in the beam are functions of x and y • If we were to cut a beam at a point x, we would find a distribution of direct stresses σ(y) and shear stresses σxy(y) • Summing these individual moments over the area of the cross-section is the definition of the moment resultant M, • Summing the shear stresses on the cross-section is the definition of the shear resultant V, • The sum of all direct stresses acting on the cross-section is known as N, 2
  • 3. • Direct stress distribution in the beam due to bending • Note that the bending stress in beam theory is linear through the beam thickness. The maximum bending stress occurs at the point furthest away from the neutral axis, y = c 3
  • 4. Flexure formula •   Stresses calculated from the flexure formula are called bending stresses or flexural stresses.               • The maximum tensile and compressive bending stresses occur at points (c1 and c2) furthest from the neutral surface • where S1 and S2 are called section moduli (units: in3, m3) of the cross- sectional area. Section moduli are commonly listed in design 4 handbooks
  • 5. Euler’s Formula for Pin-Ended Beams v v v v v l Putting l v 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. Design of columns under centric loads • Experimental data demonstrate - for large Le/k σcr follows  le /r, (le/k)2 Euler’s formula and depends  upon E but not σY. - for small L/k σcr is  le e/r, determined by the yield  strength σY and not E. - for intermediate Le/k σcr  le /r, depends on both σY and E.   9
  • 10. • For Le/r > Cc l e/k Structural Steel π 2E σ σ cr = σ all = cr American Inst. of Steel Construction ( Le/kr ) 2 FS l / FS = 1.92 l e/k • For Le/r > Cc  ( Le /kr ) 2  le / σ σ cr = σ Y 1 − 2  σ all = cr   2Cc   FS 3 5 3 Le/kr 1  Le/k  l / l /r FS = + e −  e  3 8 Cc 8  Cc    le/k • At Le/k = Cc le /r 2 2 2π E σ cr = 1 σ Y Cc = 2 σY 10
  • 11. Sample problem SOLUTION: • With the diameter unknown, the  slenderness ration can not be evaluated.   Must make an assumption on which  slenderness ratio regime to utilize. • Calculate required diameter for  assumed slenderness ratio regime. • Evaluate slenderness ratio and verify  initial assumption.  Repeat if  Using the aluminum alloy2014-T6,  necessary. determine the smallest diameter rod  which can be used to support the centric  load P = 60 kN if  a) L = 750 mm,   b) L = 300 mm 11
  • 12. • For L = 750 mm, assume L/r > 55 • Determine cylinder radius: P 372 × 103 MPa σ all = = A ( L r)2 60 × 103 N 372 × 103 MPa 2 = 2 c = 18.44 mm πc  0.750 m     c/2  • Check slenderness ratio assumption: c = cylinder radius L L 750mm r = radius of  gyration = = = 81.3 > 55 r c / 2 (18.44 mm ) I πc 4 4 c assumption was correct = = 2 = A πc 2 d = 2c = 36.9 mm 12
  • 13. • For L = 300 mm, assume L/r < 55 • Determine cylinder radius: P   L  σ all = = 212 − 1.585  MPa A   r  60 × 103 N   0.3 m  6 = 212 − 1.585  × 10 Pa πc 2   c / 2  c = 12.00 mm • Check slenderness ratio assumption: L L 300 mm = = = 50 < 55 r c / 2 (12.00 mm ) assumption was correct d = 2c = 24.0 mm 13
  • 14. Eccentric loading of columns • Generally, columns are designed so that the axial load is inline with the column • There are situations that the load will be off center and cause a bending in the column in addition to the Pin-Pin Column  compression. This type of loading is called eccentric load with Eccentric  Axial Load  • When a column is load off center, bending can be sever problem and may be more important than the compression stress or buckling 14
  • 15. Analysis of eccentric loads • At the cut surface, there will be both an internal moment, m, and the axial load P. This partial section of the column must still be equilibrium, and moments can be summed at the cut surface, giving, ΣM = 0 m + P (e + v) = 0 • bending in a structure can be modeled as m = EI d2v/dx2, giving EI d2v/dx2 + Pv = -Pe • This is a classical differential equation that can be solved using the general solution, v = C2 sin kx + C1 cos kx - e where k = (P/EI)0.5. The constants C1 and C2 can be determined using the boundary conditions 15
  • 16. First, the deflection, v=0, at x = 0 0 = C2 0 + C1 1 - e C1 = e • The second boundary condition specifies the deflection, v=0, at X = L 0 = C2 sin kL + e cos kL - e C2=e tan (kL/2) • Maximum deflection – The maximum deflection occurs at the column center, x = L/2, since both ends are pinned. 16
  • 17. Maximum stress: secant formula • Unlike basic column buckling, eccentric loaded columns bend and must withstand both bending stresses and axial compression stresses. • The axial load P, will produce a compression stress P/A. Since the load P is not at the center, it will cause a bending stress My/I. • The maximum moment, Mmax, is at the mid-point of the column (x = L/2), Mmax = P (e + vmax) 17
  • 18. • Combining the above equations gives • But I = Ar2. This gives the final form of the secant formula as • The stress maximum, σmax, is generally the yield stress or allowable stress of the column material, which is known. • The geometry of the column, length L, area A, radius of gyration r, and maximum distance from the neutral axis c are also known. The eccentricity, e, and material stiffness, E, are considered known. 18
  • 19. 19
  • 20. Design of columns under an eccentric load • An eccentric load P can be replaced by a  centric load P and a couple M = Pe. • Normal stresses can be found from  superposing the stresses due to the  centric load and couple, σ = σ centric + σ bending P Mc σ max = + A I • Allowable stress method: P Mc + ≤ σ all A I • Interaction method: P A Mc I + ≤1 ( σ all ) centric ( σ all ) bending 20
  • 21. Example The uniform column consists of an 8-ft section  of structural tubing having the cross-section  shown. a) Using Euler’s formula and a factor of safety  of two, determine the allowable centric load  for the column and the corresponding  normal stress. b) Assuming that the allowable load, found in  part a, is applied at a point 0.75 in. from the  geometric axis of the column, determine the  horizontal deflection of the top of the  column and the maximum normal stress in  the column. 21
  • 22. SOLUTION: • Maximum allowable centric load: - Effective length, Le = 2( 8 ft ) = 16 ft = 192 in. - Critical load, Pcr = π 2 EI = ( )( π 2 29 × 106  psi 8.0 in 4 ) 2 Le (192 in ) 2 = 62.1 kips - Allowable load, P 62.1 kips Pall = 31.1 kips Pall = cr = FS 2 P 31.1 kips σ = all = σ = 8.79 ksi A 3.54 in 2 22
  • 23. • Eccentric load: - End deflection,  π P   ym = e sec   2 P  − 1   cr     π   = ( 0.075 in ) sec  − 1  2 2  ym = 0.939 in. - Maximum normal stress, P  ec  π P  σm = 1 + 2 sec  2 P   A r  cr   31.1 kips  ( 0.75 in )( 2 in )  π  = 2  1+ sec  3.54 in  (1.50 in ) 2  2 2  σ m = 22.0 ksi 23
  • 24. Example Determine the maximum flexural stress produced by a resisting Moment Mr of +5000ft.lb if the beam has cross section shown in the figure. Locate the neutral axis from the bottom end 24
  • 25. 25
  • 26. • Work out the rest of example here 26