SlideShare a Scribd company logo
HUAWEI TECHNOLOGIES CO., LTD.
47pt
www.huawei.com
Usatyuk Vasiliy, 2013
L [dog] Lcrypto.com
Enumerating cycles
in bipartite graphs
using matrix approach
HUAWEI TECHNOLOGIES CO., LTD.
Let consider arbitrary codes on the graph
parity-check matrix
Enumerate cycle 4
girth_four_num=0;
for i=1:rows-1
for j=1:cols-1
if H(i,j)==1
%save to array (i,j)
x1=i;y1=j;
for j1=j+1:cols
if H(i,j1)==1
%save to array (i,j)
x2=i;y2=j1;
for i1=i+1:rows
if H(i1,j1)==1
%save to array (i,j)
x3=i1;y3=j1;
if H(i1,j)==1 %the forth point;
%save to array (i,j)
x4=i1;y4=j;
girth_four_num=girth_four_num+1;
else
%delete all saved element location for symbols and checks;
end
end
end
end
end
end
end
end
,
11
11

















H
Poor solution, complexity too high
Fan J.,Yang X., "A Method of Counting the Number of Cycles in LDPC Codes," Signal
Processing, 2006 8th International Conference on , vol.3, no., pp.,, 16-20 2006
HUAWEI TECHNOLOGIES CO., LTD.
Let consider arbitrary codes on the graph
parity-check matrix
Enumerate cycle 4
girth_four_num=0;
for i=1:rows-1
for j=1:cols-1
if H(i,j)==1
%save to array (i,j)
x1=i;y1=j;
for j1=j+1:cols
if H(i,j1)==1
%save to array (i,j)
x2=i;y2=j1;
for i1=i+1:rows
if H(i1,j1)==1
%save to array (i,j)
x3=i1;y3=j1;
if H(i1,j)==1 %the forth point;
%save to array (i,j)
x4=i1;y4=j;
girth_four_num=girth_four_num+1;
else
%delete all saved element location for symbols and checks;
end
end
end
end
end
end
end
end
,
11
11

















H
Poor solution, complexity too high
Fan J.,Yang X., "A Method of Counting the Number of Cycles in LDPC Codes," Signal
Processing, 2006 8th International Conference on , vol.3, no., pp.,, 16-20 2006
HUAWEI TECHNOLOGIES CO., LTD.
Let try to estimate number of cycle using
properties of adjacency matrix
Hmatrixcheck-parityofmatrixadjacency,
0
0
isA
H
H
A T 






22
equallengthwholepathsofnumbergivesA 
gequallengthwholepathsofnumbergivesAg

But powers of the adjacency matrix takes into account not only the trail(simple way,
edges that form the walk distinct), but also way those go through the same edge
many times.
HUAWEI TECHNOLOGIES CO., LTD.
lollipop walk
Cycles of length 2m are thus lollipop walks.
All cycles in bipartite graphs contain an even number
of edges and all lollipop walk paths have
  mnm,
naaa ,...,, 21
 m2,0
  mnm,
  .2mod0 mn
1v 3v 4v 6v 2v 5v
4v 3v 5v
2v 6v
1v
 2,4 lollipop walk where
while are distinct.
57 aa 
is n length walks where are distinct and
for some
11   mn aa
].,1[ nm
1a
2a 3a 4a 5a 6a
7a
1a 2a
3a
4a 5a
6a
7a
621 ,...,, aaa
 4,2 lollipop walk where
while are distinct.
37 aa 
621 ,...,, aaa
Halford, T.R.; Chugg, K.M., "An algorithm for counting short cycles in bipartite graphs,"
Information Theory, IEEE Transactions on , vol.52, no.1, pp.287,292, Jan. 2006
HUAWEI TECHNOLOGIES CO., LTD.
v c v
c
c
1a 2a 3a
4a
lollipop walk from to 6,2 .39 aa 1a
Subtract non-trail way
v
c
v
5a
6a
7a8a9a
 
cv
LH 6,1 Count lollipop walk and walks where 
sv
L 6,2 715131 ,, aaaaaa 
which necessary to substract to get  
sv
L 6,2
HUAWEI TECHNOLOGIES CO., LTD.
Let define number of paths length 2k from variable i to j variable
and from i check node i to j check nodes
ss
v
k VVP s
,2
cc
v
k VVsizeP c
,2
Let define number of paths length 2k+1 from variable i to j check node
and from i check node i to j symbol nodes
cs
v
k VVP s
 ,12
sc
v
k VVsizeP c
 ,12
Let define number lollipop walks from check i to j check
and from i check node to j symbol nodes
cc
v
kkk VVL c
 ,22,2  kkk 22,2
sc
v
kkk VVL c
 ,22,12
  kkk 22,12
 


 
1
0
22,12212
k
i
v
iki
v
k
v
k
ccc
LHPP
 


 
1
0
22,2122
k
i
v
iki
Tv
k
v
k
ccc
LHPP
 


 
1
0
22,121212
k
i
v
iki
Tv
k
v
k
sss
LHPP
 


 
1
0
22,2122
k
i
v
iki
v
k
v
k
sss
LHPP
  IHPL Tv
k
v
k
cc
12)2,0( 
  IHPL ss v
k
v
k 12)2,0( 
   sc v
k
v
kk LTr
k
LTr
k
N )2,0()2,0(2
2
1
2
1

Number of cycles 2k length:
HUAWEI TECHNOLOGIES CO., LTD.
v c v c v c
1a 2a 3a ga 1ga 2ga
3ga
...
lollipop walk from to 2,g .13   gg gg1a
  sssssccs vv
g
vvv
g
v
g
v
g
v
g PILLPPLHILHL 2)2,2()2,0(22)2,1()2,1()2,( 0,1max   
v c v
c
c
1a 2a 3a
4a
2ga
lollipop walk from to g,2 .33 agg 
1a









3
6 2
),1(),1()2,(
s
ccs
v
v
g
v
g
v
g
P
ILHILHL
Substract non-trail ways
Substract non-trail ways
Lollipop-matrix equation
HUAWEI TECHNOLOGIES CO., LTD.
Lollipop-matrix equation
 
  vv
vcv
v
g
v
v
g
v
g
v
g
LL
HPHLL
)2,3()2,0(
1)2,2()2,1(
0,1max 


 
 
  vvvvv
ccv
vvv
g
v
g
v
v
g
v
g
v
g
IPPPLL
HLdiagHLL
222)2,2()2,0(
)2,1()2,1()2,(
0,1max 




cv
LTo get just replace toH T
H
vv
L To
cv
L
 
 
  
HPH
P
I
HPHL
HLP
LL
HPLLHLL
v
v
vv
cv
vv
vvvcv
v
v
v
g
v
g
vv
g
v
g
v
v
g
vv
g
v
g
v
g





























3
2
1)2,1(
)2,0(1
)2,1()2,0(
1)2,1(),0()2,()2,1(
2
2
2
0,2max2
0,1max
  








 
3
6
2
2
),1(),1(),2(
1),0(),1(
v
ccv
vcv
v
v
g
v
g
v
g
v
g
v
g
v
g
P
IHLdiagHLL
HPHLL 
 
HPH
P
I
HP
P
HI
H
P
I
P
I
LLHLL
v
v
v
v
vv
vvcv
v
v
v
v
vv
v
g
vv
g
v























































3
2
3
2
33
),1()2,0(),2()2,3(
2
4
2
6
2
4
3
6
0,1max
HPH
P
I
HP
P
HI
H
P
I
HPHLL
v
v
v
c
v
vcv
v
v
v
v
v
v
g
v
g
v
g















































 
3
2
3
2
3
1)2,0()2,1(
2
2
2
2
2
2
2
HUAWEI TECHNOLOGIES CO., LTD.
Time Complexity for girth+4 enumerate
376 g of matrix multiplication
Storage Complexity for g+4 enumerate
)64(
])(33[
211111
22
bitsdoubleof
locatorcyclesininvolveforsymbolschecks
symbolscheckscheckssymbols


Enumerate cycles in QC-LPDC 4x20 with circulant 500 (2000x10000):
40 minutes and around 20Gb of RAM
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
336 317 31 359 288 179 232 25 117 78 235 11 200 360 434 228 414 83 30 344
465 421 81 147 439 83 108 49 144 478 378 279 398 427 393 287 204 362 353 62
444 235 64 74 43 427 198 437 313 358 203 334 5 211 462 255 154 439 151 296
Number of cycles in the 4x20x500 HQ matrix BICC.txt
8 10 12
1 401 250 59 867 000 2.8729*10^9
).( 3
nO
HUAWEI TECHNOLOGIES CO., LTD.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
336 317 31 359 288 179 232 25 117 78 235 11 200 360 434 228 414 83 30 344
465 421 81 147 439 83 108 49 144 478 378 279 398 427 393 287 204 362 353 62
444 235 64 74 43 427 198 437 313 358 203 334 5 211 462 255 154 439 151 296
134.25 133.75 138.5 139 138.5 131.5 141 137.75 139.25 142.75 141 141.75 144.75 137 147 136.25 151.25 142.25 142 143
694
714.5
690
703.5
Show “problem” part of parity-check matrix under BP decoder
Help to compare matrix, choice better symbols to puncture, use different decoder
under subgraph and etc…
Show number of cycle 8 in which involved every checks and symbols
This information help to:
1. shortening code: (ordered list of symbols to puncture)
2. code extension: use symbols in less number of cycles
3. redesign code to improve properties using different labeling
HUAWEI TECHNOLOGIES CO., LTD.
Results of RA QC-LDPC construction
Page 12
Broadcom 5x20, circulant 600
380 451 126 471 409 259 329 40 98 360 203 348 175 302 485 406 -1 -1 -1 -1
15 534 442 549 296 540 90 361 108 310 57 134 414 367 487 277 241 -1 -1 -1
137 412 473 117 233 250 72 599 356 13 438 154 591 7 233 -1 58 364 -1 -1
430 188 162 122 576 474 408 107 114 444 561 80 374 185 371 -1 -1 397 17 -1
280 486 452 485 54 332 178 102 48 198 38 340 536 585 -1 -1 -1 -1 105 277
483 554 -1 469 18 254 19 95 290 92 -1 142 556 118 510 308 -1 -1 -1 -1
273 -1 114 -1 75 541 329 581 67 -1 353 -1 99 251 153 147 76 -1 -1 -1
-1 137 592 219 -1 159 251 484 -1 143 102 110 -1 249 349 -1 371 153 -1 -1
86 -1 464 163 341 -1 571 -1 343 115 315 188 450 -1 154 -1 -1 469 405 -1
597 497 -1 124 529 432 -1 172 162 151 281 66 213 325 -1 -1 -1 -1 235 461
Our 5x20, circulant 600
HUAWEI TECHNOLOGIES CO., LTD.
Hamming (7,4)
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1 ;0
,,
)0,0()0,0(
00


sc
sc
vv
vv
LL
IPIP
   













022
202
220
1
TTv
HHdiagHHP c
   



























0001011
0001110
0000111
1100121
0111021
1112202
1011120
1 HHdiagHHP TTvs
HUAWEI TECHNOLOGIES CO., LTD.
  













300
030
003
1max)2,0(
Tv
HHdiagL c
  



























0000000
0000000
0000000
0001000
0000100
0000020
0000001
1max)2,0( HHdiagL Tvs













0001021
0001120
0000121
)2,0()2,1(
cc vv
LHL



























300
030
003
330
033
333
303
)2,0()2,1(
cc vTv
LHL
HUAWEI TECHNOLOGIES CO., LTD.
 













0221421
2021124
2204121
)2,1(
ccc vv
g
v
g LHPP
 



























022
202
220
114
411
222
141
Tv
g
v
g
cs
PP











400
040
004
)4,0( IHPL Tv
g
v cc
























0000000
0000000
0000000
0002000
0000200
0000060
0000002
)4,0( IHPL Tv
g
v ss

HUAWEI TECHNOLOGIES CO., LTD.
  34/)4,0(4  cv
LtraceN
 























0
0
0
00000000.50000000
00000000.50000000
0000001.50000000
00000000.50000000
4/_4_ )4,0(
sv
Ldiagsymbolsgirt
 











1
1
1
4/_4_ )4,0(
cv
Ldiagcheckgirt
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1
HUAWEI TECHNOLOGIES CO., LTD.
In similar way we can continue and enumerate cycle 6: 4.
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1
  46/)6,0(6  cv
LtraceN























0
0
0
1
1
1
1
_6_ symbolsgirt











1.33
1.33
1.33
_6_ checkgirt
Thank you
www.huawei.com
Implementation of lollipop cycle count
https://yadi.sk/d/nMza892Y3PVR3U
HUAWEI TECHNOLOGIES CO., LTD.
Girth point of view
Labeling problem
Target girth >=6 length cycle
00
00
10
0***
0***
0***
II
II
II
?*is
HUAWEI TECHNOLOGIES CO., LTD.
Girth point of view
Target girth >=6 length cycle
Circulant 8
00
00
10
0***
0***
0***
II
II
II
}1,0{,
0***
0***
0**
00
00
10
A
II
II
IIIA
}1,0{,
0***
0**
0**
00
00
100
B
II
III
III
B
}6,7{
08mod)016(
,
0**
0**
0**
00
006
100


C
c
III
III
III
c
}0{,
0**
0**
0*
003
006
100
D
III
III
IIII D
}6,0{,
0**
0*
0*
003
006
1000
E
III
IIII
IIII
E
}7,5,1,0,3{,
0
0
0
00813
00376
10000
J
IIIII
IIIII
IIIII

and so on for
Girth>4
HUAWEI TECHNOLOGIES CO., LTD.
Symbolic methods to estimation of short cycles in graph

More Related Content

PPT
Watershed delineation
PPTX
Rain water harvesting
PPTX
Irrigation in maharashtra
PPT
Weather Hazards 1
PPTX
Bio-engineering measures for soil erosion control
PPTX
water Resources of India - By Anjali Patel mam (IGKV Raipur, C.G)
PPTX
Soil definition by various authors
DOCX
Land management
Watershed delineation
Rain water harvesting
Irrigation in maharashtra
Weather Hazards 1
Bio-engineering measures for soil erosion control
water Resources of India - By Anjali Patel mam (IGKV Raipur, C.G)
Soil definition by various authors
Land management

What's hot (20)

PPTX
THE INDUS VALLEY CIVILIZATION AND INDUS PLAINS
PPTX
Chapter 2 Precipitation
PDF
Climate Change: Adaptation and Mitigation - Integrated Crop Management
PPTX
Interlinking of rivers in india
PPTX
CLIMWAT and CROPWAT Model
PPTX
Soil water relationship
PPTX
Land resource inventory of India for development of sustainable agricultural ...
PPTX
PPT on Erosivity and Erodivity
PPTX
Eia in Bangladesh by Abu Khairul Bashar
PPTX
Water resource management and role of dams
PPTX
Indigenous soil & water conservation techniques
PPTX
Cow+based+economy+ +v5
PDF
Water User Association and Governance: The Example of Tajikistan
PPTX
Session 6.5 restoring riparian vegetation
PPT
Rain water harvesting
PPT
eco_restoration
PPTX
Eia eis fonsi
PPTX
Scaling up agroecological approaches in Nepal
THE INDUS VALLEY CIVILIZATION AND INDUS PLAINS
Chapter 2 Precipitation
Climate Change: Adaptation and Mitigation - Integrated Crop Management
Interlinking of rivers in india
CLIMWAT and CROPWAT Model
Soil water relationship
Land resource inventory of India for development of sustainable agricultural ...
PPT on Erosivity and Erodivity
Eia in Bangladesh by Abu Khairul Bashar
Water resource management and role of dams
Indigenous soil & water conservation techniques
Cow+based+economy+ +v5
Water User Association and Governance: The Example of Tajikistan
Session 6.5 restoring riparian vegetation
Rain water harvesting
eco_restoration
Eia eis fonsi
Scaling up agroecological approaches in Nepal
Ad

Similar to Enumerating cycles in bipartite graph using matrix approach (20)

PPTX
Java bytecode Malware Analysis
PDF
W1M2_Introduction_HLS from under CBased VLSI.pdf
PDF
Implementing qrcode
PPTX
Demonstrating Quantum Speed-Up with a Two-Transmon Quantum Processor Ph.D. d...
PDF
Ecad &vlsi lab 18
PDF
TC74VHCT04AFN PSpice Model (Free SPICE Model)
PDF
TC74VHCT244AFW PSpice Model (Free SPICE Model)
PDF
TC74VHCT244AFT PSpice Model (Free SPICE Model)
PDF
TC74VHCT244AF PSpice Model (Free SPICE Model)
PPTX
Ewdts 2018
PPTX
Windows Debugging with WinDbg
PDF
TC74LCX244FW PSpice Model (Free SPICE Model)
PDF
TC74LCX244F PSpice Model (Free SPICE Model)
PDF
RISC-V Zce Extension
PPT
Event driven simulator
PDF
TC74LCX244FT PSpice Model (Free SPICE Model)
DOCX
metadatacoreProperties.xmlModel2015-07-13T030104Zthua3267th.docx
DOCX
Traffic management system
PDF
TC74AC244FW PSpice Model (Free SPICE Model)
PDF
TC74AC244P PSpice Model (Free SPICE Model)
Java bytecode Malware Analysis
W1M2_Introduction_HLS from under CBased VLSI.pdf
Implementing qrcode
Demonstrating Quantum Speed-Up with a Two-Transmon Quantum Processor Ph.D. d...
Ecad &vlsi lab 18
TC74VHCT04AFN PSpice Model (Free SPICE Model)
TC74VHCT244AFW PSpice Model (Free SPICE Model)
TC74VHCT244AFT PSpice Model (Free SPICE Model)
TC74VHCT244AF PSpice Model (Free SPICE Model)
Ewdts 2018
Windows Debugging with WinDbg
TC74LCX244FW PSpice Model (Free SPICE Model)
TC74LCX244F PSpice Model (Free SPICE Model)
RISC-V Zce Extension
Event driven simulator
TC74LCX244FT PSpice Model (Free SPICE Model)
metadatacoreProperties.xmlModel2015-07-13T030104Zthua3267th.docx
Traffic management system
TC74AC244FW PSpice Model (Free SPICE Model)
TC74AC244P PSpice Model (Free SPICE Model)
Ad

More from Usatyuk Vasiliy (8)

PDF
Tsp 2018 presentation Simulated Annealing Method for Construction of High-Gi...
PDF
Computing the code distance of linear binary and ternary block codes using p...
PDF
Multi-Edge Type LDPC codes
PDF
Solving channel coding simulation and optimization problems using GPU
PDF
Algebraic methods for design QC-LDPC codes
PPTX
Cycle’s topological optimizations and the iterative decoding problem on gener...
PDF
Codes on the graph related problems
PDF
Cycle’s topological optimizations and the iterative decoding problem on gener...
Tsp 2018 presentation Simulated Annealing Method for Construction of High-Gi...
Computing the code distance of linear binary and ternary block codes using p...
Multi-Edge Type LDPC codes
Solving channel coding simulation and optimization problems using GPU
Algebraic methods for design QC-LDPC codes
Cycle’s topological optimizations and the iterative decoding problem on gener...
Codes on the graph related problems
Cycle’s topological optimizations and the iterative decoding problem on gener...

Recently uploaded (20)

PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PPTX
2. Earth - The Living Planet earth and life
PPTX
Cell Membrane: Structure, Composition & Functions
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PDF
Sciences of Europe No 170 (2025)
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
BIOMOLECULES PPT........................
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Biophysics 2.pdffffffffffffffffffffffffff
ECG_Course_Presentation د.محمد صقران ppt
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
2. Earth - The Living Planet earth and life
Cell Membrane: Structure, Composition & Functions
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Sciences of Europe No 170 (2025)
Taita Taveta Laboratory Technician Workshop Presentation.pptx
neck nodes and dissection types and lymph nodes levels
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Classification Systems_TAXONOMY_SCIENCE8.pptx
2Systematics of Living Organisms t-.pptx
The KM-GBF monitoring framework – status & key messages.pptx
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
BIOMOLECULES PPT........................
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg

Enumerating cycles in bipartite graph using matrix approach

  • 1. HUAWEI TECHNOLOGIES CO., LTD. 47pt www.huawei.com Usatyuk Vasiliy, 2013 L [dog] Lcrypto.com Enumerating cycles in bipartite graphs using matrix approach
  • 2. HUAWEI TECHNOLOGIES CO., LTD. Let consider arbitrary codes on the graph parity-check matrix Enumerate cycle 4 girth_four_num=0; for i=1:rows-1 for j=1:cols-1 if H(i,j)==1 %save to array (i,j) x1=i;y1=j; for j1=j+1:cols if H(i,j1)==1 %save to array (i,j) x2=i;y2=j1; for i1=i+1:rows if H(i1,j1)==1 %save to array (i,j) x3=i1;y3=j1; if H(i1,j)==1 %the forth point; %save to array (i,j) x4=i1;y4=j; girth_four_num=girth_four_num+1; else %delete all saved element location for symbols and checks; end end end end end end end end , 11 11                  H Poor solution, complexity too high Fan J.,Yang X., "A Method of Counting the Number of Cycles in LDPC Codes," Signal Processing, 2006 8th International Conference on , vol.3, no., pp.,, 16-20 2006
  • 3. HUAWEI TECHNOLOGIES CO., LTD. Let consider arbitrary codes on the graph parity-check matrix Enumerate cycle 4 girth_four_num=0; for i=1:rows-1 for j=1:cols-1 if H(i,j)==1 %save to array (i,j) x1=i;y1=j; for j1=j+1:cols if H(i,j1)==1 %save to array (i,j) x2=i;y2=j1; for i1=i+1:rows if H(i1,j1)==1 %save to array (i,j) x3=i1;y3=j1; if H(i1,j)==1 %the forth point; %save to array (i,j) x4=i1;y4=j; girth_four_num=girth_four_num+1; else %delete all saved element location for symbols and checks; end end end end end end end end , 11 11                  H Poor solution, complexity too high Fan J.,Yang X., "A Method of Counting the Number of Cycles in LDPC Codes," Signal Processing, 2006 8th International Conference on , vol.3, no., pp.,, 16-20 2006
  • 4. HUAWEI TECHNOLOGIES CO., LTD. Let try to estimate number of cycle using properties of adjacency matrix Hmatrixcheck-parityofmatrixadjacency, 0 0 isA H H A T        22 equallengthwholepathsofnumbergivesA  gequallengthwholepathsofnumbergivesAg  But powers of the adjacency matrix takes into account not only the trail(simple way, edges that form the walk distinct), but also way those go through the same edge many times.
  • 5. HUAWEI TECHNOLOGIES CO., LTD. lollipop walk Cycles of length 2m are thus lollipop walks. All cycles in bipartite graphs contain an even number of edges and all lollipop walk paths have   mnm, naaa ,...,, 21  m2,0   mnm,   .2mod0 mn 1v 3v 4v 6v 2v 5v 4v 3v 5v 2v 6v 1v  2,4 lollipop walk where while are distinct. 57 aa  is n length walks where are distinct and for some 11   mn aa ].,1[ nm 1a 2a 3a 4a 5a 6a 7a 1a 2a 3a 4a 5a 6a 7a 621 ,...,, aaa  4,2 lollipop walk where while are distinct. 37 aa  621 ,...,, aaa Halford, T.R.; Chugg, K.M., "An algorithm for counting short cycles in bipartite graphs," Information Theory, IEEE Transactions on , vol.52, no.1, pp.287,292, Jan. 2006
  • 6. HUAWEI TECHNOLOGIES CO., LTD. v c v c c 1a 2a 3a 4a lollipop walk from to 6,2 .39 aa 1a Subtract non-trail way v c v 5a 6a 7a8a9a   cv LH 6,1 Count lollipop walk and walks where  sv L 6,2 715131 ,, aaaaaa  which necessary to substract to get   sv L 6,2
  • 7. HUAWEI TECHNOLOGIES CO., LTD. Let define number of paths length 2k from variable i to j variable and from i check node i to j check nodes ss v k VVP s ,2 cc v k VVsizeP c ,2 Let define number of paths length 2k+1 from variable i to j check node and from i check node i to j symbol nodes cs v k VVP s  ,12 sc v k VVsizeP c  ,12 Let define number lollipop walks from check i to j check and from i check node to j symbol nodes cc v kkk VVL c  ,22,2  kkk 22,2 sc v kkk VVL c  ,22,12   kkk 22,12       1 0 22,12212 k i v iki v k v k ccc LHPP       1 0 22,2122 k i v iki Tv k v k ccc LHPP       1 0 22,121212 k i v iki Tv k v k sss LHPP       1 0 22,2122 k i v iki v k v k sss LHPP   IHPL Tv k v k cc 12)2,0(    IHPL ss v k v k 12)2,0(     sc v k v kk LTr k LTr k N )2,0()2,0(2 2 1 2 1  Number of cycles 2k length:
  • 8. HUAWEI TECHNOLOGIES CO., LTD. v c v c v c 1a 2a 3a ga 1ga 2ga 3ga ... lollipop walk from to 2,g .13   gg gg1a   sssssccs vv g vvv g v g v g v g PILLPPLHILHL 2)2,2()2,0(22)2,1()2,1()2,( 0,1max    v c v c c 1a 2a 3a 4a 2ga lollipop walk from to g,2 .33 agg  1a          3 6 2 ),1(),1()2,( s ccs v v g v g v g P ILHILHL Substract non-trail ways Substract non-trail ways Lollipop-matrix equation
  • 9. HUAWEI TECHNOLOGIES CO., LTD. Lollipop-matrix equation     vv vcv v g v v g v g v g LL HPHLL )2,3()2,0( 1)2,2()2,1( 0,1max          vvvvv ccv vvv g v g v v g v g v g IPPPLL HLdiagHLL 222)2,2()2,0( )2,1()2,1()2,( 0,1max      cv LTo get just replace toH T H vv L To cv L        HPH P I HPHL HLP LL HPLLHLL v v vv cv vv vvvcv v v v g v g vv g v g v v g vv g v g v g                              3 2 1)2,1( )2,0(1 )2,1()2,0( 1)2,1(),0()2,()2,1( 2 2 2 0,2max2 0,1max              3 6 2 2 ),1(),1(),2( 1),0(),1( v ccv vcv v v g v g v g v g v g v g P IHLdiagHLL HPHLL    HPH P I HP P HI H P I P I LLHLL v v v v vv vvcv v v v v vv v g vv g v                                                        3 2 3 2 33 ),1()2,0(),2()2,3( 2 4 2 6 2 4 3 6 0,1max HPH P I HP P HI H P I HPHLL v v v c v vcv v v v v v v g v g v g                                                  3 2 3 2 3 1)2,0()2,1( 2 2 2 2 2 2 2
  • 10. HUAWEI TECHNOLOGIES CO., LTD. Time Complexity for girth+4 enumerate 376 g of matrix multiplication Storage Complexity for g+4 enumerate )64( ])(33[ 211111 22 bitsdoubleof locatorcyclesininvolveforsymbolschecks symbolscheckscheckssymbols   Enumerate cycles in QC-LPDC 4x20 with circulant 500 (2000x10000): 40 minutes and around 20Gb of RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 336 317 31 359 288 179 232 25 117 78 235 11 200 360 434 228 414 83 30 344 465 421 81 147 439 83 108 49 144 478 378 279 398 427 393 287 204 362 353 62 444 235 64 74 43 427 198 437 313 358 203 334 5 211 462 255 154 439 151 296 Number of cycles in the 4x20x500 HQ matrix BICC.txt 8 10 12 1 401 250 59 867 000 2.8729*10^9 ).( 3 nO
  • 11. HUAWEI TECHNOLOGIES CO., LTD. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 336 317 31 359 288 179 232 25 117 78 235 11 200 360 434 228 414 83 30 344 465 421 81 147 439 83 108 49 144 478 378 279 398 427 393 287 204 362 353 62 444 235 64 74 43 427 198 437 313 358 203 334 5 211 462 255 154 439 151 296 134.25 133.75 138.5 139 138.5 131.5 141 137.75 139.25 142.75 141 141.75 144.75 137 147 136.25 151.25 142.25 142 143 694 714.5 690 703.5 Show “problem” part of parity-check matrix under BP decoder Help to compare matrix, choice better symbols to puncture, use different decoder under subgraph and etc… Show number of cycle 8 in which involved every checks and symbols This information help to: 1. shortening code: (ordered list of symbols to puncture) 2. code extension: use symbols in less number of cycles 3. redesign code to improve properties using different labeling
  • 12. HUAWEI TECHNOLOGIES CO., LTD. Results of RA QC-LDPC construction Page 12 Broadcom 5x20, circulant 600 380 451 126 471 409 259 329 40 98 360 203 348 175 302 485 406 -1 -1 -1 -1 15 534 442 549 296 540 90 361 108 310 57 134 414 367 487 277 241 -1 -1 -1 137 412 473 117 233 250 72 599 356 13 438 154 591 7 233 -1 58 364 -1 -1 430 188 162 122 576 474 408 107 114 444 561 80 374 185 371 -1 -1 397 17 -1 280 486 452 485 54 332 178 102 48 198 38 340 536 585 -1 -1 -1 -1 105 277 483 554 -1 469 18 254 19 95 290 92 -1 142 556 118 510 308 -1 -1 -1 -1 273 -1 114 -1 75 541 329 581 67 -1 353 -1 99 251 153 147 76 -1 -1 -1 -1 137 592 219 -1 159 251 484 -1 143 102 110 -1 249 349 -1 371 153 -1 -1 86 -1 464 163 341 -1 571 -1 343 115 315 188 450 -1 154 -1 -1 469 405 -1 597 497 -1 124 529 432 -1 172 162 151 281 66 213 325 -1 -1 -1 -1 235 461 Our 5x20, circulant 600
  • 13. HUAWEI TECHNOLOGIES CO., LTD. Hamming (7,4) 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 ;0 ,, )0,0()0,0( 00   sc sc vv vv LL IPIP                  022 202 220 1 TTv HHdiagHHP c                                0001011 0001110 0000111 1100121 0111021 1112202 1011120 1 HHdiagHHP TTvs
  • 14. HUAWEI TECHNOLOGIES CO., LTD.                 300 030 003 1max)2,0( Tv HHdiagL c                               0000000 0000000 0000000 0001000 0000100 0000020 0000001 1max)2,0( HHdiagL Tvs              0001021 0001120 0000121 )2,0()2,1( cc vv LHL                            300 030 003 330 033 333 303 )2,0()2,1( cc vTv LHL
  • 15. HUAWEI TECHNOLOGIES CO., LTD.                0221421 2021124 2204121 )2,1( ccc vv g v g LHPP                              022 202 220 114 411 222 141 Tv g v g cs PP            400 040 004 )4,0( IHPL Tv g v cc                         0000000 0000000 0000000 0002000 0000200 0000060 0000002 )4,0( IHPL Tv g v ss 
  • 16. HUAWEI TECHNOLOGIES CO., LTD.   34/)4,0(4  cv LtraceN                          0 0 0 00000000.50000000 00000000.50000000 0000001.50000000 00000000.50000000 4/_4_ )4,0( sv Ldiagsymbolsgirt              1 1 1 4/_4_ )4,0( cv Ldiagcheckgirt 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1
  • 17. HUAWEI TECHNOLOGIES CO., LTD. In similar way we can continue and enumerate cycle 6: 4. 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1   46/)6,0(6  cv LtraceN                        0 0 0 1 1 1 1 _6_ symbolsgirt            1.33 1.33 1.33 _6_ checkgirt
  • 18. Thank you www.huawei.com Implementation of lollipop cycle count https://yadi.sk/d/nMza892Y3PVR3U
  • 19. HUAWEI TECHNOLOGIES CO., LTD. Girth point of view Labeling problem Target girth >=6 length cycle 00 00 10 0*** 0*** 0*** II II II ?*is
  • 20. HUAWEI TECHNOLOGIES CO., LTD. Girth point of view Target girth >=6 length cycle Circulant 8 00 00 10 0*** 0*** 0*** II II II }1,0{, 0*** 0*** 0** 00 00 10 A II II IIIA }1,0{, 0*** 0** 0** 00 00 100 B II III III B }6,7{ 08mod)016( , 0** 0** 0** 00 006 100   C c III III III c }0{, 0** 0** 0* 003 006 100 D III III IIII D }6,0{, 0** 0* 0* 003 006 1000 E III IIII IIII E }7,5,1,0,3{, 0 0 0 00813 00376 10000 J IIIII IIIII IIIII  and so on for Girth>4
  • 21. HUAWEI TECHNOLOGIES CO., LTD. Symbolic methods to estimation of short cycles in graph