SlideShare a Scribd company logo
1
Steady State Error Analysis
2
Test Waveform for evaluating steady-state
error
3
G(s)
H(s)
R(s)
+
-
C(s)
G(s)
R(s)
+
-
C(s)
Unity feedback
H(s)=1
Non-unity feedback
H(s)≠1
E(s)
E(s)
Steady-state error analysis
4
Steady-state error analysis
For unity feedback system:
)
(
)
(
)
( s
C
s
R
s
E 
 System error
For a non-unity feedback system:
)
(
)
(
)
(
)
( s
C
s
H
s
R
s
E 
 Actuating error
5
Steady-state error analysis
Consider a unity feedback system, if the inputs are step response, ramp &
parabolic (no sinusoidal input). We want to find the steady-state error
)
(
lim t
e
e
t
ss



Where, )
(
)
(
)
( t
c
t
r
t
e 

By Final Value Theorem:
)
(
lim
)
(
lim
0
s
sE
t
e
e
s
t
ss





6
Steady-state error analysis
Consider Unity Feedback System
)
(
)
(
)
( s
C
s
R
s
E 
 (1)
)
(
1
)
(
)
(
)
(
s
G
s
G
s
R
s
C

 (2)
Substitute (2) into (1)
)
(
)
(
1
1
)
(
)
(
1
)
(
)
(
)
( s
R
s
G
s
R
s
G
s
G
s
R
s
E





 (3)
7
Steady-state error analysis
Based on equation (3), it can be seen that E(s) depends on:
(a) Input signal, R(s)
(b) G(s), open loop transfer function
Now, assume:
 
 
j
j
N
i
M
i
p
s
S
z
s
K
s
G








1
1
)
(
type N
Cases to be considered:
3
2
1
)
(
)
(
1
)
(
)
(
1
)
(
)
(
s
s
R
C
s
s
R
B
s
s
R
A



8
Case (A): Input is a unit step R(s)=1/s
)
(
1
1
)
(
)
(
1
1
)
(
s
G
s
s
R
s
G
s
E




)
(
lim
_
0
s
sE
Error
State
Steady
e
s
ss























 )
(
1
1
lim
)
(
1
1
lim
0
0 s
G
s
G
s
s
e
s
s
ss





















p
s
K
s
G 1
1
)
(
lim
1
1
0
where )
(
lim
0
s
G
K
s
p

 
“Static Position
Error Constant”
9
If N = 0, Kp = constant finite
K
e
p
ss 


1
1
If N ≥ 1, Kp = infinite 0
1
1
1
1






p
ss
K
e
For unit step response, as the type of system increases (N ≥ 1), the steady
state error goes to zero
10
Case (B): Input is a unit ramp R(s)=1/s2
)
(
1
1
)
(
)
(
1
1
)
(
2
s
G
s
s
R
s
G
s
E




)
(
lim
_
0
s
sE
Error
State
Steady
e
s
ss























 )
(
1
lim
)
(
1
1
lim
0
2
0 s
sG
s
s
G
s
s
e
s
s
ss
V
s
s
K
s
sG
s
sG
1
)
(
lim
1
)
(
lim
0
1
0
0






















where )
(
lim
0
s
sG
K
s
v

 
“Static Velocity
Error Constant”
11
If N = 0, 


v
ss
K
e
1
If N =1, Kv = finite finite
K
e
v
ss 

1
,
0
)
(
)
(




j
i
v
p
s
z
s
s
K


If N ≥2, Kv = infinite 0
1
1




v
ss
K
e
For unit ramp response, the steady state error in infinite for system of type
zero, finite steady state error for system of type 1, and zero steady state error
for systems with type greater or equal to 2.
12
Case (C): Input is a parabolic, R(s)=1/s3
)
(
1
1
)
(
)
(
1
1
)
(
3
s
G
s
s
R
s
G
s
E




)
(
lim
_
0
s
sE
Error
State
Steady
e
s
ss























 )
(
1
lim
)
(
1
1
lim 2
2
0
3
0 s
G
s
s
s
G
s
s
e
s
s
ss
a
s
s
K
s
G
s
s
G
s
1
)
(
lim
1
)
(
lim
0
1
2
0
2
0






















where
)
(
lim 2
0
s
G
s
K
s
a

 
“Static Acceleration
Error Constant”
13
14
If N = 0, 


a
ss
K
e
1
If N =1, Ka = 0 


a
ss
K
e
1
,
0
)
(
)
(
2




j
i
a
p
s
z
s
s
K


If N = 2, Ka = constant finite
K
e
a
ss 

1
 Increasing system type (N) will accommodate more different inputs.
If N ≥3 , Ka = infinite 0
1
1




a
ss
K
e
15
Example 3
R(s)
+
-
C(s)
)
2
(
)
1
(
3


s
s
s
If r(t) = (2+3t)u(t), find the steady state error (ess) for the
given system.
Solution:




)
(
lim
0
s
G
K
s
p
2
3
)
(
lim
0



s
sG
K
s
v
2
2
3
3
1
2
3
1
2








v
p
ss
K
K
e

More Related Content

PPTX
time response analysis
PPT
Control chap6
PPT
Control system topics, electronics and communication engineering
PPTX
Control system ppt by biru.pptx
PDF
Presentation swith 9_7_13
PPTX
Transient response analysis
PDF
Chinco parra
time response analysis
Control chap6
Control system topics, electronics and communication engineering
Control system ppt by biru.pptx
Presentation swith 9_7_13
Transient response analysis
Chinco parra

Similar to Errors ppt.ppt (20)

PPTX
Csl11 11 f15
PPTX
Time-Response Lecture
PPTX
LecturejsaudhF;HSFIJkfjknajks;bvuajvn 04.pptx
PPTX
Time response analysis
PPTX
Lecture 23 loop transfer function
PPTX
Steady State Error
PPT
cupdf.com_1-chapter-4-transient-steady-state-response-analysis.ppt
PDF
BEC-26 control-systems_unit-III_pdf
PPTX
Communication control system TA20023.pptx
PDF
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
PDF
Error analysis
PPTX
Control system with matlab Time response analysis, Frequency response analysi...
PDF
Multiple Choice Questions on Frequency Response Analysis
PDF
alt klausur
PPTX
lecture1 (5).pptx
PPT
Adaline and Madaline.ppt
PPTX
Classification of Systems: Part 1
PDF
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
PPT
Order of instruments.ppt
Csl11 11 f15
Time-Response Lecture
LecturejsaudhF;HSFIJkfjknajks;bvuajvn 04.pptx
Time response analysis
Lecture 23 loop transfer function
Steady State Error
cupdf.com_1-chapter-4-transient-steady-state-response-analysis.ppt
BEC-26 control-systems_unit-III_pdf
Communication control system TA20023.pptx
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Error analysis
Control system with matlab Time response analysis, Frequency response analysi...
Multiple Choice Questions on Frequency Response Analysis
alt klausur
lecture1 (5).pptx
Adaline and Madaline.ppt
Classification of Systems: Part 1
Modern Control - Lec 03 - Feedback Control Systems Performance and Characteri...
Order of instruments.ppt
Ad

Recently uploaded (20)

PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
additive manufacturing of ss316l using mig welding
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
Geodesy 1.pptx...............................................
PPTX
OOP with Java - Java Introduction (Basics)
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPT
Project quality management in manufacturing
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
UNIT-1 - COAL BASED THERMAL POWER PLANTS
UNIT 4 Total Quality Management .pptx
additive manufacturing of ss316l using mig welding
Foundation to blockchain - A guide to Blockchain Tech
Model Code of Practice - Construction Work - 21102022 .pdf
Geodesy 1.pptx...............................................
OOP with Java - Java Introduction (Basics)
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Project quality management in manufacturing
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
R24 SURVEYING LAB MANUAL for civil enggi
Ad

Errors ppt.ppt

  • 2. 2 Test Waveform for evaluating steady-state error
  • 4. 4 Steady-state error analysis For unity feedback system: ) ( ) ( ) ( s C s R s E   System error For a non-unity feedback system: ) ( ) ( ) ( ) ( s C s H s R s E   Actuating error
  • 5. 5 Steady-state error analysis Consider a unity feedback system, if the inputs are step response, ramp & parabolic (no sinusoidal input). We want to find the steady-state error ) ( lim t e e t ss    Where, ) ( ) ( ) ( t c t r t e   By Final Value Theorem: ) ( lim ) ( lim 0 s sE t e e s t ss     
  • 6. 6 Steady-state error analysis Consider Unity Feedback System ) ( ) ( ) ( s C s R s E   (1) ) ( 1 ) ( ) ( ) ( s G s G s R s C   (2) Substitute (2) into (1) ) ( ) ( 1 1 ) ( ) ( 1 ) ( ) ( ) ( s R s G s R s G s G s R s E       (3)
  • 7. 7 Steady-state error analysis Based on equation (3), it can be seen that E(s) depends on: (a) Input signal, R(s) (b) G(s), open loop transfer function Now, assume:     j j N i M i p s S z s K s G         1 1 ) ( type N Cases to be considered: 3 2 1 ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( s s R C s s R B s s R A   
  • 8. 8 Case (A): Input is a unit step R(s)=1/s ) ( 1 1 ) ( ) ( 1 1 ) ( s G s s R s G s E     ) ( lim _ 0 s sE Error State Steady e s ss                         ) ( 1 1 lim ) ( 1 1 lim 0 0 s G s G s s e s s ss                      p s K s G 1 1 ) ( lim 1 1 0 where ) ( lim 0 s G K s p    “Static Position Error Constant”
  • 9. 9 If N = 0, Kp = constant finite K e p ss    1 1 If N ≥ 1, Kp = infinite 0 1 1 1 1       p ss K e For unit step response, as the type of system increases (N ≥ 1), the steady state error goes to zero
  • 10. 10 Case (B): Input is a unit ramp R(s)=1/s2 ) ( 1 1 ) ( ) ( 1 1 ) ( 2 s G s s R s G s E     ) ( lim _ 0 s sE Error State Steady e s ss                         ) ( 1 lim ) ( 1 1 lim 0 2 0 s sG s s G s s e s s ss V s s K s sG s sG 1 ) ( lim 1 ) ( lim 0 1 0 0                       where ) ( lim 0 s sG K s v    “Static Velocity Error Constant”
  • 11. 11 If N = 0,    v ss K e 1 If N =1, Kv = finite finite K e v ss   1 , 0 ) ( ) (     j i v p s z s s K   If N ≥2, Kv = infinite 0 1 1     v ss K e For unit ramp response, the steady state error in infinite for system of type zero, finite steady state error for system of type 1, and zero steady state error for systems with type greater or equal to 2.
  • 12. 12 Case (C): Input is a parabolic, R(s)=1/s3 ) ( 1 1 ) ( ) ( 1 1 ) ( 3 s G s s R s G s E     ) ( lim _ 0 s sE Error State Steady e s ss                         ) ( 1 lim ) ( 1 1 lim 2 2 0 3 0 s G s s s G s s e s s ss a s s K s G s s G s 1 ) ( lim 1 ) ( lim 0 1 2 0 2 0                       where ) ( lim 2 0 s G s K s a    “Static Acceleration Error Constant”
  • 13. 13
  • 14. 14 If N = 0,    a ss K e 1 If N =1, Ka = 0    a ss K e 1 , 0 ) ( ) ( 2     j i a p s z s s K   If N = 2, Ka = constant finite K e a ss   1  Increasing system type (N) will accommodate more different inputs. If N ≥3 , Ka = infinite 0 1 1     a ss K e
  • 15. 15 Example 3 R(s) + - C(s) ) 2 ( ) 1 ( 3   s s s If r(t) = (2+3t)u(t), find the steady state error (ess) for the given system. Solution:     ) ( lim 0 s G K s p 2 3 ) ( lim 0    s sG K s v 2 2 3 3 1 2 3 1 2         v p ss K K e