SlideShare a Scribd company logo
ECONOMETRIC



    “FORECASTING”

                BY
        DR. ILHAM SENTOSA
dr.ilhamsentosa@limkokwing.edu.my
Exercise Data 3 - Business Analysis
Perform Business Analysis

• Data on the average of customer’s income
  in radius 3 km from restaurant (I);
• Number of competitor in radius 3 km (N);
• Number of population in radius 3 km from
  restaurant (P);
• Number of customer per year (Y).
Case Study

•   I = Income – 3 km from restaurant
•   N= Competitor in 2 km
•   P = Population in 3 km from restaurant
•   Y = No of Customer
Data of Income, Competitor, Population and Customers

Obs.     I      N       P         Y
  1    13,240   3     65,044   107,919
  2    22,554   5    101,367   118,866
  3    16,916   7    124,989    98,579
  4    20,967   2     55,249   122,015
  5    19,576   3     73,775   152,827
  6    15,039   5     48,484    91,259
  7    21,857   8    138,809   123,550
  8    26,435   2     50,244   160,931
  9    24,024   6    104,300    98,496
 10    14,987   2     37,852   108,052
Instructions
1. Data Key In
2. Perform Multiple Regression Analysis
3. Analyze: Model Summary Table and
   Coefficient table
SPSS Output : Adj                                                                        R 2


                                                               Model Summary



                                                                                             Change Statis tics
                                        Adjus ted     Std. Error of   R Square
Model          R           R Square     R Square     the Es tim ate    Change     F Change       df1              df2       Sig. F Change
1                  .791a         .626         .438      17.263183          .626      3.342             3                6            .097
  a. Predictors: (Cons tant), P, I, N
PREDICTION USING REGRESSION COEFFICIENTS

                                                                                           a
                                                                            Coefficients

                              Uns tandardized          Standardized
                               Coefficients            Coefficients                                                Correlations              Collinearity Statis tics
Model                         B          Std. Error       Beta          t              Sig.           Zero-order      Partial     Part      Tolerance          VIF
1       (Cons tant)          82.167         28.171                      2.917                  .027
        I                     2.518           1.472              .477   1.711                  .138         .564          .573       .427         .801           1.248
        N                    -11.008          6.184           -1.058    -1.780                 .125        -.437          -.588     -.445         .177           5.658
        P                         .427          .405             .650   1.055                  .332        -.163          .396       .264         .165           6.075
  a. Dependent Variable: Y
Multiple Regressions Equation

Y = 82.167 – 11.008(N) + 0.427(P) + 2.518(I)
Y = 82.167 – 11.008(N) + 0.427(P) + 2.518(I)


• Analysis:
1. 1 New Restaurant (N) in 3 km, Customer reduce
   to 11.008 person.
2. Population in 3km increase to 1000 people,
   customer increase to 427 person. (Population
   Increase for 1 person , Customer increase to
   0.427 person).
3. Customer Income in 3km Increase for RM.100
   per year, Customer to serve also increase for 251
   person per year. (Income increase for RM.1,
   Customer to serve in crease for 2.5 people).
4. Adjusted R2 = 43.8% , high influence
What is Your
 Decision?
Thank You

More Related Content

DOC
Invoice Dated Decemb
PDF
Tecnica n°009 túmbate como un muerto.
PPT
See How you can Brand yourself!
PDF
53 ΔΣ Πειραιά -πολιτιστικό πρόγραμμα: Σχολική εφημερίδα
PDF
Tecnica n°096 mira el espacio ilimitado
PPTX
Relioquick Automall at alpha one Amritsar, August 2015 Report.
PDF
Tecnica n°038 tome un baño en el centro de sonido, como en el sonido continuo...
PDF
Tecnica n°088 conoce al que conoce y lo conocido
Invoice Dated Decemb
Tecnica n°009 túmbate como un muerto.
See How you can Brand yourself!
53 ΔΣ Πειραιά -πολιτιστικό πρόγραμμα: Σχολική εφημερίδα
Tecnica n°096 mira el espacio ilimitado
Relioquick Automall at alpha one Amritsar, August 2015 Report.
Tecnica n°038 tome un baño en el centro de sonido, como en el sonido continuo...
Tecnica n°088 conoce al que conoce y lo conocido

Viewers also liked (10)

PDF
Food intolerance & acne
PDF
Tecnica n°023 siente un objeto y conviértete en él
PPTX
Digipak analysis
DOC
LRA Linkedin aftermarket
PDF
Tecnica n°046 cerrar los oídos y contraer el recto
PDF
Matt Henn & Nick Foard - Disconnected Youth?
PPT
Forcasting
PDF
Tecnica n°055 sé consciente del lapso entre estar despierto y dormido
PDF
A Hard Assessment of Disaster Risk Reduction
PDF
Tecnica n°060 aceptación
Food intolerance & acne
Tecnica n°023 siente un objeto y conviértete en él
Digipak analysis
LRA Linkedin aftermarket
Tecnica n°046 cerrar los oídos y contraer el recto
Matt Henn & Nick Foard - Disconnected Youth?
Forcasting
Tecnica n°055 sé consciente del lapso entre estar despierto y dormido
A Hard Assessment of Disaster Risk Reduction
Tecnica n°060 aceptación
Ad

Similar to Exercise data 2_-_forecasting (20)

DOCX
DOC
Final analysis
XLS
Westar beverage sales case (#47)
XLS
Westar beverage sales case (#47)
DOCX
Smt 6
PPTX
Munish Virang Rp
PPT
Msa training
PDF
Li Wenjuan — How climate change matters to our rice bowl
PPT
U.S. Manufacturing Job Gains and Imports, 2001-2011: An Analysis
DOCX
Regression analysis
DOC
Financial Project Portfolio
PPT
04 transport modelling
DOCX
Desain Experimen (Experimental Design) - Respon Surface Optimation
PPTX
My favorite online teaching tool
PPSX
Dynamics Project
PDF
Dreoni - Input 2012
PDF
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...
DOC
Regression.Doc Rini
DOC
Regression.Doc Rini
DOC
Regression.Doc Rini
Final analysis
Westar beverage sales case (#47)
Westar beverage sales case (#47)
Smt 6
Munish Virang Rp
Msa training
Li Wenjuan — How climate change matters to our rice bowl
U.S. Manufacturing Job Gains and Imports, 2001-2011: An Analysis
Regression analysis
Financial Project Portfolio
04 transport modelling
Desain Experimen (Experimental Design) - Respon Surface Optimation
My favorite online teaching tool
Dynamics Project
Dreoni - Input 2012
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...
Regression.Doc Rini
Regression.Doc Rini
Regression.Doc Rini
Ad

Exercise data 2_-_forecasting

  • 1. ECONOMETRIC “FORECASTING” BY DR. ILHAM SENTOSA dr.ilhamsentosa@limkokwing.edu.my
  • 2. Exercise Data 3 - Business Analysis
  • 3. Perform Business Analysis • Data on the average of customer’s income in radius 3 km from restaurant (I); • Number of competitor in radius 3 km (N); • Number of population in radius 3 km from restaurant (P); • Number of customer per year (Y).
  • 4. Case Study • I = Income – 3 km from restaurant • N= Competitor in 2 km • P = Population in 3 km from restaurant • Y = No of Customer
  • 5. Data of Income, Competitor, Population and Customers Obs. I N P Y 1 13,240 3 65,044 107,919 2 22,554 5 101,367 118,866 3 16,916 7 124,989 98,579 4 20,967 2 55,249 122,015 5 19,576 3 73,775 152,827 6 15,039 5 48,484 91,259 7 21,857 8 138,809 123,550 8 26,435 2 50,244 160,931 9 24,024 6 104,300 98,496 10 14,987 2 37,852 108,052
  • 6. Instructions 1. Data Key In 2. Perform Multiple Regression Analysis 3. Analyze: Model Summary Table and Coefficient table
  • 7. SPSS Output : Adj R 2 Model Summary Change Statis tics Adjus ted Std. Error of R Square Model R R Square R Square the Es tim ate Change F Change df1 df2 Sig. F Change 1 .791a .626 .438 17.263183 .626 3.342 3 6 .097 a. Predictors: (Cons tant), P, I, N
  • 8. PREDICTION USING REGRESSION COEFFICIENTS a Coefficients Uns tandardized Standardized Coefficients Coefficients Correlations Collinearity Statis tics Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 1 (Cons tant) 82.167 28.171 2.917 .027 I 2.518 1.472 .477 1.711 .138 .564 .573 .427 .801 1.248 N -11.008 6.184 -1.058 -1.780 .125 -.437 -.588 -.445 .177 5.658 P .427 .405 .650 1.055 .332 -.163 .396 .264 .165 6.075 a. Dependent Variable: Y
  • 9. Multiple Regressions Equation Y = 82.167 – 11.008(N) + 0.427(P) + 2.518(I)
  • 10. Y = 82.167 – 11.008(N) + 0.427(P) + 2.518(I) • Analysis: 1. 1 New Restaurant (N) in 3 km, Customer reduce to 11.008 person. 2. Population in 3km increase to 1000 people, customer increase to 427 person. (Population Increase for 1 person , Customer increase to 0.427 person). 3. Customer Income in 3km Increase for RM.100 per year, Customer to serve also increase for 251 person per year. (Income increase for RM.1, Customer to serve in crease for 2.5 people). 4. Adjusted R2 = 43.8% , high influence
  • 11. What is Your Decision?