SlideShare a Scribd company logo
pretest        postest
          50             52
          46             48
          60             68
          60             62
          62             70
          54             62
          60             64
          52             52
          50             56
          64             68
          62             70
          60             68
          48             56
          50             58
          58             66
          54             58
          46             54
          60             64
          56             64
          48             54
          52             60
          56             64
          64             74
          62             70
          54             58
          48             54
          60             68
          68             72
          56             64
          62             70
Regression


            Descriptive Statistics

            Mean      Std. Deviation   N
 pretest    56.0667         6.04542        30
 posttest   62.2667         6.92289        30
Correlations

                                            pretest          posttest
  Pearson Correlation      pretest             1.000              .932
                           posttest             .932            1.000
  Sig. (1-tailed)          pretest                  .             .000
                           posttest             .000                  .
  N                        pretest                30                30
                           posttest               30                30



            Variables Entered/Removedb


             Variables      Variables
  Model      Entered        Removed           Method
  1         posttesta                   .    Enter
      a. All requested variables entered.
      b. Dependent Variable: pretest



                         Model Summaryb


                                            Adjusted         Std. Error of
  Model         R         R Square          R Square         the Estimate
  1              .932a        .869               .864             2.22614
      a. Predictors: (Constant), posttest
      b. Dependent Variable: pretest

output spss tersebut memiliki nilai koefisien determinasi yang sudah di sesuaikan
(adjustd R square) 0,864 artinya 86,4% fariabel independent nilai posttest di jelaskan
oleh variable independen nilai pretest dan sisanya 13,6%(100-86,9% di jelaskan oleh
variable lain di luar variable yang di gunakan.

                                                 ANOVAb

                             Sum of
  Model                      Squares             df            Mean Square     F       Sig.
  1         Regression        921.108                    1         921.108   185.869      .000a
            Residual          138.759                   28           4.956
            Total            1059.867                   29
      a. Predictors: (Constant), FISIKA
      b. Dependent Variable: KIMIA
ANOVAb

                          Sum of
 Model                    Squares           df         Mean Square        F              Sig.
 1       Regression        921.108                 1       921.108      185.869             .000a
         Residual          138.759                28         4.956
         Total            1059.867                29
   a. Predictors: (Constant), posttest
   b. Dependent Variable: pretest



                                         Coefficientsa

                            Unstandardized             Standardized
                             Coefficients              Coefficients
 Model                      B        Std. Error            Beta           t              Sig.
 1       (Constant)         5.376         3.740                           1.437             .162
         posttest            .814          .060                .932      13.633             .000
   a. Dependent Variable: pretest



                                      Residuals Statisticsa

                              Minimum       Maximum          Mean      Std. Deviation          N
 Predicted Value               44.4524       65.6186         56.0667         5.63581                30
 Std. Predicted Value            -2.061        1.695            .000           1.000                30
 Standard Error of
                                    .407            .944        .560              .134              30
 Predicted Value
 Adjusted Predicted Value       44.1132          65.8655     56.0508        5.66925                 30
 Residual                      -3.33691          4.29125      .00000        2.18742                 30
 Std. Residual                    -1.499           1.928        .000           .983                 30
 Stud. Residual                   -1.565           2.042        .003          1.019                 30
 Deleted Residual              -3.63697          4.81714      .01583        2.35572                 30
 Stud. Deleted Residual           -1.609           2.174        .016          1.046                 30
 Mahal. Distance                    .001           4.247        .967           .981                 30
 Cook's Distance                    .001            .256        .039           .059                 30
 Centered Leverage Value            .000            .146        .033           .034                 30
   a. Dependent Variable: pretest



Charts
Normal P-P Plot of Regression Standardized Residual



                                    Dependent Variable: pretest
                        1.0




                        0.8
    Expected Cum Prob




                        0.6




                        0.4




                        0.2




                        0.0
                              0.0       0.2       0.4    0.6      0.8   1.0

                                              Observed Cum Prob
Scatterplot



                                              Dependent Variable: pretest
Regression Studentized Residual




                                  2




                                   1




                                  0




                                  -1




                                  -2

                                       -2           -1                 0          1   2

                                            Regression Standardized Predicted Value

More Related Content

DOC
Regresi Ni3.Nf
PDF
On The Measurement Of Yield Strength
PDF
Thesis Presentation
PDF
CMS - Bosone di Higgs
PDF
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
PPTX
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012
PDF
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
PPT
Floating structures
Regresi Ni3.Nf
On The Measurement Of Yield Strength
Thesis Presentation
CMS - Bosone di Higgs
Dynamic Recrystallization of a Nb bearing Al-Si TRIP steel
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012
Effect of thermomechanical process on the austenite transformation in Nb-Mo m...
Floating structures

What's hot (11)

DOCX
MD Lab 3
XLS
Westar beverage sales case (#47)
XLS
Westar beverage sales case (#47)
PPTX
ParkAvenueLasek.com - Safety and Efficacy of Advanced Surface Ablation for Ex...
PDF
WCCI 2008 Tutorial on Computational Intelligence and Games, part 2 of 3
PPTX
Kalman filter upload
PPT
Lu2Hf2O7 Sintering
PDF
Séminaire de Physique à Besancon, Nov. 22, 2012
PDF
Suffolk - Detecting Depression Primary Vs Secondary Care (Nov09)
PDF
Bradford 2nd April
PDF
Testo 470 datasheet 2012
MD Lab 3
Westar beverage sales case (#47)
Westar beverage sales case (#47)
ParkAvenueLasek.com - Safety and Efficacy of Advanced Surface Ablation for Ex...
WCCI 2008 Tutorial on Computational Intelligence and Games, part 2 of 3
Kalman filter upload
Lu2Hf2O7 Sintering
Séminaire de Physique à Besancon, Nov. 22, 2012
Suffolk - Detecting Depression Primary Vs Secondary Care (Nov09)
Bradford 2nd April
Testo 470 datasheet 2012
Ad

Viewers also liked (20)

PPT
Research design2
PDF
Randomized complete block_design_rcbd_
PPT
Correlation Research (re-do)
PPTX
Reseach design iste 2013
PPTX
One-way ANOVA for Randomized Complete Block Design (RCBD)
PPT
Types of experimental design
PPT
Correlation Research Design
PDF
PDF
Primers passos entre llibres
PDF
L'evoluzione del turismo nelle città, Josep Ejarque al WLC di Rimini
PPTX
Final collaborative classrooms_luresearchconference03_22_13
PPTX
Problem Words Rules and Guildlines
DOCX
Regresi Nurjanah Baru
PPTX
O Teatro Romano
PPTX
Retained Recruiting Specialist for Asia - Tyron Giuliani
PDF
pln_ecan_agi_16
KEY
Audience Theory
PPT
Vrijwilligers En Gemeentelijk Beleid
PPTX
Suffixes
PDF
[Www.indowebster.com] buku kasus--_pria_merangkak
Research design2
Randomized complete block_design_rcbd_
Correlation Research (re-do)
Reseach design iste 2013
One-way ANOVA for Randomized Complete Block Design (RCBD)
Types of experimental design
Correlation Research Design
Primers passos entre llibres
L'evoluzione del turismo nelle città, Josep Ejarque al WLC di Rimini
Final collaborative classrooms_luresearchconference03_22_13
Problem Words Rules and Guildlines
Regresi Nurjanah Baru
O Teatro Romano
Retained Recruiting Specialist for Asia - Tyron Giuliani
pln_ecan_agi_16
Audience Theory
Vrijwilligers En Gemeentelijk Beleid
Suffixes
[Www.indowebster.com] buku kasus--_pria_merangkak
Ad

Similar to Regression.Doc Rini (20)

DOC
Regresi Nina
DOCX
Smt 6
PPT
Linreg
PDF
Session 2 ic2011 miller-riffel
DOCX
Est3 tutorial3mejorado
DOCX
Torsion testing experiment (instructor)
PPTX
Exercise data 2_-_forecasting
DOCX
DOC
Tugas Anova Desti
DOC
Tugas Anova Desti
DOC
Tugas Anova Desti
DOC
Tugas Anova Desti
DOC
Tugas Anova Desti
DOC
punya iroh suniroh Metode Pengajaran Paket C Data Anova
DOC
Data Hasil Evaluasi Kelas Iii Sd N Merak
DOC
Metode Pengajaran Paket C Data Anova
DOC
Anova Hamsah
PDF
Measuring active cysteine residue number in glutenin subunits by MALDI-TOF
PDF
SPICE MODEL of TPC8A02-H (Professional+ZDSP Model) in SPICE PARK
Regresi Nina
Smt 6
Linreg
Session 2 ic2011 miller-riffel
Est3 tutorial3mejorado
Torsion testing experiment (instructor)
Exercise data 2_-_forecasting
Tugas Anova Desti
Tugas Anova Desti
Tugas Anova Desti
Tugas Anova Desti
Tugas Anova Desti
punya iroh suniroh Metode Pengajaran Paket C Data Anova
Data Hasil Evaluasi Kelas Iii Sd N Merak
Metode Pengajaran Paket C Data Anova
Anova Hamsah
Measuring active cysteine residue number in glutenin subunits by MALDI-TOF
SPICE MODEL of TPC8A02-H (Professional+ZDSP Model) in SPICE PARK

More from guestbed2c6 (14)

DOCX
Rini Anova Baru
DOCX
Nurwulan Anova Baru
DOCX
Nurjanah Anova
DOCX
Regresi Nurwulan Rine Ismaya
DOCX
Regresi Nurwulan Rine Ismaya
DOCX
Regresi Rini Rismawati
DOC
Regresi
DOC
Nuy Anova
DOC
An Ova Rini
DOC
Korelasi Nuy
DOC
Regression.Doc Rini
DOC
Regression.Doc Rini
DOC
Corelasi Rini
DOC
Korelasi Nuy
Rini Anova Baru
Nurwulan Anova Baru
Nurjanah Anova
Regresi Nurwulan Rine Ismaya
Regresi Nurwulan Rine Ismaya
Regresi Rini Rismawati
Regresi
Nuy Anova
An Ova Rini
Korelasi Nuy
Regression.Doc Rini
Regression.Doc Rini
Corelasi Rini
Korelasi Nuy

Recently uploaded (20)

PDF
August Patch Tuesday
PPTX
A Presentation on Artificial Intelligence
PPT
Teaching material agriculture food technology
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Machine Learning_overview_presentation.pptx
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
A comparative study of natural language inference in Swahili using monolingua...
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Machine learning based COVID-19 study performance prediction
PPTX
cloud_computing_Infrastucture_as_cloud_p
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
1. Introduction to Computer Programming.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
August Patch Tuesday
A Presentation on Artificial Intelligence
Teaching material agriculture food technology
Spectroscopy.pptx food analysis technology
Machine Learning_overview_presentation.pptx
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Programs and apps: productivity, graphics, security and other tools
A comparative study of natural language inference in Swahili using monolingua...
SOPHOS-XG Firewall Administrator PPT.pptx
Machine learning based COVID-19 study performance prediction
cloud_computing_Infrastucture_as_cloud_p
Agricultural_Statistics_at_a_Glance_2022_0.pdf
1. Introduction to Computer Programming.pptx
Encapsulation theory and applications.pdf
Getting Started with Data Integration: FME Form 101
Univ-Connecticut-ChatGPT-Presentaion.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
A comparative analysis of optical character recognition models for extracting...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11

Regression.Doc Rini

  • 1. pretest postest 50 52 46 48 60 68 60 62 62 70 54 62 60 64 52 52 50 56 64 68 62 70 60 68 48 56 50 58 58 66 54 58 46 54 60 64 56 64 48 54 52 60 56 64 64 74 62 70 54 58 48 54 60 68 68 72 56 64 62 70
  • 2. Regression Descriptive Statistics Mean Std. Deviation N pretest 56.0667 6.04542 30 posttest 62.2667 6.92289 30
  • 3. Correlations pretest posttest Pearson Correlation pretest 1.000 .932 posttest .932 1.000 Sig. (1-tailed) pretest . .000 posttest .000 . N pretest 30 30 posttest 30 30 Variables Entered/Removedb Variables Variables Model Entered Removed Method 1 posttesta . Enter a. All requested variables entered. b. Dependent Variable: pretest Model Summaryb Adjusted Std. Error of Model R R Square R Square the Estimate 1 .932a .869 .864 2.22614 a. Predictors: (Constant), posttest b. Dependent Variable: pretest output spss tersebut memiliki nilai koefisien determinasi yang sudah di sesuaikan (adjustd R square) 0,864 artinya 86,4% fariabel independent nilai posttest di jelaskan oleh variable independen nilai pretest dan sisanya 13,6%(100-86,9% di jelaskan oleh variable lain di luar variable yang di gunakan. ANOVAb Sum of Model Squares df Mean Square F Sig. 1 Regression 921.108 1 921.108 185.869 .000a Residual 138.759 28 4.956 Total 1059.867 29 a. Predictors: (Constant), FISIKA b. Dependent Variable: KIMIA
  • 4. ANOVAb Sum of Model Squares df Mean Square F Sig. 1 Regression 921.108 1 921.108 185.869 .000a Residual 138.759 28 4.956 Total 1059.867 29 a. Predictors: (Constant), posttest b. Dependent Variable: pretest Coefficientsa Unstandardized Standardized Coefficients Coefficients Model B Std. Error Beta t Sig. 1 (Constant) 5.376 3.740 1.437 .162 posttest .814 .060 .932 13.633 .000 a. Dependent Variable: pretest Residuals Statisticsa Minimum Maximum Mean Std. Deviation N Predicted Value 44.4524 65.6186 56.0667 5.63581 30 Std. Predicted Value -2.061 1.695 .000 1.000 30 Standard Error of .407 .944 .560 .134 30 Predicted Value Adjusted Predicted Value 44.1132 65.8655 56.0508 5.66925 30 Residual -3.33691 4.29125 .00000 2.18742 30 Std. Residual -1.499 1.928 .000 .983 30 Stud. Residual -1.565 2.042 .003 1.019 30 Deleted Residual -3.63697 4.81714 .01583 2.35572 30 Stud. Deleted Residual -1.609 2.174 .016 1.046 30 Mahal. Distance .001 4.247 .967 .981 30 Cook's Distance .001 .256 .039 .059 30 Centered Leverage Value .000 .146 .033 .034 30 a. Dependent Variable: pretest Charts
  • 5. Normal P-P Plot of Regression Standardized Residual Dependent Variable: pretest 1.0 0.8 Expected Cum Prob 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Observed Cum Prob
  • 6. Scatterplot Dependent Variable: pretest Regression Studentized Residual 2 1 0 -1 -2 -2 -1 0 1 2 Regression Standardized Predicted Value