SlideShare a Scribd company logo
Exploring	
  Compound	
  Combina1ons	
  in	
  
High	
  Throughput	
  Se9ngs	
  	
  
Going	
  Beyond	
  1D	
  Metrics	
  

Rajarshi	
  Guha,	
  Lesley	
  Mathews,	
  John	
  
Keller,	
  Paul	
  Shinn,	
  Dongbo	
  Liu,	
  Craig	
  
Thomas,	
  Anton	
  Simeonov,	
  Marc	
  Ferrer	
  
NIH-­‐NCATS	
  

	
  
January	
  2013,	
  San	
  Diego	
  
Outline	
  
Why	
  combine?	
  

Physical	
  infrastructure	
  &	
  workflow	
  

Summarizing	
  and	
  exploring	
  the	
  data	
  
hKp://origin.arstechnica.com/news.media/pills-­‐4.jpg	
  
Screening	
  for	
  Novel	
  Drug	
  Combina1ons	
  
Transla5onal	
  Interest	
  
•  Increased	
  efficacy	
  
•  Delay	
  resistance	
  
•  AKenuate	
  toxicity	
  

Basic	
  Interest	
  
•  Inform	
  signaling	
  pathway	
  
connec[vity	
  
•  Iden[fy	
  synthe[c	
  lethality	
  
•  Highlight	
  
polypharmacology	
  
How	
  to	
  Test	
  Combina1ons	
  
•  Many	
  procedures	
  described	
  in	
  the	
  literature	
  
–  Fixed	
  dose	
  ra[o	
  (aka	
  ray)	
  
–  Ray	
  contour	
  
–  Checkerboard	
  
–  Gene[c	
  algorithm	
  
	
  

C5

C5,D5

C4

C4,D4

C3

C3,D3

C2

C2,D2

C1,D5

C1,D4

C1,D3

C1,D2

C1,D1

D5 D4 D3 D2 D1

C1
0
Scaling	
  Response	
  Surface	
  Screening	
  
5e+07

Combination type

•  Response	
  surfaces	
  	
  
imply	
  a	
  DxD	
  matrix	
  	
  
for	
  each	
  combina[on	
  
•  All	
  pairs	
  screening	
  is	
  	
  
imprac[cal	
  for	
  more	
  	
  
than	
  tens	
  of	
  	
  	
  
compounds	
  
•  Instead	
  we	
  consider	
  N	
  compounds	
  versus	
  a	
  
fixed	
  size	
  library	
  	
  
All pairs

Fixed library

Number of combinations

4e+07

Dose matrix size
4
6

10

3e+07

2e+07

1e+07

0e+00

250

500

750

Number of compounds

1000
Mechanism	
  Interroga1on	
  PlateE	
  
•  Collec[on	
  of	
  ~	
  2000	
  small	
  molecules	
  of	
  diverse	
  
mechanism	
  of	
  ac[on.	
  
•  745	
  approved	
  drugs	
  	
  
•  420	
  phase	
  I-­‐III	
  inves[ga[onal	
  drugs	
  	
  
•  767	
  preclinical	
  molecules	
  

•  Diverse	
  and	
  redundant	
  MOAs	
  represented	
  

belinostat
HDAC inhibitor
Phase II
AMG-47a
Lck inhibitor
Preclinical

GSK-1995010
FAS inhibitor
Preclinical

JZL-184
MAGL inhibitor
Preclinical

JNJ-38877605
HGFR inhibitor
Phase I

Eliprodil
NMDA antagonist
Phase III
Mechanism	
  Interroga1on	
  PlateE	
  
Top	
  10	
  enriched	
  GeneGo	
  pathway	
  maps	
  
Development EGFR signaling pathway
Some pathways of EMT in cancer cells
Development VEGF signaling via VEGFR2 - generic cascades
Apoptosis and survival Anti-apoptotic action of Gastrin
Cell adhesion Chemokines and adhesion
Cytoskeleton remodeling TGF, WNT and cytoskeletal remodeling
Regulation of lipid metabolism RXR-dependent regulation of lipid metabolism via PPAR, RAR and VDR
Transcription PPAR Pathway
Translation Non-genomic (rapid) action of Androgen Receptor
Development VEGF signaling and activation
0

5

-log10(pValue)

10

15
Combina1on	
  Screening	
  Workflow	
  
Run	
  single	
  agent	
  dose	
  responses	
  

6x6	
  matrices	
  for	
  	
  
poten1al	
  synergies	
  
10x10	
  for	
  confirma1on	
  
+	
  self-­‐cross	
  

Acoustic dispense, 15 min
for 1260 wells, 14 min for
1200 wells"
Where	
  Are	
  We	
  Now?	
  
•  238	
  screens	
  in	
  total	
  
–  30	
  screens	
  against	
  full	
  	
  
MIPE3	
  or	
  MIPE4	
  

•  200	
  cell	
  lines	
  
–  Various	
  cancers	
  
–  Mainly	
  human	
  

Number of assays

150

100

50

0
0

500

1000

1500

Number of combinations

•  Combined	
  with	
  target	
  annota[ons	
  we	
  can	
  
look	
  at	
  combina[on	
  behavior	
  as	
  a	
  func[on	
  of	
  
various	
  factors	
  

2000
Screening	
  Challenges	
  
•  A	
  key	
  challenge	
  is	
  automated	
  quality	
  control	
  
•  Plate	
  level	
  data	
  employs	
  standard	
  metrics	
  
focusing	
  on	
  control	
  performance	
  
•  Combina[on	
  level	
  is	
  more	
  challenging	
  
–  Single	
  agent	
  performance	
  
is	
  one	
  approach	
  
–  MSR	
  across	
  all	
  combina[on	
  
can	
  provide	
  a	
  high	
  level	
  view	
  
–  But	
  how	
  to	
  iden[fy	
  bad	
  blocks?	
  
QC	
  Examples	
  
•  Inves[ga[ng	
  an[-­‐malarial	
  combina[ons	
  
•  300	
  10x10	
  combina[ons	
  in	
  duplicate	
  
•  15	
  compounds	
  included	
  more	
  than	
  ten	
  [mes	
  
-1.5

log IC50 (uM)

-2.0
-2.5
-3.0
-3.5
-4.0

Artemether

Artesunate

Dihydro
artemisinin

Halofantrine Lumefantrine
QC	
  Examples	
  

Compound

•  Single	
  agents	
  with	
  very	
  high	
  MSR’s	
  could	
  be	
  
used	
  to	
  flag	
  combina[ons	
  containing	
  them	
  
•  Doesn’t	
  help	
  for	
  	
  
compounds	
  with	
  only	
  
one	
  or	
  two	
  replicates	
  
•  S[ll	
  requires	
  manual	
  
inspec[on	
  

Freq

40
30
20
10

0

5

10

MSR

15

20
Repor1ng	
  Combina1on	
  Results	
  
Repor1ng	
  Combina1on	
  Results	
  
Exploring	
  Combina1on	
  Metrics	
  
•  We	
  implement	
  a	
  variety	
  of	
  metrics	
  to	
  
characterize	
  synergy/addi[vity/antagonism	
  
•  Lots	
  of	
  possible	
  ques[ons	
  
–  How	
  is	
  a	
  metric	
  distributed	
  in	
  a	
  given	
  assay?	
  
–  How	
  does	
  a	
  metric	
  vary	
  with	
  cell	
  line?	
  
–  Do	
  metrics	
  correlate?	
  
–  How	
  does	
  a	
  certain	
  combina[on	
  behave	
  across	
  
cell	
  lines?	
  
8226
AMO-1
ANBL-6
ARP-1
EJM
FR4
INA-6
JJN3
JK-6L
KMS-11
KMS-11LB
KMS-12BM
KMS-12PE
KMS-18
KMS-20
KMS-26
KMS-28BM
KMS-28PE
KMS-34
L363
LP-1
MM-MM1
MM.1.144
MOLP-8
OCI-MY-5
OCI-MY1
OPM-1
OPM-2
RPMI-8226
SACHI
SKMM-1
U266
XG-1
XG-2
XG-6
XG-7

Delta Bliss Neg Sum

Exploring	
  Combina1on	
  Metrics	
  

0

-5

-10
Repor1ng	
  Combina1on	
  Results	
  
•  These	
  web	
  pages	
  and	
  matrix	
  layouts	
  are	
  a	
  
useful	
  first	
  step	
  
•  Does	
  not	
  scale	
  as	
  we	
  grow	
  MIPE	
  	
  
•  S[ll	
  need	
  to	
  do	
  a	
  beKer	
  job	
  of	
  ranking	
  and	
  
aggrega[ng	
  combina[on	
  responses	
  taking	
  
into	
  account	
  
–  Response	
  matrix	
  
–  Compounds,	
  targets	
  and	
  pathways	
  
When	
  are	
  Combina1ons	
  Similar?	
  
•  Differences	
  and	
  their	
  
aggregates	
  such	
  as	
  RMSD	
  
can	
  lead	
  to	
  degeneracy	
  
•  Instead	
  we’re	
  interested	
  in	
  
the	
  shape	
  of	
  the	
  surface	
  
•  How	
  to	
  characterize	
  shape?	
  
–  Parametrized	
  fits	
  
–  Distribu[on	
  of	
  responses	
  

0.06

0.010
0.04

0.005

0.02

0.00

0.000
0

25

50

75

100

0

0.15

0.10

0.05

0.00
0

50

100

D, p value

25

50

75

100
Similarity	
  via	
  the	
  KS	
  Test	
  
•  Quan[fy	
  distance	
  between	
  response	
  
distribu[ons	
  via	
  KS	
  test	
  
–  If	
  p-­‐value	
  >	
  0.05,	
  we	
  assume	
  
distance	
  is	
  0	
  

9

density

•  But	
  ignores	
  the	
  spa1al	
  
distribu[on	
  of	
  the	
  responses	
  
on	
  the	
  concentra[on	
  grid	
  

6

3

0
0.00

0.25

0.50

D

0.75

1.00
Similarity	
  via	
  the	
  Syrjala	
  Test	
  
•  Syrjala	
  test	
  used	
  to	
  compare	
  
popula[on	
  distribu[ons	
  
over	
  a	
  spa[al	
  grid	
  
density

–  Invariant	
  to	
  grid	
  orienta[on	
  
–  Provides	
  an	
  empirical	
  p-­‐value	
  

•  Less	
  degenerate	
  than	
  just	
  
considering	
  1D	
  distribu[ons	
  

10.0

7.5

5.0

2.5

0.0
0.00

Syrjala,	
  S.E.,	
  “A	
  Sta[s[cal	
  Test	
  for	
  a	
  Difference	
  between	
  the	
  Spa[al	
  Distribu[ons	
  of	
  Two	
  Popula[ons”,	
  Ecology,	
  1996,	
  77(1),	
  75-­‐80	
  

0.25

D

0.50

0.75
Ibru1nib	
  Combina1ons	
  For	
  DLBCL	
  
•  Primary	
  focus	
  is	
  on	
  inves[ga[ng	
  combina[ons	
  
with	
  Ibru[nib	
  for	
  treatment	
  
of	
  DLBCL	
  
–  Btk	
  inhibitor	
  in	
  Phase	
  II	
  trials	
  
–  Experiments	
  run	
  in	
  the	
  TMD8	
  	
  
cell	
  line,	
  tes[ng	
  for	
  cell	
  viability	
  	
  
Viable
Cells
(% DMSO)

Ibrutinib

MK-2206
Ibrutinib* +
MK-2206

Ibrutinib* (nM)
MK-2206 (µM)

Mathews-­‐Griner,	
  Guha,	
  Shinn	
  et	
  al.	
  PNAS,	
  2014,	
  in	
  press	
  
0.8

Clustering	
  Response	
  Surfaces	
  

0.4

0.6

C1	
  (24)	
  

C3(35)	
  
0.2

C2(47)	
  

0.0

C4(24)	
  
302
281
128
174
285
153
177
210
144
35
60
457
180
39
111
272
288
166
231
104
106
417
319
44
218
279
219
121
119
34
102
286
230
178
179

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Cluster	
  C3	
  

macromolecule catabolic process

•  Vargatef,	
  vorinostat,	
  
flavopiridol,	
  …	
  
•  Not	
  par[cularly	
  
specific	
  given	
  the	
  
range	
  of	
  primary	
  
targets	
  

regulation of interferon-gamma-mediated signaling pathway
ubiquitin-dependent protein catabolic process
cellular process involved in reproduction
negative regulation of cell cycle
peptidyl-amino acid modification
interphase
cell cycle checkpoint
peptidyl-tyrosine phosphorylation
response to stress
0

1

-log10(Pvalue)

2

3
52

136

150

184

217

322

339

384

165

163

371

139

116

145

194

241

327

125

82

143

164

215

254

361

0.00

0.02

0.04

0.06

0.08

Cluster	
  C4	
  

cellular carbohydrate biosynthetic process

•  Focus	
  on	
  sugar	
  
metabolism	
  	
  
•  Ruboxistaurin,	
  
cycloheximide,	
  2-­‐
methoxyestradiol,	
  …	
  
•  PI3K/Akt/mTOR	
  
signalling	
  pathways	
  

regulation of polysaccharide biosynthetic process
cellular macromolecule localization
peptidyl-serine phosphorylation
regulation of generation of precursor metabolites and energy
cellular polysaccharide metabolic process
glucan metabolic process
glucan biosynthetic process
regulation of glycogen biosynthetic process
glycogen metabolic process
0

1

-log10(Pvalue)

2

3
Combina1ons	
  across	
  Cell	
  Lines	
  
•  Cellular	
  background	
  affects	
  responses	
  
•  Can	
  we	
  group	
  cell	
  lines	
  based	
  on	
  combina[on	
  
response?	
  
Working	
  in	
  Combina1on	
  Space	
  
•  Each	
  cell	
  line	
  is	
  represented	
  as	
  a	
  vector	
  of	
  
response	
  matrices	
  
L
L
•  “Distance”	
  between	
  two	
  	
  
,	
  
cell	
  lines	
  is	
  a	
  func[on	
  of	
  the	
  
,	
  
distance	
  between	
  component	
  
response	
  matrices	
  
,	
  
	
  
,	
  
D ( L1, L2 ) = F({d1, d2 ,…, dn })
	
  
,	
  
•  F	
  can	
  be	
  min,	
  max,	
  mean,	
  …	
  	
  
1	
  

2	
  

=	
  d1	
  
=	
  d2	
  
=	
  d3	
  
=	
  d4	
  
=	
  d5	
  
L363
XG-2

0.8

1.0

0.20

0.25

1.2

0

KMS-20

XG-2

OPM-1

L363

0.0

MM-MM1

SKMM-1

KMS-11LB

U266

EJM

8226

XG-1

OCI-MY1

XG-7

KMS-20

ANBL-6

MOLP-8

XG-6

AMO-1

FR4

XG-2

OPM-1

L363

INA-6

KMS-34

FR4
8226
XG-7

OCI-MY1

EJM

SKMM-1
MM-MM1

ANBL-6
XG-1

KMS-11LB
MOLP-8

KMS-20

AMO-1
KMS-34

8226

MOLP-8

AMO-1
XG-6

XG-6
INA-6

U266

EJM
U266
FR4

OCI-MY1

SKMM-1

MM-MM1

XG-7
ANBL-6

KMS-11LB

XG-1

0.6

0.15

euc

INA-6

KMS-34

0.4

0.10

min

OPM-1

0.2

0.05

0.1

1

0.2

0.3

2

0.4

3

0.5

4

0.6

sum

0.0

XG-7

MOLP-8

KMS-34

FR4

XG-6

AMO-1

KMS-11LB

L363

KMS-20

OCI-MY1

XG-2

OPM-1

EJM

SKMM-1

ANBL-6

U266

XG-1

8226

MM-MM1

INA-6

0.00

Many	
  Choices	
  to	
  Make	
  
max
Exploi1ng	
  Polypharmacology	
  
•  Vargatef	
  exhibited	
  anomalous	
  matrix	
  
response	
  compared	
  to	
  other	
  VEGFR	
  inhibitors	
  
	
  
	
  
	
  
	
  
	
  
Linifanib

Sorafenib

Vatalanib

Motesanib

Tivozanib

Brivanib

Telatinib

Cabozantinib

Cediranib

BMS-794833

Lenvatinib

OSI-632

Vargatef	
  

Axitinib

Foretinib

Regorafenib
Exploi1ng	
  Polypharmacology	
  
DCC-2036

PD-166285

GDC-0941

PI-103

GDC-0980

Bardoxolone methyl

AT-7519
AT7519

SNS-032

NCGC00188382-01

Lestaurtinib

CNF-2024

ISOX

•  PD-­‐166285	
  is	
  a	
  SRC	
  &	
  
FGFR	
  inhibitor	
  
•  Lestaurnib	
  has	
  	
  
ac[vity	
  against	
  FLT3	
  

Vargatef

Belinostat

PF-477736

AZD-7762

Src
Lyn
Lck
Flt-3
PDGFRb
PDGFRa
FGFR-4
FGFR-3

Chk1 IC50 = 105 nM

FGFR-2
FGFR-1
VEGFR-3
VEGFR-2
VEGFR-1
0

200

Potency (nM)

Hilberg,	
  F.	
  et	
  al,	
  Cancer	
  Res.,	
  2008,	
  68,	
  4774-­‐4782	
  

400

600
Predic1ng	
  Synergies	
  
•  Related	
  to	
  response	
  surface	
  methodologies	
  
•  LiKle	
  work	
  on	
  predic[ng	
  drug	
  response	
  surfaces	
  
–  Peng	
  et	
  al,	
  PLoS	
  One,	
  2011	
  
–  Jin	
  et	
  al,	
  Bioinforma1cs,	
  2011	
  
–  Boik	
  &	
  Newman,	
  BMC	
  Pharmacology,	
  2008	
  
–  Lehar	
  et	
  al,	
  Mol	
  Syst	
  Bio,	
  2007	
  

•  But	
  synergy	
  is	
  not	
  always	
  objec[ve	
  and	
  doesn’t	
  
really	
  correlate	
  with	
  structure	
  
Structural	
  Similarity	
  vs	
  Synergy	
  
beta

gamma
0.4

0.3

0.3

0.2

0.2

0.1

0.1

Similarity

0.4

0.85

0.90

0.95

1.00
ssnum

1.05

1.10

1.15

0.4

-30

-20

1.05

0.2

0.1

0.95
Win 3x3

0.3

0.2

0.85

0.4

0.3

0.75

0.1

0

5

10

15

20

25

-40

Synergy measure

-10

0
Predic1on	
  Strategy	
  
•  Don’t	
  directly	
  predict	
  synergy	
  
•  Use	
  single	
  agent	
  data	
  to	
  generate	
  a	
  model	
  
surface	
  
•  Predict	
  combina[on	
  responses	
  
•  Characterize	
  synergy	
  of	
  predicted	
  response	
  
with	
  respect	
  to	
  model	
  surface 	
   	
  	
  
•  Reduced	
  to	
  a	
  mixture	
  predic[on	
  problem	
  
•  Need	
  to	
  incorporate	
  target	
  connec[vity	
  
Conclusions	
  
•  Use	
  response	
  surfaces	
  as	
  first	
  class	
  descriptors	
  of	
  
drug	
  combina[ons	
  
–  Surrogate	
  for	
  underlying	
  target	
  network	
  connec[vity	
  (?)	
  

•  Response	
  surface	
  similarity	
  based	
  on	
  distribu[ons	
  is	
  
(fundamentally)	
  non-­‐parametric	
  
•  Going	
  from	
  single	
  -­‐	
  chemical	
  space	
  to	
  combina[on	
  
space	
  opens	
  up	
  interes[ng	
  possibili[es	
  
•  Manual	
  inspec[on	
  is	
  s[ll	
  a	
  vital	
  step	
  
Acknowledgements	
  
•  Lou	
  Staudt	
  
•  Beverly	
  Mock,	
  John	
  Simmons	
  

More Related Content

PDF
Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D...
PDF
Robots, Small Molecules & R
PPTX
Development, safety and efficacy analysis of liquid state rabies
PDF
PPT
SOT short course on computational toxicology
PPT
acs talk open source drug discovery
PPT
Accelrys UGM slides 2011
PPTX
Jie Zheng at #ICG12: PhenoSpD: an atlas of phenotypic correlations and a mult...
Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D...
Robots, Small Molecules & R
Development, safety and efficacy analysis of liquid state rabies
SOT short course on computational toxicology
acs talk open source drug discovery
Accelrys UGM slides 2011
Jie Zheng at #ICG12: PhenoSpD: an atlas of phenotypic correlations and a mult...

What's hot (20)

PPTX
Replacing animal-derived components in regulatory in vitro tests
PPT
Pjb Probes 2009
PPT
Perspective on QSAR modeling of transport
PDF
Applying cheminformatics and bioinformatics approaches to neglected tropical ...
PPTX
Bioinformatics t9-t10-bio cheminformatics-wimvancriekinge_v2013
PPTX
Oral presentation at Protein Folding Consortium Workshop in St Louis
PPT
Slides for st judes
PDF
Q biomarkersomaticmutation
PPTX
SF and PE CTR-IN 2016 Poster_FInal
PDF
Evaluation of ctDNA extraction methods and amplifiable copy number yield usin...
PPT
Collaborative Drug Discovery: A Platform For Transforming Neglected Disease R...
PPTX
Comparison of Formulation Analysis by UPLC FINAL
PDF
Using Machine Learning Models Based on Phenotypic Data to Discover New Molecu...
PDF
Improvement of TMB Measurement by removal of Deaminated Bases in FFPE DNA
PPTX
Metabolomics in the 21st century - perspective
PPTX
dual-event machine learning models to accelerate drug discovery
PDF
Virtual screening studies in search of dopamine D1 receptor ligands as antips...
PDF
Connecting the Dots in Early Drug Discovery
PPTX
First principles models as a tool to accelerate innovation in the design and ...
PPTX
Using Computational Toxicology to Enable Risk-Based Chemical Safety Decision ...
Replacing animal-derived components in regulatory in vitro tests
Pjb Probes 2009
Perspective on QSAR modeling of transport
Applying cheminformatics and bioinformatics approaches to neglected tropical ...
Bioinformatics t9-t10-bio cheminformatics-wimvancriekinge_v2013
Oral presentation at Protein Folding Consortium Workshop in St Louis
Slides for st judes
Q biomarkersomaticmutation
SF and PE CTR-IN 2016 Poster_FInal
Evaluation of ctDNA extraction methods and amplifiable copy number yield usin...
Collaborative Drug Discovery: A Platform For Transforming Neglected Disease R...
Comparison of Formulation Analysis by UPLC FINAL
Using Machine Learning Models Based on Phenotypic Data to Discover New Molecu...
Improvement of TMB Measurement by removal of Deaminated Bases in FFPE DNA
Metabolomics in the 21st century - perspective
dual-event machine learning models to accelerate drug discovery
Virtual screening studies in search of dopamine D1 receptor ligands as antips...
Connecting the Dots in Early Drug Discovery
First principles models as a tool to accelerate innovation in the design and ...
Using Computational Toxicology to Enable Risk-Based Chemical Safety Decision ...
Ad

Similar to Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics (20)

PDF
When the whole is better than the parts
PPT
Drug discovery approaches lecture.ppt pharma
PPT
Jack Tuszynski Accelerating Chemotherapy Drug Discovery with Analytics and Hi...
PPT
Rational_Drug_Design.ppt
PPT
Session 1 part 3
PDF
2017 02-10-slas-washington dc-combinations-sig-ht-combinations-erictang
PPTX
Bioinformatics t9-t10-biocheminformatics v2014
PPT
Lipinski embo chemical biology heidelberg 2014
PPT
Lipinski Jmrc Lecture1 Nov2008
PDF
Traditional Vs Rational Drug Design, Methods followed in Traditional Drug Des...
PDF
Acs combining cheminformatics methods and pathway analysis to identify molecu...
PPT
Computer aided drug design
 
PDF
Enhancing Prioritization & Discovery of Novel Combinations using an HTS Platform
PPTX
Back Rapid lead compounds discovery through high-throughput screening
PDF
Data for AI models, the past, the present, the future
PPT
High throughput screenig
PPT
Mel Reichman on Pool Shark’s Cues for More Efficient Drug Discovery
PDF
A_Pope_RQRM_LeadDisc_June_2016
PDF
Acs talk data intensive drug design v2
PPT
Introduction To Drug Discovery
When the whole is better than the parts
Drug discovery approaches lecture.ppt pharma
Jack Tuszynski Accelerating Chemotherapy Drug Discovery with Analytics and Hi...
Rational_Drug_Design.ppt
Session 1 part 3
2017 02-10-slas-washington dc-combinations-sig-ht-combinations-erictang
Bioinformatics t9-t10-biocheminformatics v2014
Lipinski embo chemical biology heidelberg 2014
Lipinski Jmrc Lecture1 Nov2008
Traditional Vs Rational Drug Design, Methods followed in Traditional Drug Des...
Acs combining cheminformatics methods and pathway analysis to identify molecu...
Computer aided drug design
 
Enhancing Prioritization & Discovery of Novel Combinations using an HTS Platform
Back Rapid lead compounds discovery through high-throughput screening
Data for AI models, the past, the present, the future
High throughput screenig
Mel Reichman on Pool Shark’s Cues for More Efficient Drug Discovery
A_Pope_RQRM_LeadDisc_June_2016
Acs talk data intensive drug design v2
Introduction To Drug Discovery
Ad

More from Rajarshi Guha (20)

PDF
Pharos: A Torch to Use in Your Journey in the Dark Genome
PDF
Pharos: Putting targets in context
PDF
Pharos – A Torch to Use in Your Journey In the Dark Genome
PDF
Pharos - Face of the KMC
PDF
What can your library do for you?
PDF
So I have an SD File … What do I do next?
PDF
Characterization of Chemical Libraries Using Scaffolds and Network Models
PDF
From Data to Action : Bridging Chemistry and Biology with Informatics at NCATS
PDF
Fingerprinting Chemical Structures
PDF
Pushing Chemical Biology Through the Pipes
PDF
Characterization and visualization of compound combination responses in a hig...
PDF
The BioAssay Research Database
PDF
Cloudy with a Touch of Cheminformatics
PDF
Chemical Data Mining: Open Source & Reproducible
PDF
Chemogenomics in the cloud: Is the sky the limit?
PDF
Quantifying Text Sentiment in R
PDF
PMML for QSAR Model Exchange
PDF
Smashing Molecules
PPTX
Small Molecules and siRNA: Methods to Explore Bioactivity Data
PPTX
Predicting Activity Cliffs - Can Machine Learning Handle Special Cases?
Pharos: A Torch to Use in Your Journey in the Dark Genome
Pharos: Putting targets in context
Pharos – A Torch to Use in Your Journey In the Dark Genome
Pharos - Face of the KMC
What can your library do for you?
So I have an SD File … What do I do next?
Characterization of Chemical Libraries Using Scaffolds and Network Models
From Data to Action : Bridging Chemistry and Biology with Informatics at NCATS
Fingerprinting Chemical Structures
Pushing Chemical Biology Through the Pipes
Characterization and visualization of compound combination responses in a hig...
The BioAssay Research Database
Cloudy with a Touch of Cheminformatics
Chemical Data Mining: Open Source & Reproducible
Chemogenomics in the cloud: Is the sky the limit?
Quantifying Text Sentiment in R
PMML for QSAR Model Exchange
Smashing Molecules
Small Molecules and siRNA: Methods to Explore Bioactivity Data
Predicting Activity Cliffs - Can Machine Learning Handle Special Cases?

Recently uploaded (20)

PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Encapsulation theory and applications.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPT
Teaching material agriculture food technology
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Empathic Computing: Creating Shared Understanding
PPTX
Cloud computing and distributed systems.
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
KodekX | Application Modernization Development
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Mobile App Security Testing_ A Comprehensive Guide.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Encapsulation theory and applications.pdf
Review of recent advances in non-invasive hemoglobin estimation
Teaching material agriculture food technology
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
Unlocking AI with Model Context Protocol (MCP)
Programs and apps: productivity, graphics, security and other tools
Empathic Computing: Creating Shared Understanding
Cloud computing and distributed systems.
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Network Security Unit 5.pdf for BCA BBA.
KodekX | Application Modernization Development
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Dropbox Q2 2025 Financial Results & Investor Presentation
Building Integrated photovoltaic BIPV_UPV.pdf
“AI and Expert System Decision Support & Business Intelligence Systems”

Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

  • 1. Exploring  Compound  Combina1ons  in   High  Throughput  Se9ngs     Going  Beyond  1D  Metrics   Rajarshi  Guha,  Lesley  Mathews,  John   Keller,  Paul  Shinn,  Dongbo  Liu,  Craig   Thomas,  Anton  Simeonov,  Marc  Ferrer   NIH-­‐NCATS     January  2013,  San  Diego  
  • 2. Outline   Why  combine?   Physical  infrastructure  &  workflow   Summarizing  and  exploring  the  data   hKp://origin.arstechnica.com/news.media/pills-­‐4.jpg  
  • 3. Screening  for  Novel  Drug  Combina1ons   Transla5onal  Interest   •  Increased  efficacy   •  Delay  resistance   •  AKenuate  toxicity   Basic  Interest   •  Inform  signaling  pathway   connec[vity   •  Iden[fy  synthe[c  lethality   •  Highlight   polypharmacology  
  • 4. How  to  Test  Combina1ons   •  Many  procedures  described  in  the  literature   –  Fixed  dose  ra[o  (aka  ray)   –  Ray  contour   –  Checkerboard   –  Gene[c  algorithm     C5 C5,D5 C4 C4,D4 C3 C3,D3 C2 C2,D2 C1,D5 C1,D4 C1,D3 C1,D2 C1,D1 D5 D4 D3 D2 D1 C1 0
  • 5. Scaling  Response  Surface  Screening   5e+07 Combination type •  Response  surfaces     imply  a  DxD  matrix     for  each  combina[on   •  All  pairs  screening  is     imprac[cal  for  more     than  tens  of       compounds   •  Instead  we  consider  N  compounds  versus  a   fixed  size  library     All pairs Fixed library Number of combinations 4e+07 Dose matrix size 4 6 10 3e+07 2e+07 1e+07 0e+00 250 500 750 Number of compounds 1000
  • 6. Mechanism  Interroga1on  PlateE   •  Collec[on  of  ~  2000  small  molecules  of  diverse   mechanism  of  ac[on.   •  745  approved  drugs     •  420  phase  I-­‐III  inves[ga[onal  drugs     •  767  preclinical  molecules   •  Diverse  and  redundant  MOAs  represented   belinostat HDAC inhibitor Phase II AMG-47a Lck inhibitor Preclinical GSK-1995010 FAS inhibitor Preclinical JZL-184 MAGL inhibitor Preclinical JNJ-38877605 HGFR inhibitor Phase I Eliprodil NMDA antagonist Phase III
  • 7. Mechanism  Interroga1on  PlateE   Top  10  enriched  GeneGo  pathway  maps   Development EGFR signaling pathway Some pathways of EMT in cancer cells Development VEGF signaling via VEGFR2 - generic cascades Apoptosis and survival Anti-apoptotic action of Gastrin Cell adhesion Chemokines and adhesion Cytoskeleton remodeling TGF, WNT and cytoskeletal remodeling Regulation of lipid metabolism RXR-dependent regulation of lipid metabolism via PPAR, RAR and VDR Transcription PPAR Pathway Translation Non-genomic (rapid) action of Androgen Receptor Development VEGF signaling and activation 0 5 -log10(pValue) 10 15
  • 8. Combina1on  Screening  Workflow   Run  single  agent  dose  responses   6x6  matrices  for     poten1al  synergies   10x10  for  confirma1on   +  self-­‐cross   Acoustic dispense, 15 min for 1260 wells, 14 min for 1200 wells"
  • 9. Where  Are  We  Now?   •  238  screens  in  total   –  30  screens  against  full     MIPE3  or  MIPE4   •  200  cell  lines   –  Various  cancers   –  Mainly  human   Number of assays 150 100 50 0 0 500 1000 1500 Number of combinations •  Combined  with  target  annota[ons  we  can   look  at  combina[on  behavior  as  a  func[on  of   various  factors   2000
  • 10. Screening  Challenges   •  A  key  challenge  is  automated  quality  control   •  Plate  level  data  employs  standard  metrics   focusing  on  control  performance   •  Combina[on  level  is  more  challenging   –  Single  agent  performance   is  one  approach   –  MSR  across  all  combina[on   can  provide  a  high  level  view   –  But  how  to  iden[fy  bad  blocks?  
  • 11. QC  Examples   •  Inves[ga[ng  an[-­‐malarial  combina[ons   •  300  10x10  combina[ons  in  duplicate   •  15  compounds  included  more  than  ten  [mes   -1.5 log IC50 (uM) -2.0 -2.5 -3.0 -3.5 -4.0 Artemether Artesunate Dihydro artemisinin Halofantrine Lumefantrine
  • 12. QC  Examples   Compound •  Single  agents  with  very  high  MSR’s  could  be   used  to  flag  combina[ons  containing  them   •  Doesn’t  help  for     compounds  with  only   one  or  two  replicates   •  S[ll  requires  manual   inspec[on   Freq 40 30 20 10 0 5 10 MSR 15 20
  • 15. Exploring  Combina1on  Metrics   •  We  implement  a  variety  of  metrics  to   characterize  synergy/addi[vity/antagonism   •  Lots  of  possible  ques[ons   –  How  is  a  metric  distributed  in  a  given  assay?   –  How  does  a  metric  vary  with  cell  line?   –  Do  metrics  correlate?   –  How  does  a  certain  combina[on  behave  across   cell  lines?  
  • 17. Repor1ng  Combina1on  Results   •  These  web  pages  and  matrix  layouts  are  a   useful  first  step   •  Does  not  scale  as  we  grow  MIPE     •  S[ll  need  to  do  a  beKer  job  of  ranking  and   aggrega[ng  combina[on  responses  taking   into  account   –  Response  matrix   –  Compounds,  targets  and  pathways  
  • 18. When  are  Combina1ons  Similar?   •  Differences  and  their   aggregates  such  as  RMSD   can  lead  to  degeneracy   •  Instead  we’re  interested  in   the  shape  of  the  surface   •  How  to  characterize  shape?   –  Parametrized  fits   –  Distribu[on  of  responses   0.06 0.010 0.04 0.005 0.02 0.00 0.000 0 25 50 75 100 0 0.15 0.10 0.05 0.00 0 50 100 D, p value 25 50 75 100
  • 19. Similarity  via  the  KS  Test   •  Quan[fy  distance  between  response   distribu[ons  via  KS  test   –  If  p-­‐value  >  0.05,  we  assume   distance  is  0   9 density •  But  ignores  the  spa1al   distribu[on  of  the  responses   on  the  concentra[on  grid   6 3 0 0.00 0.25 0.50 D 0.75 1.00
  • 20. Similarity  via  the  Syrjala  Test   •  Syrjala  test  used  to  compare   popula[on  distribu[ons   over  a  spa[al  grid   density –  Invariant  to  grid  orienta[on   –  Provides  an  empirical  p-­‐value   •  Less  degenerate  than  just   considering  1D  distribu[ons   10.0 7.5 5.0 2.5 0.0 0.00 Syrjala,  S.E.,  “A  Sta[s[cal  Test  for  a  Difference  between  the  Spa[al  Distribu[ons  of  Two  Popula[ons”,  Ecology,  1996,  77(1),  75-­‐80   0.25 D 0.50 0.75
  • 21. Ibru1nib  Combina1ons  For  DLBCL   •  Primary  focus  is  on  inves[ga[ng  combina[ons   with  Ibru[nib  for  treatment   of  DLBCL   –  Btk  inhibitor  in  Phase  II  trials   –  Experiments  run  in  the  TMD8     cell  line,  tes[ng  for  cell  viability     Viable Cells (% DMSO) Ibrutinib MK-2206 Ibrutinib* + MK-2206 Ibrutinib* (nM) MK-2206 (µM) Mathews-­‐Griner,  Guha,  Shinn  et  al.  PNAS,  2014,  in  press  
  • 22. 0.8 Clustering  Response  Surfaces   0.4 0.6 C1  (24)   C3(35)   0.2 C2(47)   0.0 C4(24)  
  • 23. 302 281 128 174 285 153 177 210 144 35 60 457 180 39 111 272 288 166 231 104 106 417 319 44 218 279 219 121 119 34 102 286 230 178 179 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Cluster  C3   macromolecule catabolic process •  Vargatef,  vorinostat,   flavopiridol,  …   •  Not  par[cularly   specific  given  the   range  of  primary   targets   regulation of interferon-gamma-mediated signaling pathway ubiquitin-dependent protein catabolic process cellular process involved in reproduction negative regulation of cell cycle peptidyl-amino acid modification interphase cell cycle checkpoint peptidyl-tyrosine phosphorylation response to stress 0 1 -log10(Pvalue) 2 3
  • 24. 52 136 150 184 217 322 339 384 165 163 371 139 116 145 194 241 327 125 82 143 164 215 254 361 0.00 0.02 0.04 0.06 0.08 Cluster  C4   cellular carbohydrate biosynthetic process •  Focus  on  sugar   metabolism     •  Ruboxistaurin,   cycloheximide,  2-­‐ methoxyestradiol,  …   •  PI3K/Akt/mTOR   signalling  pathways   regulation of polysaccharide biosynthetic process cellular macromolecule localization peptidyl-serine phosphorylation regulation of generation of precursor metabolites and energy cellular polysaccharide metabolic process glucan metabolic process glucan biosynthetic process regulation of glycogen biosynthetic process glycogen metabolic process 0 1 -log10(Pvalue) 2 3
  • 25. Combina1ons  across  Cell  Lines   •  Cellular  background  affects  responses   •  Can  we  group  cell  lines  based  on  combina[on   response?  
  • 26. Working  in  Combina1on  Space   •  Each  cell  line  is  represented  as  a  vector  of   response  matrices   L L •  “Distance”  between  two     ,   cell  lines  is  a  func[on  of  the   ,   distance  between  component   response  matrices   ,     ,   D ( L1, L2 ) = F({d1, d2 ,…, dn })   ,   •  F  can  be  min,  max,  mean,  …     1   2   =  d1   =  d2   =  d3   =  d4   =  d5  
  • 28. Exploi1ng  Polypharmacology   •  Vargatef  exhibited  anomalous  matrix   response  compared  to  other  VEGFR  inhibitors             Linifanib Sorafenib Vatalanib Motesanib Tivozanib Brivanib Telatinib Cabozantinib Cediranib BMS-794833 Lenvatinib OSI-632 Vargatef   Axitinib Foretinib Regorafenib
  • 29. Exploi1ng  Polypharmacology   DCC-2036 PD-166285 GDC-0941 PI-103 GDC-0980 Bardoxolone methyl AT-7519 AT7519 SNS-032 NCGC00188382-01 Lestaurtinib CNF-2024 ISOX •  PD-­‐166285  is  a  SRC  &   FGFR  inhibitor   •  Lestaurnib  has     ac[vity  against  FLT3   Vargatef Belinostat PF-477736 AZD-7762 Src Lyn Lck Flt-3 PDGFRb PDGFRa FGFR-4 FGFR-3 Chk1 IC50 = 105 nM FGFR-2 FGFR-1 VEGFR-3 VEGFR-2 VEGFR-1 0 200 Potency (nM) Hilberg,  F.  et  al,  Cancer  Res.,  2008,  68,  4774-­‐4782   400 600
  • 30. Predic1ng  Synergies   •  Related  to  response  surface  methodologies   •  LiKle  work  on  predic[ng  drug  response  surfaces   –  Peng  et  al,  PLoS  One,  2011   –  Jin  et  al,  Bioinforma1cs,  2011   –  Boik  &  Newman,  BMC  Pharmacology,  2008   –  Lehar  et  al,  Mol  Syst  Bio,  2007   •  But  synergy  is  not  always  objec[ve  and  doesn’t   really  correlate  with  structure  
  • 31. Structural  Similarity  vs  Synergy   beta gamma 0.4 0.3 0.3 0.2 0.2 0.1 0.1 Similarity 0.4 0.85 0.90 0.95 1.00 ssnum 1.05 1.10 1.15 0.4 -30 -20 1.05 0.2 0.1 0.95 Win 3x3 0.3 0.2 0.85 0.4 0.3 0.75 0.1 0 5 10 15 20 25 -40 Synergy measure -10 0
  • 32. Predic1on  Strategy   •  Don’t  directly  predict  synergy   •  Use  single  agent  data  to  generate  a  model   surface   •  Predict  combina[on  responses   •  Characterize  synergy  of  predicted  response   with  respect  to  model  surface       •  Reduced  to  a  mixture  predic[on  problem   •  Need  to  incorporate  target  connec[vity  
  • 33. Conclusions   •  Use  response  surfaces  as  first  class  descriptors  of   drug  combina[ons   –  Surrogate  for  underlying  target  network  connec[vity  (?)   •  Response  surface  similarity  based  on  distribu[ons  is   (fundamentally)  non-­‐parametric   •  Going  from  single  -­‐  chemical  space  to  combina[on   space  opens  up  interes[ng  possibili[es   •  Manual  inspec[on  is  s[ll  a  vital  step  
  • 34. Acknowledgements   •  Lou  Staudt   •  Beverly  Mock,  John  Simmons