SlideShare a Scribd company logo
Page 1
Definition of rational indices
a
n
...n
a a a a a
1n
n
a
a
0a
1
nn
a a
0
1a 0a
( )
p
q qp pq
a a a p q 0q
1
33
(343) 343 7
0
(999) 1
3
3 344
1
81 ( 81) 3
27
Laws of indices
a b m n
m n m n
a a a
m n m n
a a a
( )m n mn
a a
( )n n n
ab a b
( )
n
n
n
a a
b b
0b
Exponential Function
0a 1a ( ) x
f x a x
Page 2
! ( ) 2x
f x
7
( ) ( )
3
x
g x ( ) 0.8x
h x
" 2x
y
" 1
( )
2
x
y
# # # $
%
1
8
1
4
1
2
& '
# # # $
% ' &
1
2
1
4
1
8
x-4 -2 2 4
y
-5
5
10
15
20
x-4 -2 2 4
y
-5
5
10
15
20
Page 3
" 2 , 3 4x x x
y y and y
" 1 1 1
( ) ,
2 3 4
x x
x
y y and y
" % ( ) * +
( ) 0.5x
f x
3
( ) ( )
4
x
g x ( ) 0.85x
h x ,
- ( ) x
f x a 0a 1a
( ) 0x
f x a x
( % . (0,1)
( . %
.
& / 1a ( ) x
f x a -
0 / 0 1a ( ) x
f x a " -
1 , R R
x-4 -2 2 4
y
-5
5
10
15
20
x-4 -2 2 4
y
-5
5
10
15
20
Page 4
( e
( ) x
f x e
1
lim(1 )x
x
e
x
2.718281828...e
x
y e x
y e
x
y e & x
y e
0 x
y e 1 x
y e
) x
y e x
y e % % 2. 3
) x
y e x
y e % % 4. 3
- ( )f x
x
( ) 4x
f x - (0)f (3)f
555555555555555555555555555555 555555555555555555555555555555
555555555555555555555555555555 555555555555555555555555555555
x-10 -5 5 10
y
-10
-5
5
10
x-10 -5 5 10
y
-10
-5
5
10
x-10 -5 5 10
y
-10
-5
5
10
x-10 -5 5 10
y
-10
-5
5
10
x-10 -5 5 10
y
-10
-5
5
10
x-10 -5 5 10
y
-10
-5
5
10
Page 5
( ) 10x
f x - (1)f ( 2)f
555555555555555555555555555555 555555555555555555555555555555
555555555555555555555555555555 555555555555555555555555555555
3
( ) ( )
5
x
f x - (2)f ( 3)f
555555555555555555555555555555 555555555555555555555555555555
555555555555555555555555555555 555555555555555555555555555555
( ) 1.44x
f x - 1
( )
2
f ( 1.5)f
555555555555555555555555555555 555555555555555555555555555555
555555555555555555555555555555 555555555555555555555555555555
+
5x
y 2 2x
555555555555555555555555555555
555555555555555555555555555555
10x
y 1 1x
555555555555555555555555555555
555555555555555555555555555555
1
( )
3
x
y 3 3x
555555555555555555555555555555
555555555555555555555555555555
0.4x
y 2.5 2.5x
555555555555555555555555555555
555555555555555555555555555555
+ 1
( )
2
x
y 1y x 2 2x
555555555555555555555555555555
555555555555555555555555555555
Page 6
Logarithm Function
f 6{( , ) / , 0 1}x
x y y a a and a f
1
f 1
f 6{( , ) / , 0 1}y
x y x a a and a /
7 - logay x y
x a
" 7 -
y
x a 0a 1a ( y x a
% logay x
- ! 7
3
8 2 23 log 8
31
5
125
5
1
3 log
125
4
1 1
81 3
1
3
1
4 log
81
6
1
log
36
y
1
6
36
y 2
6 6y
8 2y
- % " !
3log 9 10log 0.001 7
1
log
7
& 5log 125 0 0.1log 10 1 7log 1
7 3log 9y
3 9y
2
3 3y
8 2y
Laws of Logarithm
logay x 9 y
x a n
, , , 1 , 1a b x and y are positive a b
1. log 1 0a
2. log 1a a
3. log log loga a axy x y : 7
Page 7
4. log log loga a a
x
x y
y
; 7
5. log n logn
a ax x : 7
log
6. log
log
b
a
b
x
x
a
< 7
1
7. log logn aa
x x
n
1
1
8. log - log loga a
a
x x
x
1
9. log
log
a
x
x
a
11. log log n
n
a a
x x
log
10. a
xa
x 12. log logm
n
aa
n
x x
m
The prove properties
: 1. log 1 0a
0
1a log 1 0a
: 2. log 1a a
1
a a log 1a a
: 3. log log loga a axy x y
7 loga x m loga y n
m
x a n
y a
m n
xy a
loga xy m n
( log log loga a axy x y
: 4. log log loga a a
x
x y
y
7 loga x m loga y n
m
x a n
y a
m nx
a
y
loga
x
m n
y
( log log loga a a
x
x y
y
Page 8
: 5. log n logn
a ax x
7 loga x m
m
x a
( )n m n nm
x a a
log nmn
a x
( log n logn
a ax x
: log
6. log
log
b
a
b
x
x
a
7 loga x m
m
x a
log log m
b bx a
log mlogb bx a
log
log
b
b
x
m
a
( log
log
log
b
a
b
x
x
a
: 1
7. log logn aa
x x
n
Since
log
log
log
b
n na
b
x
x
a
log
log
log
b
na
b
x
x
n a
log1
log
log
b
na
b
x
x
n a
( 1
log logn aa
x x
n
=(% %
Example !
5 5
3 7
( ) log log
7 3
a
10 10
1
( ) log 500 log 25
2
b
6 6( ) log 9 log 4c
7 7
1
( ) log 8 - log 14
3
d
Page 9
Example !
9
9
log 512
( )
1
log
32
a
2 5 7( ) log 125 log 49 log 16b
Solution
9
9 9
5
9
9
log 512 log 2
( )
1 log 2log
32
a
9
9
9log 2
5log 2
: 7
9
5
< 9log 2
2 5 7( ) log 125 log 49 log 16b
>
!
9
9
log 36
( )
1
log
216
a
8 49 3( ) log 27 log 16 log 343b
Example 23
10 10 103log ( ) 2 log logx y x y , where x and y are positive ,
express y in term of x
4
100
x
10 10 104log ( ) log y 1+2logx y x , where x and y are positive ,
express y in term of x
Logarithmic Functions and Their Graphs
- a 0a 1a x
9 loge x (
0a 1a ( ) logaf x x a
0x
Page 10
( 10( ) logf x x $ < 7
( 10log x % % log x $
( ( ) logeg x x e ? 7
( loge x % % ln x
!
,@ =( %
" + "
10 2 1.3( ) log , ( ) log ( ) logf x x g x x and h x x
< 10 2 1.3( ) log , ( ) log ( ) logf x x g x x and h x x
3 A
" 0 1x
" 0.1 0.5 3
4
( ) log , ( ) log ( ) logF x x G x x and H x x
& < 0.1 0.5 3
4
( ) log , ( ) log ( ) logF x x G x x and H x x
3 A
" 0 1x
- ( ) logaf x x 0a 1a
( ) logaf x x % 0x
( . (1,0)
Page 11
( % . % % .
& / 1a ( ) logaf x x -
0 / 0 1a ( ) logaf x x " -
1 , R R
Example " ( ) x
f x e ( ) lng x x
"
( ( ) lny g x x
( ) x
y f x e y x
Exercise
B
7
2 128 2 1
3
9
0
5 1
1
33
10 10
0.4771
10 3 3
10 0.001
B
2log 8 3 6
1
log 2
36
13log 13 1 10
1
log 10
2
Page 12
2
1
log 8
256
10log 300 24771
!
3log 81 7
1
log
49
5
10log 10 loge e
& !
4 4
1
log 9 log
9
3 3log 108 log 4
log 25
1
log
125
7
ln
ln
x
x
7log 19
7 2ln6
e
2 3log 27 log 16 4
8
log 49
1
log
343
0) 5logt x t
5 2
1
log
x
5log 125x
1) 10log 2p 10log 3q
p q
10log 6 10log 54
10
15
log
4
4
10log 120
C 3 27log , log y qx p 3ry
x
r p q
' + 0 5x
D!
15 3
log 20 log log
2 2
8 8 8
12 15
log log log 0.16
5 4
1
3log5 log64
2
ln108 2ln 0.5
1
ln 45 ln125
3
3 4 5 6 7 8log 4 log 5 log 6 log 7 log 8 log 9
Page 13
$ ! 0x 0y
2
log3 log 4 log
x
x y
y
2
5 101
3ln 2ln ln
5
y
y x y
x
) 2
4 4 4
3
2log log log ,
2
x
x y x y
y
0x 0y y
x
+ 2logy x 1
2
logy x 0 4x
<
+ 104logy x 2 3 2 0x y 0 10x
9 10
2
4log 1
3
x x
Example - 2 3 10 10(log 8)(log 81) 4log 400 log 256
2 3 10 10(log 8)(log 81) 4log 400 log 256
3 4 8
2 3 10 10(log 2 )(log 3 ) 4log (4 100) log 2
10 10 10(3)(4) 4(log 4 log 100) 8log 2
10 10 1012 4(2log 2 2log 10) 8log 2
10 1012 8log 2 8 8log 2
20
Example - 10 10 10log 28 log 325 log 91
10 10 10log 28 log 325 log 91
10
28 325
log
91
10
28 325
log
91
10log 100
10log 10
1
Example - 2 5 27 2 27 8
1 1
(log 16) log (log 9) log log 3 log 4
25 8
2 5 27 2 27 8
1 1
(log 16) log (log 9) log log 3 log 4
25 8
Page 14
3 3 3
4 2 2 3 2
2 5 23 3 2
(log 2 ) log 5 (log 3 ) log 2 log 3 log 2
2 1 2
(4) 2 3
3 3 3
8 2 1
5
Example - 10
1
2 log 16
2
10
10
1
2 log 16
2
10 6 10log 42
10 10
6 2
10 4
6 20
Exercise
- 3 2log 9 log 64
- 2 2
1
log (5 log )
2
) 10 10 10log 28 , log 25 , log 21a b c - 10log 21
& - 6 6 6log 10 log 18 log 5
0- 5
1
3 5log 3
9
1- 2 2 2 2
5 25 125
log 30 2log 3log log
16 32 96
C- 4 3 2 2log {2log [1 log (1 log 8)]}

More Related Content

PPT
Matlab ung dung
PDF
12X1 T02 02 integrating exponentials
PDF
12X1 T02 01 differentiating exponentials
PDF
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصري
PDF
Chuong12
PDF
Chde giai tich12-hki
PPS
Factorización de polinomios-EMDH
Matlab ung dung
12X1 T02 02 integrating exponentials
12X1 T02 01 differentiating exponentials
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصري
Chuong12
Chde giai tich12-hki
Factorización de polinomios-EMDH

What's hot (14)

PPT
Mathematics does not need translation
PPT
Phep noi suy
PDF
Project
PDF
Math algebra-geometry-school-books-3rd-preparatory-1st-term-khawagah-2019-11
PDF
Integrales resueltas 370 371 conamat
PDF
Chuong14
PDF
Chuyen de pt bpt và hpt on thi dh
PDF
Chuyên đề 6 góc lượng giác và công thức lượng giác
PDF
Bảng công thức tích phân + mũ lôga
PDF
Chuong13
PDF
حلول جميع تمارين الكتاب الخاصة بالنهايات . Exercises and solution of limits ...
PDF
Chuong8
PDF
Kunci Sukino 3A Bab 1
PDF
Luong giac
Mathematics does not need translation
Phep noi suy
Project
Math algebra-geometry-school-books-3rd-preparatory-1st-term-khawagah-2019-11
Integrales resueltas 370 371 conamat
Chuong14
Chuyen de pt bpt và hpt on thi dh
Chuyên đề 6 góc lượng giác và công thức lượng giác
Bảng công thức tích phân + mũ lôga
Chuong13
حلول جميع تمارين الكتاب الخاصة بالنهايات . Exercises and solution of limits ...
Chuong8
Kunci Sukino 3A Bab 1
Luong giac
Ad

More from Aon Narinchoti (20)

PDF
บทคัดย่อ
PDF
PDF
Sample space
PDF
Random experiment
PDF
His brob
PDF
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
PDF
Wordpress
PDF
ส่งตีพิมพ์ มสธ
PDF
Lxt6 sonvyqi20150807080936
PDF
PDF
ตารางฟังก์ชันตรีโกณมิติ
PDF
PDF
PDF
PDF
PDF
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
PDF
Climometer
PDF
คำอธิบายรายวิชา
PDF
อัตราส่วนคะแนน
บทคัดย่อ
Sample space
Random experiment
His brob
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
Wordpress
ส่งตีพิมพ์ มสธ
Lxt6 sonvyqi20150807080936
ตารางฟังก์ชันตรีโกณมิติ
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
Climometer
คำอธิบายรายวิชา
อัตราส่วนคะแนน
Ad

Recently uploaded (6)

PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PPTX
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
فورمولر عمومی مضمون فزیک برای همه انجنیران

Exponential and logarithm function

  • 1. Page 1 Definition of rational indices a n ...n a a a a a 1n n a a 0a 1 nn a a 0 1a 0a ( ) p q qp pq a a a p q 0q 1 33 (343) 343 7 0 (999) 1 3 3 344 1 81 ( 81) 3 27 Laws of indices a b m n m n m n a a a m n m n a a a ( )m n mn a a ( )n n n ab a b ( ) n n n a a b b 0b Exponential Function 0a 1a ( ) x f x a x
  • 2. Page 2 ! ( ) 2x f x 7 ( ) ( ) 3 x g x ( ) 0.8x h x " 2x y " 1 ( ) 2 x y # # # $ % 1 8 1 4 1 2 & ' # # # $ % ' & 1 2 1 4 1 8 x-4 -2 2 4 y -5 5 10 15 20 x-4 -2 2 4 y -5 5 10 15 20
  • 3. Page 3 " 2 , 3 4x x x y y and y " 1 1 1 ( ) , 2 3 4 x x x y y and y " % ( ) * + ( ) 0.5x f x 3 ( ) ( ) 4 x g x ( ) 0.85x h x , - ( ) x f x a 0a 1a ( ) 0x f x a x ( % . (0,1) ( . % . & / 1a ( ) x f x a - 0 / 0 1a ( ) x f x a " - 1 , R R x-4 -2 2 4 y -5 5 10 15 20 x-4 -2 2 4 y -5 5 10 15 20
  • 4. Page 4 ( e ( ) x f x e 1 lim(1 )x x e x 2.718281828...e x y e x y e x y e & x y e 0 x y e 1 x y e ) x y e x y e % % 2. 3 ) x y e x y e % % 4. 3 - ( )f x x ( ) 4x f x - (0)f (3)f 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 x-10 -5 5 10 y -10 -5 5 10 x-10 -5 5 10 y -10 -5 5 10 x-10 -5 5 10 y -10 -5 5 10 x-10 -5 5 10 y -10 -5 5 10 x-10 -5 5 10 y -10 -5 5 10 x-10 -5 5 10 y -10 -5 5 10
  • 5. Page 5 ( ) 10x f x - (1)f ( 2)f 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 3 ( ) ( ) 5 x f x - (2)f ( 3)f 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 ( ) 1.44x f x - 1 ( ) 2 f ( 1.5)f 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 555555555555555555555555555555 + 5x y 2 2x 555555555555555555555555555555 555555555555555555555555555555 10x y 1 1x 555555555555555555555555555555 555555555555555555555555555555 1 ( ) 3 x y 3 3x 555555555555555555555555555555 555555555555555555555555555555 0.4x y 2.5 2.5x 555555555555555555555555555555 555555555555555555555555555555 + 1 ( ) 2 x y 1y x 2 2x 555555555555555555555555555555 555555555555555555555555555555
  • 6. Page 6 Logarithm Function f 6{( , ) / , 0 1}x x y y a a and a f 1 f 1 f 6{( , ) / , 0 1}y x y x a a and a / 7 - logay x y x a " 7 - y x a 0a 1a ( y x a % logay x - ! 7 3 8 2 23 log 8 31 5 125 5 1 3 log 125 4 1 1 81 3 1 3 1 4 log 81 6 1 log 36 y 1 6 36 y 2 6 6y 8 2y - % " ! 3log 9 10log 0.001 7 1 log 7 & 5log 125 0 0.1log 10 1 7log 1 7 3log 9y 3 9y 2 3 3y 8 2y Laws of Logarithm logay x 9 y x a n , , , 1 , 1a b x and y are positive a b 1. log 1 0a 2. log 1a a 3. log log loga a axy x y : 7
  • 7. Page 7 4. log log loga a a x x y y ; 7 5. log n logn a ax x : 7 log 6. log log b a b x x a < 7 1 7. log logn aa x x n 1 1 8. log - log loga a a x x x 1 9. log log a x x a 11. log log n n a a x x log 10. a xa x 12. log logm n aa n x x m The prove properties : 1. log 1 0a 0 1a log 1 0a : 2. log 1a a 1 a a log 1a a : 3. log log loga a axy x y 7 loga x m loga y n m x a n y a m n xy a loga xy m n ( log log loga a axy x y : 4. log log loga a a x x y y 7 loga x m loga y n m x a n y a m nx a y loga x m n y ( log log loga a a x x y y
  • 8. Page 8 : 5. log n logn a ax x 7 loga x m m x a ( )n m n nm x a a log nmn a x ( log n logn a ax x : log 6. log log b a b x x a 7 loga x m m x a log log m b bx a log mlogb bx a log log b b x m a ( log log log b a b x x a : 1 7. log logn aa x x n Since log log log b n na b x x a log log log b na b x x n a log1 log log b na b x x n a ( 1 log logn aa x x n =(% % Example ! 5 5 3 7 ( ) log log 7 3 a 10 10 1 ( ) log 500 log 25 2 b 6 6( ) log 9 log 4c 7 7 1 ( ) log 8 - log 14 3 d
  • 9. Page 9 Example ! 9 9 log 512 ( ) 1 log 32 a 2 5 7( ) log 125 log 49 log 16b Solution 9 9 9 5 9 9 log 512 log 2 ( ) 1 log 2log 32 a 9 9 9log 2 5log 2 : 7 9 5 < 9log 2 2 5 7( ) log 125 log 49 log 16b > ! 9 9 log 36 ( ) 1 log 216 a 8 49 3( ) log 27 log 16 log 343b Example 23 10 10 103log ( ) 2 log logx y x y , where x and y are positive , express y in term of x 4 100 x 10 10 104log ( ) log y 1+2logx y x , where x and y are positive , express y in term of x Logarithmic Functions and Their Graphs - a 0a 1a x 9 loge x ( 0a 1a ( ) logaf x x a 0x
  • 10. Page 10 ( 10( ) logf x x $ < 7 ( 10log x % % log x $ ( ( ) logeg x x e ? 7 ( loge x % % ln x ! ,@ =( % " + " 10 2 1.3( ) log , ( ) log ( ) logf x x g x x and h x x < 10 2 1.3( ) log , ( ) log ( ) logf x x g x x and h x x 3 A " 0 1x " 0.1 0.5 3 4 ( ) log , ( ) log ( ) logF x x G x x and H x x & < 0.1 0.5 3 4 ( ) log , ( ) log ( ) logF x x G x x and H x x 3 A " 0 1x - ( ) logaf x x 0a 1a ( ) logaf x x % 0x ( . (1,0)
  • 11. Page 11 ( % . % % . & / 1a ( ) logaf x x - 0 / 0 1a ( ) logaf x x " - 1 , R R Example " ( ) x f x e ( ) lng x x " ( ( ) lny g x x ( ) x y f x e y x Exercise B 7 2 128 2 1 3 9 0 5 1 1 33 10 10 0.4771 10 3 3 10 0.001 B 2log 8 3 6 1 log 2 36 13log 13 1 10 1 log 10 2
  • 12. Page 12 2 1 log 8 256 10log 300 24771 ! 3log 81 7 1 log 49 5 10log 10 loge e & ! 4 4 1 log 9 log 9 3 3log 108 log 4 log 25 1 log 125 7 ln ln x x 7log 19 7 2ln6 e 2 3log 27 log 16 4 8 log 49 1 log 343 0) 5logt x t 5 2 1 log x 5log 125x 1) 10log 2p 10log 3q p q 10log 6 10log 54 10 15 log 4 4 10log 120 C 3 27log , log y qx p 3ry x r p q ' + 0 5x D! 15 3 log 20 log log 2 2 8 8 8 12 15 log log log 0.16 5 4 1 3log5 log64 2 ln108 2ln 0.5 1 ln 45 ln125 3 3 4 5 6 7 8log 4 log 5 log 6 log 7 log 8 log 9
  • 13. Page 13 $ ! 0x 0y 2 log3 log 4 log x x y y 2 5 101 3ln 2ln ln 5 y y x y x ) 2 4 4 4 3 2log log log , 2 x x y x y y 0x 0y y x + 2logy x 1 2 logy x 0 4x < + 104logy x 2 3 2 0x y 0 10x 9 10 2 4log 1 3 x x Example - 2 3 10 10(log 8)(log 81) 4log 400 log 256 2 3 10 10(log 8)(log 81) 4log 400 log 256 3 4 8 2 3 10 10(log 2 )(log 3 ) 4log (4 100) log 2 10 10 10(3)(4) 4(log 4 log 100) 8log 2 10 10 1012 4(2log 2 2log 10) 8log 2 10 1012 8log 2 8 8log 2 20 Example - 10 10 10log 28 log 325 log 91 10 10 10log 28 log 325 log 91 10 28 325 log 91 10 28 325 log 91 10log 100 10log 10 1 Example - 2 5 27 2 27 8 1 1 (log 16) log (log 9) log log 3 log 4 25 8 2 5 27 2 27 8 1 1 (log 16) log (log 9) log log 3 log 4 25 8
  • 14. Page 14 3 3 3 4 2 2 3 2 2 5 23 3 2 (log 2 ) log 5 (log 3 ) log 2 log 3 log 2 2 1 2 (4) 2 3 3 3 3 8 2 1 5 Example - 10 1 2 log 16 2 10 10 1 2 log 16 2 10 6 10log 42 10 10 6 2 10 4 6 20 Exercise - 3 2log 9 log 64 - 2 2 1 log (5 log ) 2 ) 10 10 10log 28 , log 25 , log 21a b c - 10log 21 & - 6 6 6log 10 log 18 log 5 0- 5 1 3 5log 3 9 1- 2 2 2 2 5 25 125 log 30 2log 3log log 16 32 96 C- 4 3 2 2log {2log [1 log (1 log 8)]}