SlideShare a Scribd company logo
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Weighted Residual Methods
Mohammad Tawfik
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• In this section we will be introduced to the
general classification of approximate
methods
• Special attention will be paid for the
weighted residual method
• Derivation of a system of linear equations
to approximate the solution of an ODE will
be presented using different techniques
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Classification of Approximate
Solutions of D.E.’s
• Discrete Coordinate Method
– Finite difference Methods
– Stepwise integration methods
• Euler method
• Runge-Kutta methods
• Etc…
• Distributed Coordinate Method
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Distributed Coordinate Methods
• Weighted Residual Methods
– Interior Residual
• Collocation
• Galrekin
• Finite Element
– Boundary Residual
• Boundary Element Method
• Stationary Functional Methods
– Reyligh-Ritz methods
– Finite Element method
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Basic Concepts
• A linear differential equation may be written in the form:
    xgxfL 
• Where L(.) is a linear differential operator.
• An approximate solution maybe of the form:
   

n
i
ii xaxf
1

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Basic Concepts
• Applying the differential operator on the approximate
solution, you get:
        
     0
1
1












xgxLa
xgxaLxgxfL
n
i
ii
n
i
ii


      xRxgxLa
n
i
ii 1

Residue
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Handling the Residue
• The weighted residual methods are all
based on minimizing the value of the
residue.
• Since the residue can not be zero over the
whole domain, different techniques were
introduced.
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
General Weighted Residual
Method
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objective of WRM
• As any other numerical method, the
objective is to obtain of algebraic
equations, that, when solved, produce a
result with an acceptable accuracy.
• If we are seeking the values of ai that
would reduce the Residue (R(x)) allover
the domain, we may integrate the residue
over the domain and evaluate it!
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Evaluating the Residue
      xRxgxLa
n
i
ii 1

            xRxgxLaxLaxLa nn   ...2211
n unknown variables
       0
1






   Domain
n
i
ii
Domain
dxxgxLadxxR 
One equation!!!
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Using Weighting Functions
• If you can select n different weighting
functions, you will produce n equations!
• You will end up with n equations in n
variables.
           0
1






   Domain
n
i
iij
Domain
j dxxgxLaxwdxxRxw 
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Collocation Method
• The idea behind the collocation method is
similar to that behind the buttons of your
shirt!
• Assume a solution, then force the residue
to be zero at the collocation points
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Collocation Method
  0jxR
 
     0
1



j
n
i
jii
j
xFxLa
xR

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Example Problem
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
The bar tensile problem
 
0/
00
'
02
2





dxdulx
ux
sBC
xF
x
u
EA
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar application
  02
2



xF
x
u
EA
   

n
i
ii xaxu
1

     xRxF
dx
xd
aEA
n
i
i
i 1
2
2

Applying the collocation method
    0
1
2
2

j
n
i
ji
i xF
dx
xd
aEA

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
In Matrix Form
 
 
 








































nnnnnn
n
n
xF
xF
xF
a
a
a
kkk
kkk
kkk

2
1
2
1
21
22212
12111
...
...
...
Solve the above system for the “generalized
coordinates” ai to get the solution for u(x)
 
jxx
i
ij
dx
xd
EAk

 2
2

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Notes on the trial functions
• They should be at least twice
differentiable!
• They should satisfy all boundary
conditions!
• Those are called the “Admissibility
Conditions”.
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Using Admissible Functions
• For a constant forcing function, F(x)=f
• The strain at the free end of the bar should
be zero (slope of displacement is zero).
We may use:
  






l
x
Sinx
2


Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Using the function into the DE:
• Since we only have one term in the series,
we will select one collocation point!
• The midpoint is a reasonable choice!
 













l
x
Sin
l
EA
dx
xd
EA
22
2
2
2

   faSin
l
EA 




















 1
2
42

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Solving:
• Then, the approximate
solution for this problem is:
• Which gives the maximum
displacement to be:
• And maximum strain to be:
    EA
fl
EA
fl
SinlEA
f
a
2
2
2
21 57.0
24
42


  






l
x
Sin
EA
fl
xu
2
57.0
2

   5.057.0
2
 exact
EA
fl
lu
   0.19.00  exact
EA
lf
ux
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
The Subdomain Method
• The idea behind the
subdomain method is
to force the integral
of the residue to be
equal to zero on a
subinterval of the
domain
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
The Subdomain Method
  0
1

j
j
x
x
dxxR
     0
11
1
  


j
j
j
j
x
x
n
i
x
x
ii dxxgdxxLa 
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar application
  02
2



xF
x
u
EA
   

n
i
ii xaxu
1

     xRxF
dx
xd
aEA
n
i
i
i 1
2
2

Applying the subdomain method
    



11
1
2
2 j
j
j
j
x
x
n
i
x
x
i
i dxxFdx
dx
xd
aEA

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
In Matrix Form
     


















 11
2
2 j
j
j
j
x
x
i
x
x
i
dxxFadx
dx
xd
EA

Solve the above system for the “generalized
coordinates” ai to get the solution for u(x)
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Using Admissible Functions
• For a constant forcing function, F(x)=f
• The strain at the free end of the bar should
be zero (slope of displacement is zero).
We may use:
  






l
x
Sinx
2


Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Using the function into the DE:
• Since we only have one term in the series,
we will select one subdomain!
 













l
x
Sin
l
EA
dx
xd
EA
22
2
2
2

 




























ll
fdxadx
l
x
Sin
l
EA
0
1
0
2
22

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Solving:
• Then, the approximate
solution for this problem is:
• Which gives the maximum
displacement to be:
• And maximum strain to be:
  EA
fl
EA
fl
lEA
fl
a
22
1 637.0
2
2


  






l
x
Sin
EA
fl
xu
2
637.0
2

   5.0637.0
2
 exact
EA
fl
lu
   0.10.10  exact
EA
lf
ux
   fla
l
x
Cos
l
EA
l



























1
0
22

Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
The Galerkin Method
• Galerkin suggested that the residue
should be multiplied by a weighting
function that is a part of the suggested
solution then the integration is performed
over the whole domain!!!
• Actually, it turned out to be a VERY
GOOD idea
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
The Galerkin Method
    0Domain
j dxxxR 
         0
1
   Domain
j
n
i Domain
iji dxxgxdxxLxa 
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Bar application
  02
2



xF
x
u
EA
   

n
i
ii xaxu
1

     xRxF
dx
xd
aEA
n
i
i
i 1
2
2

Applying Galerkin method
         
 Domain
j
n
i Domain
i
ji dxxFxdx
dx
xd
xaEA 


1
2
2
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
In Matrix Form
         

















 Domain
ji
Domain
i
j dxxFxadx
dx
xd
xEA 

 2
2
Solve the above system for the “generalized
coordinates” ai to get the solution for u(x)
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Same conditions on the functions
are applied
• They should be at least twice
differentiable!
• They should satisfy all boundary
conditions!
• Let’s use the same function as in the
collocation method:
  






l
x
Sinx
2


Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Substituting with the approximate
solution:
         
 Domain
j
n
i Domain
i
ji dxxFxdx
dx
xd
xaEA 


1
2
2




























l
l
fdx
l
x
Sin
dx
l
x
Sin
l
x
Sina
l
EA
0
0
1
2
2
222



 ll
a
l
EA
2
22
1
2







EA
fll
EA
f
a
2
3
2
1 52.0
16


Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Substituting with the approximate
solution: (Int. by Parts)
         
 Domain
j
n
i Domain
i
ji dxxFxdx
dx
xd
xaEA 


1
2
2

 ll
a
l
EA
2
22
1
2







EA
fll
EA
f
a
2
3
2
1 52.0
16


   
       



Domain
ij
l
i
j
Domain
i
j
dx
dx
xd
dx
xd
dx
xd
x
dx
dx
xd
x




0
2
2
Zero!
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
What did we gain?
• The functions are required to be less
differentiable
• Not all boundary conditions need to be
satisfied
• The matrix became symmetric!
Weighted Residual Methods
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Summary
• We may solve differential equations using a
series of functions with different weights.
• When those functions are used, Residue
appears in the differential equation
• The weights of the functions may be determined
to minimize the residue by different techniques
• One very important technique is the Galerkin
method.

More Related Content

PPT
Rayleigh Ritz Method
PPTX
Finite Element Analysis - UNIT-5
PPTX
Finite Element Methods
PPTX
Truss Analysis using Finite Element method ppt
PDF
Fea 2 mark
PPT
Finite Element Analysis - UNIT-3
PPT
Finite Element Analysis - UNIT-2
PPT
An Introduction to the Finite Element Method
Rayleigh Ritz Method
Finite Element Analysis - UNIT-5
Finite Element Methods
Truss Analysis using Finite Element method ppt
Fea 2 mark
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-2
An Introduction to the Finite Element Method

What's hot (20)

PPT
Constant strain triangular
PPT
Introduction to finite element method(fem)
PDF
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
PPT
Finite Element Analysis - UNIT-1
PPSX
Non linear analysis
PDF
Strong form and weak form explanation through examples of a bar(en no 19565...
PDF
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
PPTX
Finite Element Method
PDF
Engineering Mechanics
PPT
Finite Element Analysis - UNIT-4
DOCX
Method of weighted residuals
PPT
Finite element method
PDF
Introduction to finite element analysis
PPTX
Basics of finite element method 19.04.2018
PPTX
Principle of virtual work and unit load method
PDF
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
PPTX
Fea unit 1
PPTX
INTRODUCTION TO FINITE ELEMENT ANALYSIS
PPTX
PDF
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
Constant strain triangular
Introduction to finite element method(fem)
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
Finite Element Analysis - UNIT-1
Non linear analysis
Strong form and weak form explanation through examples of a bar(en no 19565...
ME6603 - FINITE ELEMENT ANALYSIS UNIT - II NOTES AND QUESTION BANK
Finite Element Method
Engineering Mechanics
Finite Element Analysis - UNIT-4
Method of weighted residuals
Finite element method
Introduction to finite element analysis
Basics of finite element method 19.04.2018
Principle of virtual work and unit load method
ME6603 - FINITE ELEMENT ANALYSIS UNIT - I NOTES AND QUESTION BANK
Fea unit 1
INTRODUCTION TO FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS UNIT - III NOTES AND QUESTION BANK
Ad

Similar to FEM: Introduction and Weighted Residual Methods (20)

PDF
13 weightedresidual
PPT
Ce 595 section 2
PPTX
3. Weighted residual methods (1).pptx
PPTX
least squares approach in finite element method
PPTX
Unit-1.pptx finite element ansyslis easy
PPTX
CE 502 Computational Techniques
PDF
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
PPT
FEM 6 Wtd resid and Scalar field.ppt
PDF
Galerkin method
PDF
Galerkin method
PPT
An Introduction to the Finite Element Analysis.ppt
PPT
Finite element method.ppt
PPT
finite element analysis introduction _pres.ppt
PPTX
FEA RESIDUAL METHOD FOR 1D PROBLEMS Chap2.pptx
PPT
359923580HDHHHHHHHHHHHHHHHHHHHHHHHHHHH-fea-1-ppt.ppt
PPT
Finite Element Analays_Presentations.ppt
PPT
FEA Presentation New1 Full chapters.Pptx
PPTX
Presentation2.pptx
PDF
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
13 weightedresidual
Ce 595 section 2
3. Weighted residual methods (1).pptx
least squares approach in finite element method
Unit-1.pptx finite element ansyslis easy
CE 502 Computational Techniques
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
FEM 6 Wtd resid and Scalar field.ppt
Galerkin method
Galerkin method
An Introduction to the Finite Element Analysis.ppt
Finite element method.ppt
finite element analysis introduction _pres.ppt
FEA RESIDUAL METHOD FOR 1D PROBLEMS Chap2.pptx
359923580HDHHHHHHHHHHHHHHHHHHHHHHHHHHH-fea-1-ppt.ppt
Finite Element Analays_Presentations.ppt
FEA Presentation New1 Full chapters.Pptx
Presentation2.pptx
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
Ad

More from Mohammad Tawfik (20)

PDF
Supply Chain Management for Engineers - INDE073
PDF
Supply Chain Management 01 - Introduction
PDF
Supply Chain Management 02 - Logistics
PDF
Supply Chain Management 03 - Inventory Management
PDF
Creative problem solving and decision making
PDF
Digital content for teaching introduction
PDF
Crisis Management Basics
PDF
DISC Personality Model
PDF
Training of Trainers
PDF
Effective Delegation Skills
PDF
Train The Trainer
PDF
Business Management - Marketing
PDF
Stress Management
PDF
Project Management (CAPM) - Integration
PDF
Project Management (CAPM) - The Framework
PDF
Project Management (CAPM) - Introduction
PDF
The Creative Individual
PDF
Introduction to Wind Energy
PDF
Finite Element for Trusses in 2-D
PDF
Future of Drones ITW'16
Supply Chain Management for Engineers - INDE073
Supply Chain Management 01 - Introduction
Supply Chain Management 02 - Logistics
Supply Chain Management 03 - Inventory Management
Creative problem solving and decision making
Digital content for teaching introduction
Crisis Management Basics
DISC Personality Model
Training of Trainers
Effective Delegation Skills
Train The Trainer
Business Management - Marketing
Stress Management
Project Management (CAPM) - Integration
Project Management (CAPM) - The Framework
Project Management (CAPM) - Introduction
The Creative Individual
Introduction to Wind Energy
Finite Element for Trusses in 2-D
Future of Drones ITW'16

Recently uploaded (20)

PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
1_English_Language_Set_2.pdf probationary
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Trump Administration's workforce development strategy
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
20th Century Theater, Methods, History.pptx
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
A powerpoint presentation on the Revised K-10 Science Shaping Paper
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
B.Sc. DS Unit 2 Software Engineering.pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming
1_English_Language_Set_2.pdf probationary
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
What if we spent less time fighting change, and more time building what’s rig...
Trump Administration's workforce development strategy
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Indian roads congress 037 - 2012 Flexible pavement
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
20th Century Theater, Methods, History.pptx
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx

FEM: Introduction and Weighted Residual Methods

  • 1. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Weighted Residual Methods Mohammad Tawfik
  • 2. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • In this section we will be introduced to the general classification of approximate methods • Special attention will be paid for the weighted residual method • Derivation of a system of linear equations to approximate the solution of an ODE will be presented using different techniques
  • 3. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Classification of Approximate Solutions of D.E.’s • Discrete Coordinate Method – Finite difference Methods – Stepwise integration methods • Euler method • Runge-Kutta methods • Etc… • Distributed Coordinate Method
  • 4. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Distributed Coordinate Methods • Weighted Residual Methods – Interior Residual • Collocation • Galrekin • Finite Element – Boundary Residual • Boundary Element Method • Stationary Functional Methods – Reyligh-Ritz methods – Finite Element method
  • 5. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Basic Concepts • A linear differential equation may be written in the form:     xgxfL  • Where L(.) is a linear differential operator. • An approximate solution maybe of the form:      n i ii xaxf 1 
  • 6. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Basic Concepts • Applying the differential operator on the approximate solution, you get:               0 1 1             xgxLa xgxaLxgxfL n i ii n i ii         xRxgxLa n i ii 1  Residue
  • 7. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Handling the Residue • The weighted residual methods are all based on minimizing the value of the residue. • Since the residue can not be zero over the whole domain, different techniques were introduced.
  • 8. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com General Weighted Residual Method
  • 9. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Objective of WRM • As any other numerical method, the objective is to obtain of algebraic equations, that, when solved, produce a result with an acceptable accuracy. • If we are seeking the values of ai that would reduce the Residue (R(x)) allover the domain, we may integrate the residue over the domain and evaluate it!
  • 10. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Evaluating the Residue       xRxgxLa n i ii 1              xRxgxLaxLaxLa nn   ...2211 n unknown variables        0 1          Domain n i ii Domain dxxgxLadxxR  One equation!!!
  • 11. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Using Weighting Functions • If you can select n different weighting functions, you will produce n equations! • You will end up with n equations in n variables.            0 1          Domain n i iij Domain j dxxgxLaxwdxxRxw 
  • 12. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Collocation Method • The idea behind the collocation method is similar to that behind the buttons of your shirt! • Assume a solution, then force the residue to be zero at the collocation points
  • 13. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Collocation Method   0jxR        0 1    j n i jii j xFxLa xR 
  • 14. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Example Problem
  • 15. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com The bar tensile problem   0/ 00 ' 02 2      dxdulx ux sBC xF x u EA
  • 16. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar application   02 2    xF x u EA      n i ii xaxu 1       xRxF dx xd aEA n i i i 1 2 2  Applying the collocation method     0 1 2 2  j n i ji i xF dx xd aEA 
  • 17. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com In Matrix Form                                               nnnnnn n n xF xF xF a a a kkk kkk kkk  2 1 2 1 21 22212 12111 ... ... ... Solve the above system for the “generalized coordinates” ai to get the solution for u(x)   jxx i ij dx xd EAk   2 2 
  • 18. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Notes on the trial functions • They should be at least twice differentiable! • They should satisfy all boundary conditions! • Those are called the “Admissibility Conditions”.
  • 19. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Using Admissible Functions • For a constant forcing function, F(x)=f • The strain at the free end of the bar should be zero (slope of displacement is zero). We may use:          l x Sinx 2  
  • 20. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Using the function into the DE: • Since we only have one term in the series, we will select one collocation point! • The midpoint is a reasonable choice!                l x Sin l EA dx xd EA 22 2 2 2     faSin l EA                       1 2 42 
  • 21. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Solving: • Then, the approximate solution for this problem is: • Which gives the maximum displacement to be: • And maximum strain to be:     EA fl EA fl SinlEA f a 2 2 2 21 57.0 24 42            l x Sin EA fl xu 2 57.0 2     5.057.0 2  exact EA fl lu    0.19.00  exact EA lf ux
  • 22. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com The Subdomain Method • The idea behind the subdomain method is to force the integral of the residue to be equal to zero on a subinterval of the domain
  • 23. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com The Subdomain Method   0 1  j j x x dxxR      0 11 1      j j j j x x n i x x ii dxxgdxxLa 
  • 24. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar application   02 2    xF x u EA      n i ii xaxu 1       xRxF dx xd aEA n i i i 1 2 2  Applying the subdomain method         11 1 2 2 j j j j x x n i x x i i dxxFdx dx xd aEA 
  • 25. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com In Matrix Form                          11 2 2 j j j j x x i x x i dxxFadx dx xd EA  Solve the above system for the “generalized coordinates” ai to get the solution for u(x)
  • 26. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Using Admissible Functions • For a constant forcing function, F(x)=f • The strain at the free end of the bar should be zero (slope of displacement is zero). We may use:          l x Sinx 2  
  • 27. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Using the function into the DE: • Since we only have one term in the series, we will select one subdomain!                l x Sin l EA dx xd EA 22 2 2 2                                ll fdxadx l x Sin l EA 0 1 0 2 22 
  • 28. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Solving: • Then, the approximate solution for this problem is: • Which gives the maximum displacement to be: • And maximum strain to be:   EA fl EA fl lEA fl a 22 1 637.0 2 2            l x Sin EA fl xu 2 637.0 2     5.0637.0 2  exact EA fl lu    0.10.10  exact EA lf ux    fla l x Cos l EA l                            1 0 22 
  • 29. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com The Galerkin Method • Galerkin suggested that the residue should be multiplied by a weighting function that is a part of the suggested solution then the integration is performed over the whole domain!!! • Actually, it turned out to be a VERY GOOD idea
  • 30. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com The Galerkin Method     0Domain j dxxxR           0 1    Domain j n i Domain iji dxxgxdxxLxa 
  • 31. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Bar application   02 2    xF x u EA      n i ii xaxu 1       xRxF dx xd aEA n i i i 1 2 2  Applying Galerkin method            Domain j n i Domain i ji dxxFxdx dx xd xaEA    1 2 2
  • 32. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com In Matrix Form                             Domain ji Domain i j dxxFxadx dx xd xEA    2 2 Solve the above system for the “generalized coordinates” ai to get the solution for u(x)
  • 33. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Same conditions on the functions are applied • They should be at least twice differentiable! • They should satisfy all boundary conditions! • Let’s use the same function as in the collocation method:          l x Sinx 2  
  • 34. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Substituting with the approximate solution:            Domain j n i Domain i ji dxxFxdx dx xd xaEA    1 2 2                             l l fdx l x Sin dx l x Sin l x Sina l EA 0 0 1 2 2 222     ll a l EA 2 22 1 2        EA fll EA f a 2 3 2 1 52.0 16  
  • 35. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Substituting with the approximate solution: (Int. by Parts)            Domain j n i Domain i ji dxxFxdx dx xd xaEA    1 2 2   ll a l EA 2 22 1 2        EA fll EA f a 2 3 2 1 52.0 16                  Domain ij l i j Domain i j dx dx xd dx xd dx xd x dx dx xd x     0 2 2 Zero!
  • 36. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com What did we gain? • The functions are required to be less differentiable • Not all boundary conditions need to be satisfied • The matrix became symmetric!
  • 37. Weighted Residual Methods Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Summary • We may solve differential equations using a series of functions with different weights. • When those functions are used, Residue appears in the differential equation • The weights of the functions may be determined to minimize the residue by different techniques • One very important technique is the Galerkin method.