SlideShare a Scribd company logo
Fibonacci´s Project
IES Sierra de Santa Barbara.
By: Daniel Galván, Red colour; Alejandro Bodeguero, Blue
colour; Francisco Javier Muñoz, Green colour.
English and Mathematics 2ºB.
Summary
● Fran: -sunflower
-Bibliography
-Summary of the book
● Dani: -pineapple
-index
-Leonardo´s biography
● Alex: -daisy
-summary
-conclusion
FIBONACCI'S SEQUENCE IN THE SUNFLOWERS
The sunflowers are beautiful flowers recognised
because of the form in that its yellow heads are
seen against the blue sky.
Nevertheless, Have you ever seen the pattern of
the seeds in the centre of those flowers?
The sunflowers, apart from being beautiful,
contain maths. The pattern of the seeds follows
the fibonacci sequence
(0,1,1,2,3,5,8,13,21,34,55,89,144,233...)
Each number of the sequence is the addition of
the two last numbers.
Los girasoles son hermosas flores reconocidas por la
forma en que sus cabezas amarillas se ven contra el cielo
azul. Y por supuesto, a muchos también les gusta
masticar sus semillas.
Sin embargo, ¿te has detenido a observar el patrón de las
semillas al centro de estas flores?
Los girasoles son, además de una bella imagen o una
maravilla matemática. El patrón de las semillas dentro del
girasol sigue la sucesión de Fibonacci o 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144… Cada número de la secuencia es la
suma de los dos números anteriores.
En los girasoles, las espirales que se ven en el centro se
generan a partir de esta secuencia -hay dos series de
curvas sinuosas en direcciones opuestas, comenzando
en el centro y extendiéndose hacia los pétalos, con cada
semilla en un ángulo particular de la vecina para así crear
el espiral.
FIBONACCI´S SEQUENCE IN THE
SUNFLOWERS
In the sunflowers the spirals that we can see in the
centre are generated following this sequence. There
are 2 series of curves in opposite direction, starting
in the centre and spreading out towards petals, with
each seed in a particular angle of the next one for
creating the spiral
Fibonacci`s biography
Leonardo de Pisa, also known as
“Fibonacci”, was born in Pisa, Italy
in the year 1175 and he died in 1240,
He was an Italian mathematician that
spread the knowledge of the
mathematics throughout all the
west, he popularized
the use of the Arabic figures
and exposed the beginning
of the trigonometry and he
discovered a very
important sequence.
Leonardo de Pisa también conocido
como “Fibonacci”, nació en Pisa,
Italia, en el año 1175 y murió en
1240, fué un matemático Italiano
que difundió los conocimientos
matemáticos por todo occidente,
popularizó el uso de las
cifras árabes y expuso los
principios de la
trigonometría, y descubrio
una sucesión muy
importante.
Fibonacci's sequence in the
daisy
There are many types of flowers with these numbers of
petals: 1,2,3,5,8
And the list is endless. Black-eyed Susans have 13
petals, daisies have 21 to 34 petals. Above all we see a
pattern of: 1, 2, 3, 5, 8, 13, 21, 34 and so on. This is a
clear example of the Fibonacci sequence from 1.
However, you can also find the Fibonacci sequence from
13 through an ordinary daisy field. There are daisies with
13, 21, 34, 55 and even 89 petals, which are all
examples of the Fibonacci sequence.
Hay muchos tipos de flores con pétalos:1,2,3,5,8…
Y la lista es interminable. Hay Susans Black-eyed con
13 pétalos, margaritas con 21 y 34 pétalos. En general
vemos un patrón de:1, 2, 3, 5, 8, 13, 21, 34 y así
sucesivamente.Este es un claro ejemplo de la sucesión
de Fibonacci a partir de 1. Sin embargo también se
puede encontrar la secuencia de Fibonacci a partir del
13 en las margaritas. Hay margaritas con 13, 21, 34, 55
y hasta 89 pétalos, que son todos ejemplos de la
secuencia de Fibonacci.
Fibonacci sequence in the daisy
If you draw lines through the flower’s axils, you’ll see that the number of branches up each level represents the
Fibonacci number sequence
The number of leaves up each level, also represents the Fibonacci Sequence!
SUMMARY OF THE BOOK
The town of Chee was famous because there were big green gardens and the Pied Piper
lived there. The people thought that there was all this food thanks to the wizard that
lived at the top of the mountain. One day when they were carrying the food to the
wizard the Pied Piper stopped and said that he wouldn't give more food to the wizard.
That night the wizard got angry and said that the people of Chee would pay for the fib.
The next day a girl called Amanda went to the gardens to take the food and she saw
two little rabbits, on Tuesday she saw that the rabbits were bigger, and on Wednesday
there were the rabbits with two babies. The rabbits grew faster and they had more
sons.The mayor of Chee made a meeting to solve the problem. The Pied Piper tried to
solve it. His idea consisted on playing his flute and the rabbits would follow him.
Amanda saw that the rabbits grew and had sons following a pattern, she told this to the
wizard and he gave her a flute to take the rabbits out.When Amanda played the flute
the rabbits followed her and she solved the problem of the rabbits.
Fibonacci's sequence in the pineapple
Pineapples match with two terms of
the sequence of Fibonacci: 8 and 13;
or 5 and 8. These numbers are the
numbers of the spirals of the
pineapple. The bigger number is
always the number of the spirals to
the left, and the smaller number is
always the number of the spirals
to the right. For example: One
pineapple of medium age has got
8 spirals to the right and 13
spirals to the left.
Coinciden con dos términos de la
sucesión de Fibonacci: 8 y 13; o 5 y
8. Estos números son los números the
espirales que tiene la piña.
Siempre el número más grande es el
número de espirales que tiene la
piña hacía la izquierda, y el número
más pequeño es el número de
espirales que tiene la piña
hacía la derecha. Por ejemplo:
una piña de mediana edad tiene
8 espirales a la derecha y 13
espirales a la izquierda.
We have found information
in:
-Edmodo.
-Teacher´s suggestions.
-Internet.
-The book: Rabbits, Rabbits
Everywhere.
-Dictionary.
Nosotros hemos encontrado
información en:
-Edmodo.
-Consejos de los profesores.
-Internet.
-El libro: Rabbits, rabbits
everywhere.
-Diccionario.
BIBLIOGRAPHY

More Related Content

PDF
Fibonacci Sequence 2
PDF
Fibonacci Sequence 4
PDF
Fibonacci Sequence 1
PDF
Fibonacci Numbers
PPTX
Secrets of fibonnaci numbers
PPTX
London project
PDF
Calendario examenes septiembre 2015
PDF
Novedades uex 2017
Fibonacci Sequence 2
Fibonacci Sequence 4
Fibonacci Sequence 1
Fibonacci Numbers
Secrets of fibonnaci numbers
London project
Calendario examenes septiembre 2015
Novedades uex 2017

Viewers also liked (7)

PDF
Tabla ponderaciones uex_2017.pdf
PDF
Aula de literatura - Javier Rodríguez Marcos
PPTX
International Women's day
PPT
Revolutions, liberalism and nationalism
PDF
English accents around the world
PPTX
American penpals
PDF
Boletin segundo trimestre_2016_2017
Tabla ponderaciones uex_2017.pdf
Aula de literatura - Javier Rodríguez Marcos
International Women's day
Revolutions, liberalism and nationalism
English accents around the world
American penpals
Boletin segundo trimestre_2016_2017
Ad

Similar to Fibonacci Sequence 3 (20)

PPS
Fibonacci
PPT
Fibonacci Sequence
PPTX
Maths in nature fibonacci
PPTX
Maths in nature
PPTX
LESSON-1-NATURE-OF-MATHEMATICS.pptx patterns
PPTX
Fibonacci numbers and golden ratio
PPTX
Fibonaaci sequence.pptx
PPTX
Beauty of mathematics dfs
PPTX
Fibonacci sequence
PPT
Fibonacci sequence
ODP
Fibonacci sequence
PDF
toaz.info-module-1-mathematics-in-the-modern-world-pr_86f005940993b5c4a923832...
PPTX
THE NATURE OF MATHEMATICS GRADE 1 PPT...
PDF
fibonaccisequence-101203110215-phpapp02.pdf
PDF
Maths and nature Comenius Why Maths
PPT
Fibonacci sequence and golden ratio
PPT
Fibonacci Sequence and Golden Ratio
PPTX
FIBONACCI-SEQUENCE-DELEONNAIJDHUJNEUpptx
PDF
PATTERNS-AND-NUMBERS-IN-NATURE.pdf
PPT
Fibonacci gold number
Fibonacci
Fibonacci Sequence
Maths in nature fibonacci
Maths in nature
LESSON-1-NATURE-OF-MATHEMATICS.pptx patterns
Fibonacci numbers and golden ratio
Fibonaaci sequence.pptx
Beauty of mathematics dfs
Fibonacci sequence
Fibonacci sequence
Fibonacci sequence
toaz.info-module-1-mathematics-in-the-modern-world-pr_86f005940993b5c4a923832...
THE NATURE OF MATHEMATICS GRADE 1 PPT...
fibonaccisequence-101203110215-phpapp02.pdf
Maths and nature Comenius Why Maths
Fibonacci sequence and golden ratio
Fibonacci Sequence and Golden Ratio
FIBONACCI-SEQUENCE-DELEONNAIJDHUJNEUpptx
PATTERNS-AND-NUMBERS-IN-NATURE.pdf
Fibonacci gold number
Ad

More from Teresa Martín Gómez (13)

PPTX
Peter Pan (Laura Prieto)
PPTX
The prisoner of Zenda (Alicia)
PPTX
Tutankhamun (Laura Estevez)
PPTX
The Prince and the Pauper (María)
PPTX
The Canterville Ghost (Fran Muñoz)
PPTX
Five Children and It (Sara)
ODP
Sherlock Holmes: The blue diamond (Nacho)
PPTX
Legends from the British Isles (Fan Mesa)
PPTX
Legends from the British Isles (Ana)
PPTX
Jump to Freedom (Dani Galván)
PPTX
An Eskimo Adventure (Alejandro)
PPTX
The Prince and the Pauper (Adriana)
PDF
The old quarter of cáceres
Peter Pan (Laura Prieto)
The prisoner of Zenda (Alicia)
Tutankhamun (Laura Estevez)
The Prince and the Pauper (María)
The Canterville Ghost (Fran Muñoz)
Five Children and It (Sara)
Sherlock Holmes: The blue diamond (Nacho)
Legends from the British Isles (Fan Mesa)
Legends from the British Isles (Ana)
Jump to Freedom (Dani Galván)
An Eskimo Adventure (Alejandro)
The Prince and the Pauper (Adriana)
The old quarter of cáceres

Recently uploaded (20)

PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Institutional Correction lecture only . . .
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Cell Structure & Organelles in detailed.
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
Microbial diseases, their pathogenesis and prophylaxis
Chinmaya Tiranga quiz Grand Finale.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
VCE English Exam - Section C Student Revision Booklet
Pharma ospi slides which help in ospi learning
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Pharmacology of Heart Failure /Pharmacotherapy of CHF
O7-L3 Supply Chain Operations - ICLT Program
Institutional Correction lecture only . . .
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Supply Chain Operations Speaking Notes -ICLT Program
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Cell Structure & Organelles in detailed.
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
GDM (1) (1).pptx small presentation for students
Microbial disease of the cardiovascular and lymphatic systems
Microbial diseases, their pathogenesis and prophylaxis

Fibonacci Sequence 3

  • 1. Fibonacci´s Project IES Sierra de Santa Barbara. By: Daniel Galván, Red colour; Alejandro Bodeguero, Blue colour; Francisco Javier Muñoz, Green colour. English and Mathematics 2ºB.
  • 2. Summary ● Fran: -sunflower -Bibliography -Summary of the book ● Dani: -pineapple -index -Leonardo´s biography ● Alex: -daisy -summary -conclusion
  • 3. FIBONACCI'S SEQUENCE IN THE SUNFLOWERS The sunflowers are beautiful flowers recognised because of the form in that its yellow heads are seen against the blue sky. Nevertheless, Have you ever seen the pattern of the seeds in the centre of those flowers? The sunflowers, apart from being beautiful, contain maths. The pattern of the seeds follows the fibonacci sequence (0,1,1,2,3,5,8,13,21,34,55,89,144,233...) Each number of the sequence is the addition of the two last numbers. Los girasoles son hermosas flores reconocidas por la forma en que sus cabezas amarillas se ven contra el cielo azul. Y por supuesto, a muchos también les gusta masticar sus semillas. Sin embargo, ¿te has detenido a observar el patrón de las semillas al centro de estas flores? Los girasoles son, además de una bella imagen o una maravilla matemática. El patrón de las semillas dentro del girasol sigue la sucesión de Fibonacci o 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… Cada número de la secuencia es la suma de los dos números anteriores. En los girasoles, las espirales que se ven en el centro se generan a partir de esta secuencia -hay dos series de curvas sinuosas en direcciones opuestas, comenzando en el centro y extendiéndose hacia los pétalos, con cada semilla en un ángulo particular de la vecina para así crear el espiral.
  • 4. FIBONACCI´S SEQUENCE IN THE SUNFLOWERS In the sunflowers the spirals that we can see in the centre are generated following this sequence. There are 2 series of curves in opposite direction, starting in the centre and spreading out towards petals, with each seed in a particular angle of the next one for creating the spiral
  • 5. Fibonacci`s biography Leonardo de Pisa, also known as “Fibonacci”, was born in Pisa, Italy in the year 1175 and he died in 1240, He was an Italian mathematician that spread the knowledge of the mathematics throughout all the west, he popularized the use of the Arabic figures and exposed the beginning of the trigonometry and he discovered a very important sequence. Leonardo de Pisa también conocido como “Fibonacci”, nació en Pisa, Italia, en el año 1175 y murió en 1240, fué un matemático Italiano que difundió los conocimientos matemáticos por todo occidente, popularizó el uso de las cifras árabes y expuso los principios de la trigonometría, y descubrio una sucesión muy importante.
  • 6. Fibonacci's sequence in the daisy There are many types of flowers with these numbers of petals: 1,2,3,5,8 And the list is endless. Black-eyed Susans have 13 petals, daisies have 21 to 34 petals. Above all we see a pattern of: 1, 2, 3, 5, 8, 13, 21, 34 and so on. This is a clear example of the Fibonacci sequence from 1. However, you can also find the Fibonacci sequence from 13 through an ordinary daisy field. There are daisies with 13, 21, 34, 55 and even 89 petals, which are all examples of the Fibonacci sequence. Hay muchos tipos de flores con pétalos:1,2,3,5,8… Y la lista es interminable. Hay Susans Black-eyed con 13 pétalos, margaritas con 21 y 34 pétalos. En general vemos un patrón de:1, 2, 3, 5, 8, 13, 21, 34 y así sucesivamente.Este es un claro ejemplo de la sucesión de Fibonacci a partir de 1. Sin embargo también se puede encontrar la secuencia de Fibonacci a partir del 13 en las margaritas. Hay margaritas con 13, 21, 34, 55 y hasta 89 pétalos, que son todos ejemplos de la secuencia de Fibonacci.
  • 7. Fibonacci sequence in the daisy If you draw lines through the flower’s axils, you’ll see that the number of branches up each level represents the Fibonacci number sequence The number of leaves up each level, also represents the Fibonacci Sequence!
  • 8. SUMMARY OF THE BOOK The town of Chee was famous because there were big green gardens and the Pied Piper lived there. The people thought that there was all this food thanks to the wizard that lived at the top of the mountain. One day when they were carrying the food to the wizard the Pied Piper stopped and said that he wouldn't give more food to the wizard. That night the wizard got angry and said that the people of Chee would pay for the fib. The next day a girl called Amanda went to the gardens to take the food and she saw two little rabbits, on Tuesday she saw that the rabbits were bigger, and on Wednesday there were the rabbits with two babies. The rabbits grew faster and they had more sons.The mayor of Chee made a meeting to solve the problem. The Pied Piper tried to solve it. His idea consisted on playing his flute and the rabbits would follow him. Amanda saw that the rabbits grew and had sons following a pattern, she told this to the wizard and he gave her a flute to take the rabbits out.When Amanda played the flute the rabbits followed her and she solved the problem of the rabbits.
  • 9. Fibonacci's sequence in the pineapple Pineapples match with two terms of the sequence of Fibonacci: 8 and 13; or 5 and 8. These numbers are the numbers of the spirals of the pineapple. The bigger number is always the number of the spirals to the left, and the smaller number is always the number of the spirals to the right. For example: One pineapple of medium age has got 8 spirals to the right and 13 spirals to the left. Coinciden con dos términos de la sucesión de Fibonacci: 8 y 13; o 5 y 8. Estos números son los números the espirales que tiene la piña. Siempre el número más grande es el número de espirales que tiene la piña hacía la izquierda, y el número más pequeño es el número de espirales que tiene la piña hacía la derecha. Por ejemplo: una piña de mediana edad tiene 8 espirales a la derecha y 13 espirales a la izquierda.
  • 10. We have found information in: -Edmodo. -Teacher´s suggestions. -Internet. -The book: Rabbits, Rabbits Everywhere. -Dictionary. Nosotros hemos encontrado información en: -Edmodo. -Consejos de los profesores. -Internet. -El libro: Rabbits, rabbits everywhere. -Diccionario. BIBLIOGRAPHY