SlideShare a Scribd company logo
Finding the general term
EXAMPLE:
FIND THE GENERAL TERM OF
THE SEQUENCE
5, 12, 19, 26, 33, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 5 12 19 26 33 . . . ?
GET THE DIFFERENCE
𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟕
SOLVE FOR a AND b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓
𝑎 1 + 𝑏 = 5
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟐
𝑎 2 + 𝑏 = 12
𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐
𝒂 = 𝟕
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟕 + 𝒃 = 𝟓
𝒃 = 𝟓 − 𝟕
𝒃 = −𝟐
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟕𝒏 − 𝟐 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is
𝒂 𝒏 = 𝟕𝐧 − 𝟐
EXAMPLE:
FIND THE GENERAL TERM OF
THE SEQUENCE
7, 11, 15, 19, 23, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 7 11 15 19 23 . . . ?
GET THE DIFFERENCE
𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕
𝑎 1 + 𝑏 = 7
𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟏
𝑎 2 + 𝑏 = 11
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟒
𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟒 + 𝒃 = 𝟕
𝒃 = 𝟕 − 𝟒
𝒃 = 𝟑
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒𝒏 + 𝟑 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is
𝒂 𝒏 = 𝟒𝐧 + 𝟑
QUIZ:
1. FIND THE GENERAL
TERM OF THE SEQUENCE
1, 3, 5, 7, 9, . . .
2. FIND THE GENERAL
TERM OF THE SEQUENCE
-2, 1, 4, 7, 10, . . .
3. FIND THE GENERAL
TERM OF THE SEQUENCE
-1, 1, 3, 5, 7, 9, . . .
QUIZ:
FIND THE GENERAL TERM OF
THE SEQUENCE
1, 3, 5, 7, 9, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 1 3 5 7 9 . . . ?
GET THE DIFFERENCE
𝟏, 𝟑, 𝟓, 𝟕, 𝟗, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
2
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏
𝑎 1 + 𝑏 = 1
𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑
𝑎 2 + 𝑏 = 3
𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐
𝒂 = 𝟐
𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟐 + 𝒃 = 𝟏
𝒃 = 𝟏 − 𝟐
𝒃 = −𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟐𝒏 − 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is
𝒂 𝒏 = 𝟐𝐧 − 𝟏
QUIZ:
FIND THE GENERAL TERM OF
THE SEQUENCE
-2, 1, 4, 7, 10, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 -2 1 4 7 10 . . . ?
GET THE DIFFERENCE
−𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
3
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐
𝑎 1 + 𝑏 = −2
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏
𝑎 2 + 𝑏 = 1
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟑
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟑 + 𝒃 = −𝟐
𝒃 = −𝟐 − 𝟑
𝒃 = −𝟓
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟑𝒏 − 𝟓 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
−𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, . . . is
𝒂 𝒏 = 𝟑𝐧 − 𝟓
QUIZ:
FIND THE GENERAL TERM OF
THE SEQUENCE
-1, 1, 3, 5, 7, 9, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 -1 1 3 5 7 . . . ?
GET THE DIFFERENCE
−𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
2
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟏
𝑎 1 + 𝑏 = −1
𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏
𝑎 2 + 𝑏 = 1
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟐
𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟐 + 𝒃 = −𝟏
𝒃 = −𝟏 − 𝟐
𝒃 = −𝟑
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟐𝒏 − 𝟑 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
−𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is
𝒂 𝒏 = 𝟐𝐧 − 𝟑
ASSIGNMENT!
FIND THE GENERAL TERM OF THE FOLLOWING.
1. 3, 7, 11, 15, . . .
2. 2, 6, 10, 14, . . .
3. 5, 11, 17, 23, . . .
4. 9, 11, 13, 15, . . .
5. -2, -5, -8, -11, . . .
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
1. 3, 7, 11, 15, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 3 7 11 15 . . . ?
GET THE DIFFERENCE
𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, …
𝒂𝒏 + 𝒃 = 𝒂 𝒏
4
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑
𝑎 1 + 𝑏 = 3
𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕
𝑎 2 + 𝑏 = 7
𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐
𝒂 = 𝟒
𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟒 + 𝒃 = 𝟑
𝒃 = 𝟑 − 𝟒
𝒃 = −𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒𝒏 − 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, . . . is
𝒂 𝒏 = 𝟒𝐧 − 𝟏
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
2. 2, 6, 10, 14, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 2 6 10 14 . . . ?
GET THE DIFFERENCE
𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
4
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟐
𝑎 1 + 𝑏 = 2
𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟔
𝑎 2 + 𝑏 = 6
𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐
𝒂 = 𝟒
𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟒 + 𝒃 = 𝟐
𝒃 = 𝟐 − 𝟒
𝒃 = −𝟐
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟒𝒏 − 𝟐 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . . is
𝒂 𝒏 = 𝟒𝐧 − 𝟐
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
3. 5, 11, 17, 23, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 5 11 17 23 . . . ?
GET THE DIFFERENCE
𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
6
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓
𝑎 1 + 𝑏 = 5
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏
𝑎 2 + 𝑏 = 11
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟔
𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟔 + 𝒃 = 𝟓
𝒃 = 𝟓 − 𝟔
𝒃 = −𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟔𝒏 − 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . . is
𝒂 𝒏 = 𝟔𝐧 − 𝟏
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
4. 9, 11, 13, 15, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 9 11 13 15 . . . ?
GET THE DIFFERENCE
𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
2
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟗
𝑎 1 + 𝑏 = 9
𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏
𝑎 2 + 𝑏 = 11
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
𝒂 = 𝟐
𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
𝟔 + 𝒃 = 𝟗
𝒃 = 𝟗 − 𝟔
𝒃 = 𝟕
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝟐𝒏 + 𝟕 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . . is
𝒂 𝒏 = 𝟐𝐧 + 𝟕
ASSIGNMENT:
FIND THE GENERAL TERM OF
THE SEQUENCE
5. -2, -5, -8, -11, . . .
PREPARE A TABLE
n 1 2 3 4 5 . . . n
𝒂 𝒏 -2 -5 -8 -11 . . . ?
GET THE DIFFERENCE
−𝟐, −𝟓, −𝟖, −𝟏𝟏, . . .
𝒂𝒏 + 𝒃 = 𝒂 𝒏
−3
SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏
𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐
𝑎 1 + 𝑏 = −2
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = −𝟓
𝑎 2 + 𝑏 = −5
𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐
𝒂 = −𝟑
𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏
𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂.
−𝟑 + 𝒃 = −𝟐
𝒃 = −𝟐 + 𝟑
𝒃 = 𝟏
SOLVE FOR a AND b.
𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
𝒂𝒏 + 𝒃 = 𝒂 𝒏
−𝟑𝒏 + 𝟏 = 𝒂 𝒏
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆
−𝟐, −𝟓, −𝟖, −𝟏𝟏, . . . is
𝒂 𝒏 = 𝟏 − 𝟑𝐧

More Related Content

PPTX
Finding the general term (not constant)
PDF
Geometric Series and Finding the Sum of Finite Geometric Sequence
PDF
Geometric Sequence
PDF
Infinite Geometric Series
PDF
Geometric Mean
PPTX
M3L2
PDF
Semana 10 numeros complejos i álgebra-uni ccesa007
Finding the general term (not constant)
Geometric Series and Finding the Sum of Finite Geometric Sequence
Geometric Sequence
Infinite Geometric Series
Geometric Mean
M3L2
Semana 10 numeros complejos i álgebra-uni ccesa007

Similar to Finding the general term (20)

PDF
Hsc maths formulae for board exam
PDF
Hsc maths formulae for board exam
PPTX
090799768954
PPTX
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
PDF
WEEK 3.pdf
PPTX
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
PPTX
Ecuacion diferencial de la forma u=ax+bx+c
PDF
INTEGRAL CALCULUS .pdf hahahahahahhwwhhwh
PDF
Ley de composición interna algebra ii
PPTX
PPTX
Functions ppt Dr Frost Maths Mixed questions
PPTX
Unit 1 Set Theory-Engineering Mathematics.pptx
PDF
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
PPTX
Strategic intervention material
PPTX
TRANSFORMACIONES LINEALES
PPTX
WEEK 1 QUADRATIC EQUATION.pptx
PPTX
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
PPTX
06_Complex Numbers_Hyperbolic Functions.pptx
PPTX
Surds revision card
PPTX
Equations.pptx
Hsc maths formulae for board exam
Hsc maths formulae for board exam
090799768954
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
WEEK 3.pdf
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
Ecuacion diferencial de la forma u=ax+bx+c
INTEGRAL CALCULUS .pdf hahahahahahhwwhhwh
Ley de composición interna algebra ii
Functions ppt Dr Frost Maths Mixed questions
Unit 1 Set Theory-Engineering Mathematics.pptx
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
Strategic intervention material
TRANSFORMACIONES LINEALES
WEEK 1 QUADRATIC EQUATION.pptx
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
06_Complex Numbers_Hyperbolic Functions.pptx
Surds revision card
Equations.pptx
Ad

More from AjayQuines (20)

PPTX
The cardiac cycle 9
PPTX
Set relationships
PPTX
Scientific method
PPTX
Respiratory system 9
PPTX
Rational function 11
PPTX
Radicals
PPTX
Pure substance and mixtures 7
PPTX
Properties of whole numbers
PPTX
Properties of radicals 9
PPTX
Properties of matter
PPTX
Product of a monomial, square of binomial, sum and difference of two squares ...
PPTX
Polynomial function 10
PPTX
Other roots grade 9
PPTX
Order of operations in math 5
PPTX
Operations on integers 7
PPTX
Multiplying and dividing decimals 6
PPTX
Mathematics 7 week 1
PPTX
Harmonic sequence and fibonacci 10
PPTX
Geometric sequence and series 10
PPTX
Factors & divisibility
The cardiac cycle 9
Set relationships
Scientific method
Respiratory system 9
Rational function 11
Radicals
Pure substance and mixtures 7
Properties of whole numbers
Properties of radicals 9
Properties of matter
Product of a monomial, square of binomial, sum and difference of two squares ...
Polynomial function 10
Other roots grade 9
Order of operations in math 5
Operations on integers 7
Multiplying and dividing decimals 6
Mathematics 7 week 1
Harmonic sequence and fibonacci 10
Geometric sequence and series 10
Factors & divisibility
Ad

Recently uploaded (20)

PPTX
Lesson notes of climatology university.
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
Classroom Observation Tools for Teachers
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Trump Administration's workforce development strategy
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
1_English_Language_Set_2.pdf probationary
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Introduction to Building Materials
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Lesson notes of climatology university.
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
A powerpoint presentation on the Revised K-10 Science Shaping Paper
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Computing-Curriculum for Schools in Ghana
Classroom Observation Tools for Teachers
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Trump Administration's workforce development strategy
Orientation - ARALprogram of Deped to the Parents.pptx
1_English_Language_Set_2.pdf probationary
A systematic review of self-coping strategies used by university students to ...
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Introduction to Building Materials
UNIT III MENTAL HEALTH NURSING ASSESSMENT
Weekly quiz Compilation Jan -July 25.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx

Finding the general term

  • 2. EXAMPLE: FIND THE GENERAL TERM OF THE SEQUENCE 5, 12, 19, 26, 33, . . .
  • 3. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 5 12 19 26 33 . . . ?
  • 4. GET THE DIFFERENCE 𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟕
  • 5. SOLVE FOR a AND b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓 𝑎 1 + 𝑏 = 5 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟐 𝑎 2 + 𝑏 = 12 𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐
  • 6. 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟐 𝑬𝒒. 𝟐 𝒂 = 𝟕 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟕 + 𝒃 = 𝟓 𝒃 = 𝟓 − 𝟕 𝒃 = −𝟐 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 7. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟕𝒏 − 𝟐 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is 𝒂 𝒏 = 𝟕𝐧 − 𝟐
  • 8. EXAMPLE: FIND THE GENERAL TERM OF THE SEQUENCE 7, 11, 15, 19, 23, . . .
  • 9. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 7 11 15 19 23 . . . ?
  • 10. GET THE DIFFERENCE 𝟕, 𝟏𝟏, 𝟏𝟓, 𝟏𝟗, 𝟐𝟑, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒
  • 11. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕 𝑎 1 + 𝑏 = 7 𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏𝟏 𝑎 2 + 𝑏 = 11 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
  • 12. 𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟒 𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟒 + 𝒃 = 𝟕 𝒃 = 𝟕 − 𝟒 𝒃 = 𝟑 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 13. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒𝒏 + 𝟑 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟓, 𝟏𝟐, 𝟏𝟗, 𝟐𝟔, 𝟑𝟑, . . . is 𝒂 𝒏 = 𝟒𝐧 + 𝟑
  • 14. QUIZ: 1. FIND THE GENERAL TERM OF THE SEQUENCE 1, 3, 5, 7, 9, . . . 2. FIND THE GENERAL TERM OF THE SEQUENCE -2, 1, 4, 7, 10, . . . 3. FIND THE GENERAL TERM OF THE SEQUENCE -1, 1, 3, 5, 7, 9, . . .
  • 15. QUIZ: FIND THE GENERAL TERM OF THE SEQUENCE 1, 3, 5, 7, 9, . . .
  • 16. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 1 3 5 7 9 . . . ?
  • 17. GET THE DIFFERENCE 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 2
  • 18. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏 𝑎 1 + 𝑏 = 1 𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑 𝑎 2 + 𝑏 = 3 𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐
  • 19. 𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟐 𝒂 = 𝟐 𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟐 + 𝒃 = 𝟏 𝒃 = 𝟏 − 𝟐 𝒃 = −𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 20. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟐𝒏 − 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is 𝒂 𝒏 = 𝟐𝐧 − 𝟏
  • 21. QUIZ: FIND THE GENERAL TERM OF THE SEQUENCE -2, 1, 4, 7, 10, . . .
  • 22. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 -2 1 4 7 10 . . . ?
  • 23. GET THE DIFFERENCE −𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 3
  • 24. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐 𝑎 1 + 𝑏 = −2 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏 𝑎 2 + 𝑏 = 1 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
  • 25. 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟑 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟑 + 𝒃 = −𝟐 𝒃 = −𝟐 − 𝟑 𝒃 = −𝟓 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 26. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟑𝒏 − 𝟓 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 −𝟐, 𝟏, 𝟒, 𝟕, 𝟏𝟎, . . . is 𝒂 𝒏 = 𝟑𝐧 − 𝟓
  • 27. QUIZ: FIND THE GENERAL TERM OF THE SEQUENCE -1, 1, 3, 5, 7, 9, . . .
  • 28. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 -1 1 3 5 7 . . . ?
  • 29. GET THE DIFFERENCE −𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 2
  • 30. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟏 𝑎 1 + 𝑏 = −1 𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟏 𝑎 2 + 𝑏 = 1 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐
  • 31. 𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟐 𝒂 + 𝒃 = −𝟏 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟐 + 𝒃 = −𝟏 𝒃 = −𝟏 − 𝟐 𝒃 = −𝟑 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 32. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟐𝒏 − 𝟑 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 −𝟏, 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, . . . is 𝒂 𝒏 = 𝟐𝐧 − 𝟑
  • 33. ASSIGNMENT! FIND THE GENERAL TERM OF THE FOLLOWING. 1. 3, 7, 11, 15, . . . 2. 2, 6, 10, 14, . . . 3. 5, 11, 17, 23, . . . 4. 9, 11, 13, 15, . . . 5. -2, -5, -8, -11, . . .
  • 34. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 1. 3, 7, 11, 15, . . .
  • 35. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 3 7 11 15 . . . ?
  • 36. GET THE DIFFERENCE 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, … 𝒂𝒏 + 𝒃 = 𝒂 𝒏 4
  • 37. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟑 𝑎 1 + 𝑏 = 3 𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟕 𝑎 2 + 𝑏 = 7 𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐
  • 38. 𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟕 𝑬𝒒. 𝟐 𝒂 = 𝟒 𝒂 + 𝒃 = 𝟑 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟒 + 𝒃 = 𝟑 𝒃 = 𝟑 − 𝟒 𝒃 = −𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 39. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒𝒏 − 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓, . . . is 𝒂 𝒏 = 𝟒𝐧 − 𝟏
  • 40. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 2. 2, 6, 10, 14, . . .
  • 41. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 2 6 10 14 . . . ?
  • 42. GET THE DIFFERENCE 𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 4
  • 43. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟐 𝑎 1 + 𝑏 = 2 𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = 𝟔 𝑎 2 + 𝑏 = 6 𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐
  • 44. 𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟔 𝑬𝒒. 𝟐 𝒂 = 𝟒 𝒂 + 𝒃 = 𝟐 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟒 + 𝒃 = 𝟐 𝒃 = 𝟐 − 𝟒 𝒃 = −𝟐 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 45. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟒𝒏 − 𝟐 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟐, 𝟔, 𝟏𝟎, 𝟏𝟒, . . . is 𝒂 𝒏 = 𝟒𝐧 − 𝟐
  • 46. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 3. 5, 11, 17, 23, . . .
  • 47. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 5 11 17 23 . . . ?
  • 48. GET THE DIFFERENCE 𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 6
  • 49. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟓 𝑎 1 + 𝑏 = 5 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏 𝑎 2 + 𝑏 = 11 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
  • 50. 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟔 𝒂 + 𝒃 = 𝟓 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟔 + 𝒃 = 𝟓 𝒃 = 𝟓 − 𝟔 𝒃 = −𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 51. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟔𝒏 − 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟓, 𝟏𝟏, 𝟏𝟕, 𝟐𝟑, . . . is 𝒂 𝒏 = 𝟔𝐧 − 𝟏
  • 52. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 4. 9, 11, 13, 15, . . .
  • 53. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 9 11 13 15 . . . ?
  • 54. GET THE DIFFERENCE 𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 2
  • 55. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = 𝟗 𝑎 1 + 𝑏 = 9 𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 𝟏𝟏 𝑎 2 + 𝑏 = 11 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐
  • 56. 𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = 𝟏𝟏 𝑬𝒒. 𝟐 𝒂 = 𝟐 𝒂 + 𝒃 = 𝟗 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. 𝟔 + 𝒃 = 𝟗 𝒃 = 𝟗 − 𝟔 𝒃 = 𝟕 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 57. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝟐𝒏 + 𝟕 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝟗, 𝟏𝟏, 𝟏𝟑, 𝟏𝟓, . . . is 𝒂 𝒏 = 𝟐𝐧 + 𝟕
  • 58. ASSIGNMENT: FIND THE GENERAL TERM OF THE SEQUENCE 5. -2, -5, -8, -11, . . .
  • 59. PREPARE A TABLE n 1 2 3 4 5 . . . n 𝒂 𝒏 -2 -5 -8 -11 . . . ?
  • 60. GET THE DIFFERENCE −𝟐, −𝟓, −𝟖, −𝟏𝟏, . . . 𝒂𝒏 + 𝒃 = 𝒂 𝒏 −3
  • 61. SOLVE FOR a and b. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 𝑰𝒇 𝒏 = 𝟏 𝒂𝒏𝒅 𝒂 𝒏 = −𝟐 𝑎 1 + 𝑏 = −2 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝑰𝒇 𝒏 = 𝟐 𝒂𝒏𝒅 𝒂 𝒏 = −𝟓 𝑎 2 + 𝑏 = −5 𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐
  • 62. 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝟐𝒂 + 𝒃 = −𝟓 𝑬𝒒. 𝟐 𝒂 = −𝟑 𝒂 + 𝒃 = −𝟐 𝑬𝒒. 𝟏 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒂. −𝟑 + 𝒃 = −𝟐 𝒃 = −𝟐 + 𝟑 𝒃 = 𝟏 SOLVE FOR a AND b. 𝑺𝒖𝒃𝒕𝒓𝒂𝒄𝒕 𝑬𝒒. 𝟏 𝒇𝒓𝒐𝒎 𝑬𝒒. 𝟐
  • 63. 𝒂𝒏 + 𝒃 = 𝒂 𝒏 −𝟑𝒏 + 𝟏 = 𝒂 𝒏 𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒕𝒉𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒍 𝒕𝒆𝒓𝒎 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 −𝟐, −𝟓, −𝟖, −𝟏𝟏, . . . is 𝒂 𝒏 = 𝟏 − 𝟑𝐧