Chapter 15
Fourier Series and Fourier Transform
15.3 - 15.8
Linear Circuit
I/P O/P
Sinusoidal Inputs OK
Nonsinusoidal Inputs
Nonsinusoidal Inputs Sinusoidal Inputs
The Fourier Series
Fourier Series
The Fourier Series
Joseph Fourier
1768 to 1830
Fourier studied the mathematical theory of heat
conduction. He established the partial differential
equation governing heat diffusion and solved it by
using infinite series of trigonometric functions.
The Fourier Series
Fourier proposed in 1807
A periodic waveform f(t) could be broken down into an
infinite series of simple sinusoids which, when added
together, would construct the exact form of the original
waveform.
Consider the periodic function
( ) ( ) ; 1, 2, 3,
f t f t nT n
     
T = Period, the smallest value of T that satisfies the above
Equation.
The Fourier Series
The expression for a Fourier Series is
0 0 0
1 1
( ) cos sin
N N
n n
n n
f t a a n t b n t
 
 
  
 
Fourier Series = a finite sum of harmonically related sinusoids
Or, alternative form
0 0
1
( ) cos( )
N
n n
n
f t C C n t
 

  

0, , and are real and are called
Fourier Trigonometric Coefficients
n n
a a b and 0
2
T

 
0 0 and are the Complex Coefficients
n
C a C

The Fourier Series
0 0
1
( ) cos( )
N
n n
n
f t C C n t
 

  

0
C is the average (or DC) value of f(t)
For n = 1 the corresponding sinusoid
is called the fundamental
1 0 1
cos( )
C t
 

For n = k the corresponding sinusoid
is called the kth harmonic term
0
cos( )
k k
C k t
 

Similarly, 0 is call the fundamental frequency
k0 is called the kth harmonic frequency
The Fourier Series
A Fourier Series is an accurate representation of a
periodic signal and consists of the sum of sinusoids at
the fundamental and harmonic frequencies.
Definition
N  
The waveform f(t) depends on the amplitude and phase
of every harmonic components, and we can generate any
non-sinusoidal waveform by an appropriate combination
of sinusoidal functions.
http://archives.math.utk.edu/topics/fourierAnalysis.html
The Fourier Series
To be described by the Fourier Series the waveform f(t)
must satisfy the following mathematical properties:
1. f(t) is a single-value function except at possibly a
finite number of points.
2. The integral for any t0.
3. f(t) has a finite number of discontinuities within
the period T.
4. f(t) has a finite number of maxima and minima
within the period T.
0
0
( )
t T
t
f t dt

 

In practice, f(t) = v(t) or i(t) so the above 4 conditions are
always satisfied.
The Fourier Series
Recall from calculus that sinusoids whose frequencies are
integer multiples of some fundamental frequency f0 = 1/T
form an orthogonal set of functions.
0
2 2 2
sin cos 0 ; ,
T nt mt
dt n m
T T T
 
 

and
0 0
2 2 2 2 2 2
sin sin cos cos
0 ;
1 ; 0
T T
nt mt nt mt
dt dt
T T T T T T
n m
n m
   



 
 

 
The Fourier Series
The Fourier Trigonometric Coefficients can be obtained
from
0
0
0
0
0
0
0
0
0
1
( )
2
( )cos
2
( )sin
t T
t
t T
n
t
t T
n
t
a f t dt
T
a f t n t dt
T
b f t n t dt
T











average value over one period
n > 0
n > 0
The Fourier Series
To obtain ak
0 0 0
0 0
0 0 0
0
1
( )cos cos
( cos sin )cos
T T
N T
n n
n
f t k t dt a k t dt
a n t b n t k t dt
 
  


 
 

The only nonzero term is for n = k
0
0
( )cos
2
T
k
T
f t k t dt a

 
  
 

Similar approach can be used to obtain bk
Example 15.3-1 determine Fourier Series and plot for N = 7
0
0
0
/ 2 / 4
/ 2 / 4
1
( )
1 1 1
( ) 1
2
t T
t
T T
T T
a f t dt
T
f t dt dt
T T

 

  

 
0
1
2
a 
average or DC value
Example 15.3-1(cont.)
An even function exhibits symmetry around the vertical axis
at t = 0 so that f(t) = f(-t).
0
0
0
/ 4
0
/ 4
2
( )sin
2
1 sin 0
t T
n
t
T
T
b f t n t dt
T
n t dt
T




 
 


/ 4
0
/ 4
/ 4
0 / 4
0
2
1 cos
2
sin |
T
n
T
T
T
a n t dt
T
n t
T n








Determine only an
Example 15.3-1(cont.)
1
sin sin
2 2
n
n n
a
n
 


 
   
 
   
 
   
 
0 when 2, 4, 6,
n
a n
  
and 2( 1)
when 1, 3, 5,
q
n
a n
n


  
where
( 1)
2
n
q


0
1,
1 2( 1)
( ) cos
2
q
N
n odd
f t n t
n




  
1 3 5 7
2 2 2 2
, , ,
3 5 7
a a a a
   
 
   
Symmetry of the Function
Four types
1. Even-function symmetry
2. Odd-function symmetry
3. Half-wave symmetry
4. Quarter-wave symmetry
Even function
( ) ( )
f t f t
  All bn = 0
/ 2
0
0
4
( )cos
T
n
a f t n t dt
T

 
Symmetry of the Function
Odd function
( ) ( )
f t f t
   All an = 0
/ 2
0
0
4
( )sin
T
n
b f t n t dt
T

 
Half-wave symmetry
( ) ( )
2
T
f t f t
  
an and bn = 0 for even values of n and a0 = 0
Quarter-wave symmetry
Symmetry of the Function
All an = 0 and bn = 0 for even values of n and a0 = 0
/ 4
0
0
8
( )sin ; for odd
T
n
b f t n t dt n
T

 
Odd & Quarter-wave
For Even & Quarter-wave
Symmetry of the Function
All bn = 0 and an = 0 for even values of n and a0 = 0
/ 4
0
0
8
( )cos ; for odd
T
n
a f t n t dt n
T

 
Table 15.4-1 gives a summary of Fourier coefficients
and symmetry.
Example 15.4-1 determine Fourier Series and N = ?
4 and s
2
m
f T

 
0
2
4 rad/s
2
T
T
 

   
To obtain the most advantages form of symmetry,
we choose t1 = 0 s
0
Odd & Quarter-wave
All an = 0 and bn = 0 for even values of n and a0 = 0

/ 4
0
0
8
( )sin ; for odd
T
n
b f t n t dt n
T

 
Example 15.4-1(cont.)
4
( ) ; 0 / 4
/ 4
m m
f f
f t t t t T
T T
   
2

4
32
( ) ; 0 / 4
f t t t T

   
/ 4
0
0
/ 4
0 0
2 2 2
0 0 0
2 2
8 32
sin
512 sin cos
32
sin ; for odd
2
T
n
T
b t n t dt
T
n t t n t
n n
n
n
n


 
  


 
  
 
 
 
 
 


Example 15.4-1(cont.)
The Fourier Series is
0
2
1
1
( ) 3.24 sin sin ; for odd
2
N
n
n
f t n t n
n



 
2
32

The first 4 terms (upto and including N = 7)
1 1 1
( ) 3.24(sin4 sin12 sin20 sin28 )
9 25 49
f t t t t t
   
Next harmonic is for N = 9 which has magnitude
3.24/81 = 0.04 < 2 % of b1 ( = 3.24)
Therefore the first 4 terms (including N = 7) is enough for
the desired approximation
Exponential Form of the Fourier Series
0 0
1
( ) cos( )
N
n n
n
f t C C n t
 

  

is the average (or DC) value of f(t) and
0
C
( )
2
n n
n n n
a jb
C 

  
C
2 2
2
n n
n n
a b
C

 
C
and
where
1
1
tan ; if 0
180 tan ; if 0
n
n
n
n
n
n
n
b
a
a
b
a
a



  

  
  
 
 
    
 

 

Exponential Form of the Fourier Series
or
2 cos and 2 sin
n n n n n n
a C b C
 
 
Writing in exponential form using
Euler’s identity with
0
cos( )
n
n t
 

N  
0 0
0
0
( ) jn t jn t
n n
n n
n
f t C e e
 
 
 

  
 
C C
where the complex coefficients are defined as
0
0
0
1
( ) n
t T
jn t j
n n
t
f t e dt C e
T
 


 

C
And ; the coefficients for negative n are the
complex conjugates of the coefficients for positive n
*
n n


C C
Example 15.5-1 determine complex Fourier Series
The average value of f(t) is zero 0 0
C
 
Even function
0
0
0
1
( )
t T
jn t
n
t
f t e dt
T



 
C
We select and define
0
2
T
t   0
jn m
 
 
 
0
/ 2
/ 2
/ 4 / 4 / 2
/ 2 / 4 / 4
/ 4 / 4 / 2
/ 2 / 4 / 4
/ 2 / 2
0
1
( )
1 1 1
| | |
2 2
0
4sin 2sin( )
2 2
T
jn t
n
T
T T T
mt mt mt
T T T
mt T mt T mt T
T T T
jn jn jn jn
f t e dt
T
Ae dt Ae dt Ae dt
T T T
A
e e e
mT
A
e e e e
jn T
A n
n
n

   







  
 
   
 
 

    
  
   
 
  
 
 

  
C
; for even
2
sin ; for odd
2
sin
where
2
n
A
n n
n
x n
A x
x








 
Example 15.5-1(cont.)
Example 15.5-1(cont.)
Since f(t) is even function, all Cn are real and = 0 for n even
1 1
sin / 2 2
/ 2
A A

  
  
C C
For n = 1
For n = 2
2 2
sin
0
A

 
  
C C
For n = 3
3 3
sin(3 / 2) 2
3 / 2 3
A A

  

  
C C
Example 15.5-1(cont.)
The complex Fourier Series is
   
0 0 0 0
0 0 0 0
3 3
3 3
0 0
0
1
2 2 2 2
( )
3 3
2 2
3
4 4
cos cos3
3
4 ( 1)
cos
j t j t j t j t
j t j t j t j t
q
n
n odd
A A A A
f t e e e e
A A
e e e e
A A
t t
A
n t
n
   
   
   
 
 
 


 
 



 
     

    
  

  where
1
2
n
q


For real f(t) n n

 
C C
2cos
2 sin
jx jx
jx jx
e e x
e e j x


 
 
Example 15.5-2 determine complex Fourier Series
Even function
 
/ 4
/ 4
/ 4
/ 4
/ 4 / 4
1
1
1
|
1
T
mt
n
T
mt T
T
mT mT
e dt
T
e
mT
e e
mT




 



 


C
0
jn m
 
Use
 
/ 2 / 2
( 1)/ 2
1
2
0 ; even, 0
( 1) ; odd
jn jn
n
n
e e
jn
n n
n
 

 

 



 


C
Example 15.5-2(cont.)
To find C0
0
0
/ 4
/ 4
1
( )
1 1
1
2
T
T
T
C f t dt
T
dt
T 

 


The Fourier Spectrum
The complex Fourier coefficients
n n n

 
C C
n
C

Amplitude spectrum

n

Phase spectrum
The Fourier Spectrum
The Fourier Spectrum is a graphical display of the
amplitude and phase of the complex Fourier coeff.
at the fundamental and harmonic frequencies.
Example
A periodic sequence of pulses each of width 
The Fourier Spectrum
The Fourier coefficients are
0
/ 2
/ 2
1 T
jn t
n
T
Ae dt
T



 
C
For 0
n 
 
0
0 0
/ 2
/ 2
/ 2 / 2
0
0
0
2
sin
2
jn t
n
jn jn
A
e dt
T
A
e e
jn T
A n
n T
 

   

 






 
 
  
 

C
0
0
sin( / 2)
( / 2)
sin
n
A n
T n
A x
T x
  
 



C
The Fourier Spectrum
where 0 /2
x n 

For 0
n 
/ 2
0
/ 2
1 A
Adt
T T




 

C
The Fourier Spectrum
ˆ
L'Hopital's rule
sin
1 for 0
x
x
x
 
sin( )
0 ; 1, 2, 3,
n
n
n


 
0
5
 

0
10
 

0
 
The Truncated Fourier Series
0
( ) ( )
N
jn t
n N
n N
f t e S t


 
 C
A practical calculation of the Fourier series requires that
we truncate the series to a finite number of terms.
The error for N terms is
( ) ( ) ( )
N
t f t S t
  
We use the mean-square error (MSE) defined as
2
0
1
( )
T
MSE t dt
T

 
MSE is minimum when Cn = Fourier series’ coefficients
The Truncated Fourier Series
overshoot 10%

Circuits and Fourier Series
An RC circuit excited by a periodic voltage vS(t).
It is often desired to determine the response of a circuit
excited by a periodic signal vS(t).
Example 15.8-1 An RC Circuit vO(t) = ?
1 , 2 F, sec
R C T 
   
Example 15.3-1
Circuits and Fourier Series
An equivalent circuit.
Each voltage source
is a term of the
Fourier series of vs(f).
Using
phasors
to find
steady-state
responses
to the
sinusoids.
Each
input
is a
Sinusoid.
Example 15.8-1
(cont.)
0
1,
1 2( 1)
( ) cos
2
q
N
s
n odd
v t n t
n




  
Example 15.8-1 (cont.)
( 1)
2
n
q


where
The first 4 terms of vS(t) is
0 1 3 5
1 2 2 2
( ) cos2 cos6 cos10
2 3
( ) ) ( ( )
5
( )
s
v t t
v t v t v t v t
s s s s
t t
  
   
0 2 rad/s
 
The steady state response vO(t) can then be found using
superposition. 0 1 3 5
( ) ( ) ( ) ( ) ( )
o o o o o
v t v t v t v t v t
   
Example 15.8-1 (cont.)
The impedance of the capacitor is
0
1
; for 0,1, 3, 5,
C n
jn C

 
Z
0
0
0
1
; for 0,1, 3, 5
1
4
,
1
on sn
sn
jn C
n
R
jn C
jn CR



 



V V
V
We can find
Example 15.8-1 (cont.)
The steady-state response can be written as
0
1
0
2
( ) cos(
cos( tan 4 )
1 16
on on on
sn
sn
v t n t
n t n
n

 
  
   

V V
V
V
0
1
2
2
for 1, 3, 5
0 for 0,1, 3, 5
s
sn
sn
n
n
n


 
  
V
V
V
In this example we have
Example 15.8-1 (cont.)
0
1
2
1
( )
2
2
( ) cos( 2 tan 4 ) ; for 1,3,5
1 16
o
on
v t
v t n t n n
n n



  

1
3
5
( ) 0.154cos(2 76 )
( ) 0.018cos(6 85 )
( ) 0.006cos(10 87 )
o
o
o
v t t
v t t
v t t
  
  
  
1
( ) 0.154cos(2 76 ) 0.018cos(6 85 )
2
0.006cos(10 87 )
o
v t t t
t
       
  
Summary
The Fourier Series
Symmetry of the Function
Exponential Form of the Fourier Series
The Fourier Spectrum
The Truncated Fourier Series
Circuits and Fourier Series

More Related Content

PPTX
The Fourier Series Representations .pptx
PPT
Nt lecture skm-iiit-bh
PDF
4. a Find the compact trigonometric Fourier series for the periodic s.pdf
PPT
An introduction to Fourier Series_mathematics
PPTX
UNIT 1 _ Concept of Fourier series.pptx
PPT
The fourier series signals and systems by R ismail
PDF
rcg-ch4a.pdf
DOCX
Continous time fourier series and Examples
The Fourier Series Representations .pptx
Nt lecture skm-iiit-bh
4. a Find the compact trigonometric Fourier series for the periodic s.pdf
An introduction to Fourier Series_mathematics
UNIT 1 _ Concept of Fourier series.pptx
The fourier series signals and systems by R ismail
rcg-ch4a.pdf
Continous time fourier series and Examples

Similar to Fourier series and Fourier transform in po physics (20)

PDF
Tele3113 wk1tue
PDF
Find the compact trigonometric Fourier series for the periodic signal.pdf
PDF
03 Cap 2 - fourier-analysis-2015.pdf
PDF
InfEntr_EntrProd_20100618_2
PDF
Eece 301 note set 14 fourier transform
PDF
Orthogonality relations pdf
PDF
Fourier Transform ppt and material for mathematics subject
PDF
Signal & system
PDF
Ist module 3
PPT
4945427.ppt
PPT
Ch4 (1)_fourier series, fourier transform
PPTX
UNIT 1 _ Problems On Fourier Series.pptx
DOCX
unit 4,5 (1).docx
PDF
Fourier Specturm via MATLAB
PPTX
SP_SNS_C2.pptx
PDF
Ss important questions
PDF
D021018022
PPT
Lecturer 03. Digital imaging probability
PPT
Lecture7 Signal and Systems
PDF
Orthogonal Representation, Fourier Series and Power Spectra
Tele3113 wk1tue
Find the compact trigonometric Fourier series for the periodic signal.pdf
03 Cap 2 - fourier-analysis-2015.pdf
InfEntr_EntrProd_20100618_2
Eece 301 note set 14 fourier transform
Orthogonality relations pdf
Fourier Transform ppt and material for mathematics subject
Signal & system
Ist module 3
4945427.ppt
Ch4 (1)_fourier series, fourier transform
UNIT 1 _ Problems On Fourier Series.pptx
unit 4,5 (1).docx
Fourier Specturm via MATLAB
SP_SNS_C2.pptx
Ss important questions
D021018022
Lecturer 03. Digital imaging probability
Lecture7 Signal and Systems
Orthogonal Representation, Fourier Series and Power Spectra
Ad

More from RakeshPatil2528 (8)

PPT
Tech_and_social_media_Technical with social media on child
PPT
Effect of Tech_and_social_media_on students PF.ppt
PPTX
NP Nuclear physics and properties of nuclear
PPT
Future of microprocessor in applied physics
PPT
fourier-method-of-waveform-analysis msc physics
PPT
Schrodinger equation in QM Reminders.ppt
PPT
Schrodinger equation in quantum mechanics
PPT
Introduction of quantum mechanics for s.y bsc
Tech_and_social_media_Technical with social media on child
Effect of Tech_and_social_media_on students PF.ppt
NP Nuclear physics and properties of nuclear
Future of microprocessor in applied physics
fourier-method-of-waveform-analysis msc physics
Schrodinger equation in QM Reminders.ppt
Schrodinger equation in quantum mechanics
Introduction of quantum mechanics for s.y bsc
Ad

Recently uploaded (20)

PDF
Journal of Dental Science - UDMY (2022).pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
International_Financial_Reporting_Standa.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PDF
semiconductor packaging in vlsi design fab
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PPTX
Education and Perspectives of Education.pptx
PPTX
Climate Change and Its Global Impact.pptx
PDF
Literature_Review_methods_ BRACU_MKT426 course material
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
PPTX
What’s under the hood: Parsing standardized learning content for AI
PDF
Journal of Dental Science - UDMY (2020).pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
Journal of Dental Science - UDMY (2022).pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
International_Financial_Reporting_Standa.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
My India Quiz Book_20210205121199924.pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
semiconductor packaging in vlsi design fab
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
Education and Perspectives of Education.pptx
Climate Change and Its Global Impact.pptx
Literature_Review_methods_ BRACU_MKT426 course material
FORM 1 BIOLOGY MIND MAPS and their schemes
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Myanmar Dental Journal, The Journal of the Myanmar Dental Association (2013).pdf
What’s under the hood: Parsing standardized learning content for AI
Journal of Dental Science - UDMY (2020).pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
AI-driven educational solutions for real-life interventions in the Philippine...

Fourier series and Fourier transform in po physics

  • 1. Chapter 15 Fourier Series and Fourier Transform 15.3 - 15.8
  • 2. Linear Circuit I/P O/P Sinusoidal Inputs OK Nonsinusoidal Inputs Nonsinusoidal Inputs Sinusoidal Inputs The Fourier Series Fourier Series
  • 3. The Fourier Series Joseph Fourier 1768 to 1830 Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.
  • 4. The Fourier Series Fourier proposed in 1807 A periodic waveform f(t) could be broken down into an infinite series of simple sinusoids which, when added together, would construct the exact form of the original waveform. Consider the periodic function ( ) ( ) ; 1, 2, 3, f t f t nT n       T = Period, the smallest value of T that satisfies the above Equation.
  • 5. The Fourier Series The expression for a Fourier Series is 0 0 0 1 1 ( ) cos sin N N n n n n f t a a n t b n t          Fourier Series = a finite sum of harmonically related sinusoids Or, alternative form 0 0 1 ( ) cos( ) N n n n f t C C n t        0, , and are real and are called Fourier Trigonometric Coefficients n n a a b and 0 2 T    0 0 and are the Complex Coefficients n C a C 
  • 6. The Fourier Series 0 0 1 ( ) cos( ) N n n n f t C C n t        0 C is the average (or DC) value of f(t) For n = 1 the corresponding sinusoid is called the fundamental 1 0 1 cos( ) C t    For n = k the corresponding sinusoid is called the kth harmonic term 0 cos( ) k k C k t    Similarly, 0 is call the fundamental frequency k0 is called the kth harmonic frequency
  • 7. The Fourier Series A Fourier Series is an accurate representation of a periodic signal and consists of the sum of sinusoids at the fundamental and harmonic frequencies. Definition N   The waveform f(t) depends on the amplitude and phase of every harmonic components, and we can generate any non-sinusoidal waveform by an appropriate combination of sinusoidal functions. http://archives.math.utk.edu/topics/fourierAnalysis.html
  • 8. The Fourier Series To be described by the Fourier Series the waveform f(t) must satisfy the following mathematical properties: 1. f(t) is a single-value function except at possibly a finite number of points. 2. The integral for any t0. 3. f(t) has a finite number of discontinuities within the period T. 4. f(t) has a finite number of maxima and minima within the period T. 0 0 ( ) t T t f t dt     In practice, f(t) = v(t) or i(t) so the above 4 conditions are always satisfied.
  • 9. The Fourier Series Recall from calculus that sinusoids whose frequencies are integer multiples of some fundamental frequency f0 = 1/T form an orthogonal set of functions. 0 2 2 2 sin cos 0 ; , T nt mt dt n m T T T      and 0 0 2 2 2 2 2 2 sin sin cos cos 0 ; 1 ; 0 T T nt mt nt mt dt dt T T T T T T n m n m              
  • 10. The Fourier Series The Fourier Trigonometric Coefficients can be obtained from 0 0 0 0 0 0 0 0 0 1 ( ) 2 ( )cos 2 ( )sin t T t t T n t t T n t a f t dt T a f t n t dt T b f t n t dt T            average value over one period n > 0 n > 0
  • 11. The Fourier Series To obtain ak 0 0 0 0 0 0 0 0 0 1 ( )cos cos ( cos sin )cos T T N T n n n f t k t dt a k t dt a n t b n t k t dt             The only nonzero term is for n = k 0 0 ( )cos 2 T k T f t k t dt a          Similar approach can be used to obtain bk
  • 12. Example 15.3-1 determine Fourier Series and plot for N = 7 0 0 0 / 2 / 4 / 2 / 4 1 ( ) 1 1 1 ( ) 1 2 t T t T T T T a f t dt T f t dt dt T T           0 1 2 a  average or DC value
  • 13. Example 15.3-1(cont.) An even function exhibits symmetry around the vertical axis at t = 0 so that f(t) = f(-t). 0 0 0 / 4 0 / 4 2 ( )sin 2 1 sin 0 t T n t T T b f t n t dt T n t dt T           / 4 0 / 4 / 4 0 / 4 0 2 1 cos 2 sin | T n T T T a n t dt T n t T n         Determine only an
  • 14. Example 15.3-1(cont.) 1 sin sin 2 2 n n n a n                         0 when 2, 4, 6, n a n    and 2( 1) when 1, 3, 5, q n a n n      where ( 1) 2 n q   0 1, 1 2( 1) ( ) cos 2 q N n odd f t n t n        1 3 5 7 2 2 2 2 , , , 3 5 7 a a a a          
  • 15. Symmetry of the Function Four types 1. Even-function symmetry 2. Odd-function symmetry 3. Half-wave symmetry 4. Quarter-wave symmetry Even function ( ) ( ) f t f t   All bn = 0 / 2 0 0 4 ( )cos T n a f t n t dt T   
  • 16. Symmetry of the Function Odd function ( ) ( ) f t f t    All an = 0 / 2 0 0 4 ( )sin T n b f t n t dt T    Half-wave symmetry ( ) ( ) 2 T f t f t    an and bn = 0 for even values of n and a0 = 0
  • 17. Quarter-wave symmetry Symmetry of the Function All an = 0 and bn = 0 for even values of n and a0 = 0 / 4 0 0 8 ( )sin ; for odd T n b f t n t dt n T    Odd & Quarter-wave
  • 18. For Even & Quarter-wave Symmetry of the Function All bn = 0 and an = 0 for even values of n and a0 = 0 / 4 0 0 8 ( )cos ; for odd T n a f t n t dt n T    Table 15.4-1 gives a summary of Fourier coefficients and symmetry.
  • 19. Example 15.4-1 determine Fourier Series and N = ? 4 and s 2 m f T    0 2 4 rad/s 2 T T        To obtain the most advantages form of symmetry, we choose t1 = 0 s 0 Odd & Quarter-wave All an = 0 and bn = 0 for even values of n and a0 = 0  / 4 0 0 8 ( )sin ; for odd T n b f t n t dt n T   
  • 20. Example 15.4-1(cont.) 4 ( ) ; 0 / 4 / 4 m m f f f t t t t T T T     2  4 32 ( ) ; 0 / 4 f t t t T      / 4 0 0 / 4 0 0 2 2 2 0 0 0 2 2 8 32 sin 512 sin cos 32 sin ; for odd 2 T n T b t n t dt T n t t n t n n n n n                          
  • 21. Example 15.4-1(cont.) The Fourier Series is 0 2 1 1 ( ) 3.24 sin sin ; for odd 2 N n n f t n t n n      2 32  The first 4 terms (upto and including N = 7) 1 1 1 ( ) 3.24(sin4 sin12 sin20 sin28 ) 9 25 49 f t t t t t     Next harmonic is for N = 9 which has magnitude 3.24/81 = 0.04 < 2 % of b1 ( = 3.24) Therefore the first 4 terms (including N = 7) is enough for the desired approximation
  • 22. Exponential Form of the Fourier Series 0 0 1 ( ) cos( ) N n n n f t C C n t        is the average (or DC) value of f(t) and 0 C ( ) 2 n n n n n a jb C      C 2 2 2 n n n n a b C    C and where 1 1 tan ; if 0 180 tan ; if 0 n n n n n n n b a a b a a                            
  • 23. Exponential Form of the Fourier Series or 2 cos and 2 sin n n n n n n a C b C     Writing in exponential form using Euler’s identity with 0 cos( ) n n t    N   0 0 0 0 ( ) jn t jn t n n n n n f t C e e             C C where the complex coefficients are defined as 0 0 0 1 ( ) n t T jn t j n n t f t e dt C e T        C And ; the coefficients for negative n are the complex conjugates of the coefficients for positive n * n n   C C
  • 24. Example 15.5-1 determine complex Fourier Series The average value of f(t) is zero 0 0 C   Even function 0 0 0 1 ( ) t T jn t n t f t e dt T      C We select and define 0 2 T t   0 jn m  
  • 25.     0 / 2 / 2 / 4 / 4 / 2 / 2 / 4 / 4 / 4 / 4 / 2 / 2 / 4 / 4 / 2 / 2 0 1 ( ) 1 1 1 | | | 2 2 0 4sin 2sin( ) 2 2 T jn t n T T T T mt mt mt T T T mt T mt T mt T T T T jn jn jn jn f t e dt T Ae dt Ae dt Ae dt T T T A e e e mT A e e e e jn T A n n n                                                    C ; for even 2 sin ; for odd 2 sin where 2 n A n n n x n A x x           Example 15.5-1(cont.)
  • 26. Example 15.5-1(cont.) Since f(t) is even function, all Cn are real and = 0 for n even 1 1 sin / 2 2 / 2 A A        C C For n = 1 For n = 2 2 2 sin 0 A       C C For n = 3 3 3 sin(3 / 2) 2 3 / 2 3 A A         C C
  • 27. Example 15.5-1(cont.) The complex Fourier Series is     0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 1 2 2 2 2 ( ) 3 3 2 2 3 4 4 cos cos3 3 4 ( 1) cos j t j t j t j t j t j t j t j t q n n odd A A A A f t e e e e A A e e e e A A t t A n t n                                                where 1 2 n q   For real f(t) n n    C C 2cos 2 sin jx jx jx jx e e x e e j x      
  • 28. Example 15.5-2 determine complex Fourier Series Even function   / 4 / 4 / 4 / 4 / 4 / 4 1 1 1 | 1 T mt n T mt T T mT mT e dt T e mT e e mT              C 0 jn m   Use
  • 29.   / 2 / 2 ( 1)/ 2 1 2 0 ; even, 0 ( 1) ; odd jn jn n n e e jn n n n                C Example 15.5-2(cont.) To find C0 0 0 / 4 / 4 1 ( ) 1 1 1 2 T T T C f t dt T dt T      
  • 30. The Fourier Spectrum The complex Fourier coefficients n n n    C C n C  Amplitude spectrum  n  Phase spectrum
  • 31. The Fourier Spectrum The Fourier Spectrum is a graphical display of the amplitude and phase of the complex Fourier coeff. at the fundamental and harmonic frequencies. Example A periodic sequence of pulses each of width 
  • 32. The Fourier Spectrum The Fourier coefficients are 0 / 2 / 2 1 T jn t n T Ae dt T      C For 0 n    0 0 0 / 2 / 2 / 2 / 2 0 0 0 2 sin 2 jn t n jn jn A e dt T A e e jn T A n n T                           C
  • 33. 0 0 sin( / 2) ( / 2) sin n A n T n A x T x         C The Fourier Spectrum where 0 /2 x n   For 0 n  / 2 0 / 2 1 A Adt T T        C
  • 34. The Fourier Spectrum ˆ L'Hopital's rule sin 1 for 0 x x x   sin( ) 0 ; 1, 2, 3, n n n     0 5    0 10    0  
  • 35. The Truncated Fourier Series 0 ( ) ( ) N jn t n N n N f t e S t      C A practical calculation of the Fourier series requires that we truncate the series to a finite number of terms. The error for N terms is ( ) ( ) ( ) N t f t S t    We use the mean-square error (MSE) defined as 2 0 1 ( ) T MSE t dt T    MSE is minimum when Cn = Fourier series’ coefficients
  • 36. The Truncated Fourier Series overshoot 10% 
  • 37. Circuits and Fourier Series An RC circuit excited by a periodic voltage vS(t). It is often desired to determine the response of a circuit excited by a periodic signal vS(t). Example 15.8-1 An RC Circuit vO(t) = ? 1 , 2 F, sec R C T      Example 15.3-1
  • 38. Circuits and Fourier Series An equivalent circuit. Each voltage source is a term of the Fourier series of vs(f).
  • 40. 0 1, 1 2( 1) ( ) cos 2 q N s n odd v t n t n        Example 15.8-1 (cont.) ( 1) 2 n q   where The first 4 terms of vS(t) is 0 1 3 5 1 2 2 2 ( ) cos2 cos6 cos10 2 3 ( ) ) ( ( ) 5 ( ) s v t t v t v t v t v t s s s s t t        0 2 rad/s   The steady state response vO(t) can then be found using superposition. 0 1 3 5 ( ) ( ) ( ) ( ) ( ) o o o o o v t v t v t v t v t    
  • 41. Example 15.8-1 (cont.) The impedance of the capacitor is 0 1 ; for 0,1, 3, 5, C n jn C    Z 0 0 0 1 ; for 0,1, 3, 5 1 4 , 1 on sn sn jn C n R jn C jn CR         V V V We can find
  • 42. Example 15.8-1 (cont.) The steady-state response can be written as 0 1 0 2 ( ) cos( cos( tan 4 ) 1 16 on on on sn sn v t n t n t n n            V V V V 0 1 2 2 for 1, 3, 5 0 for 0,1, 3, 5 s sn sn n n n        V V V In this example we have
  • 43. Example 15.8-1 (cont.) 0 1 2 1 ( ) 2 2 ( ) cos( 2 tan 4 ) ; for 1,3,5 1 16 o on v t v t n t n n n n        1 3 5 ( ) 0.154cos(2 76 ) ( ) 0.018cos(6 85 ) ( ) 0.006cos(10 87 ) o o o v t t v t t v t t          1 ( ) 0.154cos(2 76 ) 0.018cos(6 85 ) 2 0.006cos(10 87 ) o v t t t t           
  • 44. Summary The Fourier Series Symmetry of the Function Exponential Form of the Fourier Series The Fourier Spectrum The Truncated Fourier Series Circuits and Fourier Series