Agung Budi Santoso, ST




Sintesis Bentuk Gelombang
    & Spektrum Garis
SINTESIS BENTUK GELOMBANG



Sintesis (penyatuan) adalah gabungan dari bagian-bagian sehingga
membentuk satu kesatuan. Sintesis Fourier adalah penggabungan
kembali suku-suku deret trigonometri, lazimnya empat atau lima
suku pertama agar menghasilkan gelombang mula-mula.
SPEKTRUM GARIS


Spektrum linier adalah sebuah kurva yang memperlihatkan masing-
masing amplitudo harmonik di dalam gelombang. Garis-garis
bertambah secara cepat pada gelombang-gelombang dengan deret
yang mengecil (konvergen) secara cepat.
Kandungan harmonik dan spektrum garis dari sebuah gelombang
adalah bagian yang sangat alamiah dari gelombang tersebut dan
tidak pernah berubah, tanpa memperhatikan metode analisis.
%
% Filename: example8.m
%
% Description: This M-file plots the truncated Fourier Series
%        for a square wave as well as its amplitude
%        spectrum.

clear;                   % clear all variables
clf;                    % clear all figures

N = 11;                   % summation limit (use N odd)
wo = pi;                   % fundamental frequency (rad/s)
c0 = 0;                   % dc bias
t = -3:0.01:3;             % declare time values

figure(1)                   % put first two plots on figure 1

% Compute yce, the Fourier Series in complex exponential form

yce = c0*ones(size(t));           % initialize yce to c0

for n = -N:2:N,          % loop over series index n
 cn = 2/(j*n*wo);        % Fourier Series Coefficient
 yce = yce + cn*exp(j*n*wo*t); % Fourier Series computation
end

subplot(2,1,1)
plot([-3 -2 -2 -1 -1 0 0 1 1 2 2 3],...     % plot original y(t)
   [-1 -1 1 1 -1 -1 1 1 -1 -1 1 1], ':');
hold;
plot(t,yce);
grid;
xlabel('t (seconds)')
ylabel('y(t)');
ttle = ['EE341.01: Truncated Exponential Fourier Series with N = ',...
       num2str(N)];
title(ttle);
hold

% Compute yt, the Fourier Series in trigonometric form

yt = c0*ones(size(t));      % initialize yce to c0

for n = 1:2:N,            % loop over series index n
 cn = 2/(j*n*wo);          % Fourier Series Coefficient
 yt = yt + 2*abs(cn)*cos(n*wo*t+angle(cn)); % Fourier Series computation
end

subplot(2,1,2)
plot([-3 -2 -2 -1 -1 0 0 1 1 2 2 3],... % plot original y(t)
    [-1 -1 1 1 -1 -1 1 1 -1 -1 1 1], ':');
hold;
plot(t,yt);
grid;
xlabel('t (seconds)')
ylabel('y(t)');
ttle = ['EE341.01: Truncated Trigonometric Fourier Series with N = ',...
       num2str(N)];
title(ttle);
hold
% Draw the amplitude spectrum from exponential Fourier Series

figure(2)             % put next plots on figure 2

subplot(2,1,1)
stem(0,c0);            % plot c0 at nwo = 0

hold
for n = -N:2:N,         % loop over series index n
 cn = 2/(j*n*wo);       % Fourier Series Coefficient
 stem(n*wo,abs(cn))         % plot |cn| vs nwo
end
for n = -N+1:2:N-1,       % loop over even series index n
 cn = 0;            % Fourier Series Coefficient
 stem(n*wo,abs(cn)*180/pi);   % plot |cn| vs nwo
end

xlabel('w (rad/s)')
ylabel('|cn|')
ttle = ['EE341.01: Amplitude Spectrum with N = ',num2str(N)];
title(ttle);
hold
% Draw the phase spectrum from exponential Fourier Series

subplot(2,1,2)
stem(0,angle(c0)*180/pi);         % plot angle of c0 at nwo = 0

hold
for n = -N:2:N,         % loop over odd series index n
 cn = 2/(j*n*wo);       % Fourier Series Coefficient
 stem(n*wo,angle(cn)*180/pi); % plot |cn| vs nwo
end
for n = -N+1:2:N-1,       % loop over even series index n
 cn = 0;            % Fourier Series Coefficient
 stem(n*wo,angle(cn)*180/pi); % plot |cn| vs nwo
end

xlabel('w (rad/s)')
ylabel('angle(cn) (degrees)')
ttle = ['EE341.01: Phase Spectrum with N = ',num2str(N)];
title(ttle);
hold
EE341.01: Truncated Exponential Fourier Series with N = 11
       2

       1
y(t)
       0

       -1

       -2
         -3       -2          -1            0           1           2        3
                                      t (seconds)
              EE341.01: Truncated Trigonometric Fourier Series with N = 11
       2

       1
y(t)




       0

       -1

       -2
         -3       -2          -1            0          1           2         3
                                      t (seconds)
EE341.01: Amplitude Spectrum with N = 11
                       0.8

                       0.6
           |cn|
                       0.4

                       0.2

                        0
                        -40    -30    -20     -10      0       10       20      30   40
                                                   w (rad/s)
                                      EE341.01: Phase Spectrum with N = 11
                      100
angle(cn) (degrees)




                       50

                        0

                       -50

                      -100
                         -40   -30    -20     -10        0       10      20     30   40
                                                     w (rad/s)
KESIMETRISAN DALAM GELOMBANG
               PERIODIK



1. SIMETRIS GENAP
2. SIMETRIS GANJIL
3. SIMETRIS GELOMBANG SETENGAH
SIMETRI GENAP
Fourier3
SIMETRI GANJIL
Fourier3
SIMETRI GELOMBANG
    SETENGAH
Fourier3
CONTOH SOAL
Fourier3
Fourier3
Fourier3

More Related Content

DOCX
Fourier series example
PPT
Lecture7 Signal and Systems
PDF
Fourier series 1
PPSX
Chapter 2 signals and spectra,
PPT
Digitalcomm day5 1575
PDF
Laplace1
PDF
Practising Fourier Analysis with Digital Images
PDF
signal homework
Fourier series example
Lecture7 Signal and Systems
Fourier series 1
Chapter 2 signals and spectra,
Digitalcomm day5 1575
Laplace1
Practising Fourier Analysis with Digital Images
signal homework

What's hot (20)

PDF
Fourier slide
PPT
Lecture2 Signal and Systems
PPT
Lecture6 Signal and Systems
PDF
Nss fourier
PDF
Lecture1
PDF
Ch7
PPT
Chapter 2
PPT
OPERATIONS ON SIGNALS
PDF
Introduction to Communication Systems 2
PPT
Lecture1 Intro To Signa
DOCX
Heat Map Modeling Using Resistive Network
PPT
Nt lecture skm-iiit-bh
PPTX
Matched filter detection
PDF
Signal & system
PDF
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
PPT
Ch03 9
PDF
Solved problems
PPT
signals and system
PPT
Lecture9
PDF
160511 hasegawa lab_seminar
Fourier slide
Lecture2 Signal and Systems
Lecture6 Signal and Systems
Nss fourier
Lecture1
Ch7
Chapter 2
OPERATIONS ON SIGNALS
Introduction to Communication Systems 2
Lecture1 Intro To Signa
Heat Map Modeling Using Resistive Network
Nt lecture skm-iiit-bh
Matched filter detection
Signal & system
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
Ch03 9
Solved problems
signals and system
Lecture9
160511 hasegawa lab_seminar
Ad

Similar to Fourier3 (20)

PPTX
SP_SNS_C2.pptx
PDF
Find the compact trigonometric Fourier series for the periodic signal.pdf
PPT
es240_fourierseries introduction to Fourier
PDF
02 2d systems matrix
PDF
Circuit Network Analysis - [Chapter3] Fourier Analysis
PDF
4. a Find the compact trigonometric Fourier series for the periodic s.pdf
PPTX
The FFT And Spectral Analysis
PDF
Fourier_Series_april.pdf
PDF
Fourier Analysis
PDF
Fourier Analysis
PPTX
UNIT 1 _ Problems On Fourier Series.pptx
PDF
Tele3113 wk1tue
PDF
EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf
PPTX
The Fourier Series Representations .pptx
PPTX
Speech signal time frequency representation
PDF
Analog Communication Chap 3-pages-2-41.pdf
PDF
Lecture 9
PPT
z transforms
PDF
Chapter 3
PDF
Fourier Series
SP_SNS_C2.pptx
Find the compact trigonometric Fourier series for the periodic signal.pdf
es240_fourierseries introduction to Fourier
02 2d systems matrix
Circuit Network Analysis - [Chapter3] Fourier Analysis
4. a Find the compact trigonometric Fourier series for the periodic s.pdf
The FFT And Spectral Analysis
Fourier_Series_april.pdf
Fourier Analysis
Fourier Analysis
UNIT 1 _ Problems On Fourier Series.pptx
Tele3113 wk1tue
EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf
The Fourier Series Representations .pptx
Speech signal time frequency representation
Analog Communication Chap 3-pages-2-41.pdf
Lecture 9
z transforms
Chapter 3
Fourier Series
Ad

More from bubud75 (11)

PPT
Fourier i
DOC
Pantai kenangan
DOC
Lelaki di usia senja
DOC
Hanya karena sandi
DOC
Bokek
DOC
Anakku yang hilang
PDF
Kado buat elisa
PPTX
Jenistrafo
PPTX
Fourier4
PPTX
Fourier2
PPTX
Fourier1
Fourier i
Pantai kenangan
Lelaki di usia senja
Hanya karena sandi
Bokek
Anakku yang hilang
Kado buat elisa
Jenistrafo
Fourier4
Fourier2
Fourier1

Fourier3

  • 1. Agung Budi Santoso, ST Sintesis Bentuk Gelombang & Spektrum Garis
  • 2. SINTESIS BENTUK GELOMBANG Sintesis (penyatuan) adalah gabungan dari bagian-bagian sehingga membentuk satu kesatuan. Sintesis Fourier adalah penggabungan kembali suku-suku deret trigonometri, lazimnya empat atau lima suku pertama agar menghasilkan gelombang mula-mula.
  • 3. SPEKTRUM GARIS Spektrum linier adalah sebuah kurva yang memperlihatkan masing- masing amplitudo harmonik di dalam gelombang. Garis-garis bertambah secara cepat pada gelombang-gelombang dengan deret yang mengecil (konvergen) secara cepat. Kandungan harmonik dan spektrum garis dari sebuah gelombang adalah bagian yang sangat alamiah dari gelombang tersebut dan tidak pernah berubah, tanpa memperhatikan metode analisis.
  • 4. % % Filename: example8.m % % Description: This M-file plots the truncated Fourier Series % for a square wave as well as its amplitude % spectrum. clear; % clear all variables clf; % clear all figures N = 11; % summation limit (use N odd) wo = pi; % fundamental frequency (rad/s) c0 = 0; % dc bias t = -3:0.01:3; % declare time values figure(1) % put first two plots on figure 1 % Compute yce, the Fourier Series in complex exponential form yce = c0*ones(size(t)); % initialize yce to c0 for n = -N:2:N, % loop over series index n cn = 2/(j*n*wo); % Fourier Series Coefficient yce = yce + cn*exp(j*n*wo*t); % Fourier Series computation end subplot(2,1,1) plot([-3 -2 -2 -1 -1 0 0 1 1 2 2 3],... % plot original y(t) [-1 -1 1 1 -1 -1 1 1 -1 -1 1 1], ':'); hold;
  • 5. plot(t,yce); grid; xlabel('t (seconds)') ylabel('y(t)'); ttle = ['EE341.01: Truncated Exponential Fourier Series with N = ',... num2str(N)]; title(ttle); hold % Compute yt, the Fourier Series in trigonometric form yt = c0*ones(size(t)); % initialize yce to c0 for n = 1:2:N, % loop over series index n cn = 2/(j*n*wo); % Fourier Series Coefficient yt = yt + 2*abs(cn)*cos(n*wo*t+angle(cn)); % Fourier Series computation end subplot(2,1,2) plot([-3 -2 -2 -1 -1 0 0 1 1 2 2 3],... % plot original y(t) [-1 -1 1 1 -1 -1 1 1 -1 -1 1 1], ':'); hold; plot(t,yt); grid; xlabel('t (seconds)') ylabel('y(t)'); ttle = ['EE341.01: Truncated Trigonometric Fourier Series with N = ',... num2str(N)]; title(ttle); hold
  • 6. % Draw the amplitude spectrum from exponential Fourier Series figure(2) % put next plots on figure 2 subplot(2,1,1) stem(0,c0); % plot c0 at nwo = 0 hold for n = -N:2:N, % loop over series index n cn = 2/(j*n*wo); % Fourier Series Coefficient stem(n*wo,abs(cn)) % plot |cn| vs nwo end for n = -N+1:2:N-1, % loop over even series index n cn = 0; % Fourier Series Coefficient stem(n*wo,abs(cn)*180/pi); % plot |cn| vs nwo end xlabel('w (rad/s)') ylabel('|cn|') ttle = ['EE341.01: Amplitude Spectrum with N = ',num2str(N)]; title(ttle); hold
  • 7. % Draw the phase spectrum from exponential Fourier Series subplot(2,1,2) stem(0,angle(c0)*180/pi); % plot angle of c0 at nwo = 0 hold for n = -N:2:N, % loop over odd series index n cn = 2/(j*n*wo); % Fourier Series Coefficient stem(n*wo,angle(cn)*180/pi); % plot |cn| vs nwo end for n = -N+1:2:N-1, % loop over even series index n cn = 0; % Fourier Series Coefficient stem(n*wo,angle(cn)*180/pi); % plot |cn| vs nwo end xlabel('w (rad/s)') ylabel('angle(cn) (degrees)') ttle = ['EE341.01: Phase Spectrum with N = ',num2str(N)]; title(ttle); hold
  • 8. EE341.01: Truncated Exponential Fourier Series with N = 11 2 1 y(t) 0 -1 -2 -3 -2 -1 0 1 2 3 t (seconds) EE341.01: Truncated Trigonometric Fourier Series with N = 11 2 1 y(t) 0 -1 -2 -3 -2 -1 0 1 2 3 t (seconds)
  • 9. EE341.01: Amplitude Spectrum with N = 11 0.8 0.6 |cn| 0.4 0.2 0 -40 -30 -20 -10 0 10 20 30 40 w (rad/s) EE341.01: Phase Spectrum with N = 11 100 angle(cn) (degrees) 50 0 -50 -100 -40 -30 -20 -10 0 10 20 30 40 w (rad/s)
  • 10. KESIMETRISAN DALAM GELOMBANG PERIODIK 1. SIMETRIS GENAP 2. SIMETRIS GANJIL 3. SIMETRIS GELOMBANG SETENGAH
  • 15. SIMETRI GELOMBANG SETENGAH